[hw3 ls ee571] akhtar rasool

30
EE 571 Linear Systems Home Work 3 Page 1 / 30 EE 571 Linear Systems Sprin g 2014 Home Work # 3 Due Date: 02 April; 2014 Submitted By: Akhtar Rasool Student ID: 17197 Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul Turkey

Upload: engrar

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 1/30

EE 571 Linear Systems Home Work 3 Page 1 / 30 

EE 571 Linear Systems Spring 2014

Home Work # 3

Due Date: 02 April; 2014

Submitted By: Akhtar Rasool

Student ID: 17197

Faculty of Engineering and Natural Sciences,

Sabanci University, Istanbul

Turkey

Page 2: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 2/30

EE 571 Linear Systems Home Work 3 Page 2 / 30 

Contents Page No.

Question # 01 3

Question # 02 5

Question # 03 6

Question # 04 7

Question # 05 9

Question # 06 18

Question # 07 19

Question # 08 24

Question # 09 26

Question # 10 29

Page 3: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 3/30

EE 571 Linear Systems Home Work 3 Page 3 / 30 

Question # 01

Let

 ∗  be a Hermitian-symmetric matrix (i.e.

 ∗

 =   where

∗  represents complex conjugate

operation). Prove that the matrix  is always diagonalizable even if it has repeated eigenvalues.

Solution-Proof:

In this we will show that every Hermitian matrix  (even if it has repeated eigenvalues) can be diagonalized

by a unitary matrix. Equivalently, every Hermitian matrix has an orthonormal basis. If  is real symmetric,

then the basis of eigenvectors can be chosen to be real. Therefore this will show that every real symmetric

matrix can be diagonalized by an orthogonal matrix.

The argument we present works whether or not  has repeated eigenvalues and also gives a new proof

of the fact that the eigenvalues are real.

To begin we show that if

   is any

×  matrix (not necessarily Hermitian), then there exists a unitary

matrix  such that × is upper triangular. To see this start with any eigenvector  of  with eigenvalue. (Every matrix has at least one eigenvalue.) Normalize  so that ‖‖ = 1. Now choose an orthonormal

basis , … … ,  for the orthogonal complement of the subsace spanned by , so that , , … ,  form

an orthonormal basis for all of ℂ. Form the matrix  with these vectors as columns. Then using ∗  to

denotes a number that is not necessarily 0, we have

∗  =

⎣⎢⎢⎢⎡ ⋮⋮

⎦⎥⎥⎥⎤ [   ⋯ ⋯ ]

  = ⎣⎢⎢⎢⎡ ⋮⋮ ⎦⎥⎥⎥⎤ [   ⋯ ⋯ ] =  ‖‖   ∗⟨, ⟩   ∗   ⋯ ∗⋯ ∗⋮ ⋮⟨, ⟩   ∗   ⋮ ⋮⋯ ∗

 =  ∗0 ∗   ⋯ ∗⋯ ∗⋮ ⋮0 ∗   ⋮ ⋮⋯ ∗

 = ∗0   ⋯ ∗⋮0    

 

Here  is an ( − 1) × ( − 1) matrix.

Repeating the same procedure with  we can construct an ( − 1) × ( − 1) unitary matrix  with

Page 4: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 4/30

EE 571 Linear Systems Home Work 3 Page 4 / 30 

∗  =   ∗0   ⋯ ∗

⋮0      

Now we use the ( − 1) × ( − 1) unitary matrix  to construct an × unitary matrix

 = 1 00   ⋯ 0⋮0      

Then it is not hard to see that

∗∗  = ⎣⎢⎢⎢⎡ ∗   ∗ ∗ ∗0   ∗ ⋯ ∗0⋮0   0⋮0     ⎦⎥⎥⎥⎤ 

Continuing in this way, we find unitary matrices , , … ,   so that

∗   ⋯ ∗∗  ⋯  =

⎣⎢⎢⎢⎡ ∗   ∗ ∗ ∗0   ∗ ⋯ ∗0⋮

0

  0⋮

0  ⋱

 

⎦⎥⎥⎥⎤ 

Define = … .

Then   is unitary, since the product of unitary matrices is unitary, and ∗ = ∗   … ∗∗. Thus the

equation above says that ∗  is upper triangular, i.e;

∗  =⎣⎢⎢⎢⎡ ∗   ∗ ∗ ∗0   ∗ ⋯ ∗0⋮0

  0⋮0   ⋱   ⎦⎥⎥⎥⎤ 

Notice that if we take the adjoint of this equation, we get

∗ ∗ =⎣⎢⎢⎢⎡     ∗   ∗ ∗ ∗0      ∗ ⋯ ∗0⋮0

  0⋮0   ⋱     ⎦⎥⎥⎥⎤ 

Now lets return to the case where    is Hermitian. Then  ∗ =   so that the matrices appearing in the

previous two equations are equal. Thus

Page 5: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 5/30

EE 571 Linear Systems Home Work 3 Page 5 / 30 

⎣⎢⎢⎢⎡ ∗   ∗ ∗ ∗0   ∗ ⋯ ∗0⋮0   0⋮0   ⋱   ⎦⎥⎥⎥

⎤ = ⎣⎢⎢⎢

⎡     ∗   ∗ ∗ ∗0      ∗ ⋯ ∗0⋮0   0⋮0   ⋱     ⎦⎥⎥⎥

⎤ 

This implies that all the entries denoted ∗ must actually be zero. This also shows that  =    for every .

In other words, Hermitian matrices can be diagonalized by a unitary matrix, and all the eigenvalues are

real. Hence the matrix  is always diagonalizable even if it has repeated eigenvalues.

Question # 02

Using the definition of  for vectors, show that the induced  norm of a matrix × is given by‖ ‖ =     ∑   ||  (i.e. the largest column absolute sum).

Solution-Proof: The  norm is; 

‖ ‖ =  ||  

Let = (, ∈   ×) and so

 =   

   

And

‖ ‖ = ‖‖ =  ||   =        

Now

 

     ≤      ≤  

   

Thus

‖ ‖ ≤        

Changing the order of summation then gives

‖ ‖ ≤  

    ≤  

       

where ∑    is the sum of absolute values in column .

Page 6: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 6/30

EE 571 Linear Systems Home Work 3 Page 6 / 30 

Each column will have a sum,   = ∑     , ≤ ≤   ≤  , where  is the column with the

largest sum. So

‖ ‖ ≤       ≤      = ‖ ‖ 

And hence ‖ ‖‖ ‖   ≤   , Where  is the maximum column sum of absolute values. This is true for all non-zero . Hence, ‖ ‖ ≤  

We need to determine now if  

 is the maximum value of  

‖ ‖‖ ‖  , or whether it is merely an upper bound.

In other words, is it possible to pick an ∈  for which we reach  ? 

Try by choosing the following;

  = [0,…,0,1,0,…,0 ]  ℎ  = 0 ≠ 1 =  

Now, substituting this particular  into   =  implies  = ∑     =  and thus 

‖ ‖ = ‖‖ =  

  = ||

  =  

So, ‖ ‖‖ ‖   =    =  

This means that the bound can be reached with a suitable  and so

‖ ‖ = ‖ ‖ ‖ ‖‖ ‖   =  

Where  is the maximum column sum of absolute values. Hence,  is not just an upper bound, it is

actually the maximum!

Question # 03

Using the definition of  for vectors, show that the induced  norm of a matrix × is given by‖ ‖ =   ∑   ||   (i.e. the largest row absolute sum).

Solution: Let ‖‖ =  then by definition || ≤ || = for some . Then

‖ ‖ =    

     ≤        ≤   ∙  

    ≤       =  

Page 7: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 7/30

EE 571 Linear Systems Home Work 3 Page 7 / 30 

Hence the maximum row sum is always greater than or equal to the infinity vector norm of .

Conversely, suppose the maximum row sum is obained from row

 of the matrix

 . Then choose the vector

 defined by;

  =   ≥ −  <  

Then ‖‖ =   and

‖ ‖ ≥ ‖ ‖ ≥   

     =     =  

Hence here we have a specific vector of length  for which the vector norm  dominates the maximum

row sum. Therefore

‖ ‖ =  

Question # 04 (Problem 3.18 on page 82 from Chen’s Book)

Find the characteristic polynomials and the minimal polynomials of the following matrices:

  =

 =

  =

 =

 

Solution:

The characteristic polynomial of is ;

∆() = ( − ) = − 0001 − 00

01 − 0000 −

= ( − )( − ) 

Where determinant is calculated by expanding column 1.

The minimal polynomial of is ;

  =⎣⎢⎢⎢⎡00⋯0

10⋯001⋯0

⋮⋮⋮⋮⋮000⋯⎦⎥⎥

⎥⎤ 

() = ( − )   ℎ =   ≤   = =  

Page 8: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 8/30

EE 571 Linear Systems Home Work 3 Page 8 / 30 

where  is the largest order of all Jordan blocks associated with  .

() = ( − )

( − ) ;  =  

The characteristic polynomial of is ;

∆() = ( − ) = − 000−1 − 00

0−1 − 0000 −

= ( − ) 

Where determinant is calculated by expanding column 1.

The minimal polynomial of

 is ;

  =⎣⎢⎢⎢⎡00⋯0

10⋯001⋯0

⋮⋮⋮⋮⋮000⋯⎦⎥⎥

⎥⎤ ( ) 

() = ( − )   ℎ =   ≤   = =  

where  is the largest order of all Jordan blocks associated with  .

() = ( −

)

 ;

 =  

The characteristic polynomial of is ;

∆() = ( − ) = − 000−1 − 00

00 − 0000 −

= ( − ) 

Where determinant is calculated by expanding column 1.

The minimal polynomial of  is ;

  = ⎣⎢⎢⎢⎡0⋯00 1⋯00 ⋮⋮⋮⋮⋮ 00⋯0 00⋯0⎦⎥⎥⎥⎤ ( ) 

() = ( − )   ℎ =   ≤   = =  

where  is the largest order of all Jordan blocks associated with  .

Page 9: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 9/30

EE 571 Linear Systems Home Work 3 Page 9 / 30 

() = ( − ) ;  =  

The characteristic polynomial of is ;

∆() = ( − ) = − 0000 − 00

00 − 0000 −

= ( − ) 

Where determinant is calculated by expanding column 1.

The minimal polynomial of  is ;

  = ⎣⎢⎢⎢⎡

⋯000 ⋮⋮⋮⋮⋮ 0⋯00 0⋯000⋯00⎦⎥⎥⎥⎤ ( ) 

() = ( − )   ℎ =   ≤   = =  

where  is the largest order of all Jordan blocks associated with  .() = ( − ) ;  =  

Question # 05 (Problem 3.22 on page 82 from Chen’s Book)

Use two different methods to compute   for  and  in Problem 3.13

  =   ,  = − −  

Solutions for : −  :

  = 1 4 1 00 2 00 0 3

 The characteristic polynomial of is ;

∆() = ( − ) = − 1 − 4 − 1 00 − 2 00 0 − 3 = ( − 1)( − 2)( − 3) 

Since ∆() is a diagonal matrix so the eigenvalues of are 1,2,3. They all are distinct so the  −  of  will be diagonal.

The associated wtih = 1  is any non-zero solution of

Page 10: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 10/30

EE 571 Linear Systems Home Work 3 Page 10 / 30 

(  − 1) = 0 4 1 00 1 00 0 2

   = 0 

=≫ 0 4 1 00 1 00 0 2  = 000 

Here we set  = , now the above system can be written as;4 + 10 = 0,  = 0,2 = 0 =≫  = 0,  = 0Hence  = (     ) = ( 0 0) = (1 0 0) 

Where

 is any arbitrary number. We may also write as follows;

 = (1 0 0) 

The associated wtih = 2  is any non-zero solution of

(  − 2) = − 1 4 1 00 0 00 0 1   = 0 

=≫ − 1 4 1 00 0 00 0 1  = 000 

Here we set  = , now the above system can be written as;

− + 4 + 10 = 0,2 = 0 =≫  = 0,  = ,  = 4Hence  = (     ) = (4 0) = (4 1 0) 

Where  is any arbitrary number. We may also write as follows; = (4 1 0) 

The associated wtih = 3  is any non-zero solution of

(  − 3) = − 2 4 1 00 − 1 00 0 0   = 0 

=≫ − 2 4 1 00 − 1 00 0 0  = 000 

Here we set  = , now the above system can be written as;−2 + 4 + 10 = 0, − = 0 

Page 11: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 11/30

EE 571 Linear Systems Home Work 3 Page 11 / 30 

=≫  = ,  = 0,  = 5Hence

 = (     ) = (5 0 ) = (5 0 1) 

Where  is any arbitrary number. We may also write as follows; = (5 0 1) 

Now we have;

= [     ] =  

|| = 1 4 50 1 00 0 1 = 1 1 00 1 = 1 

 = ()||   = 11 ⎣⎢⎢⎢⎢⎡   1 00 1   − 0 00 1 0 10 0− 4 50 1 1 50 1   − 1 40 0

4 51 0   − 1 50 0 1 40 1   ⎦⎥⎥⎥⎥⎤

=  1 0 0− 4 1 0− 5 0 1 = 1 − 4 − 50 1 00 0 1  

Thus the  −  of  with respect to {     }  is;

  =

  = 1 − 4 − 50 1 00 0 1 

1 4 1 00 2 00 0 3 

1 4 50 1 00 0 1 =

1 − 4 − 50 1 00 0 1 

1 8 1 50 2 00 0 3 

 

=≫  =   =  

So

  =   =     − −   

=≫  

 =  

 =

  −   −

    =    ( − ) (  − )    

 

−  : The characteristic polynomial of  is;

∆() = ( − ) = − 1 − 4 − 1 00 − 2 00 0 − 3 = ( − 1) − 2 00 − 3 (∴ ) 

=≫ ∆() = ( − ) = ( − 1)( − 2)( − 3) 

Page 12: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 12/30

EE 571 Linear Systems Home Work 3 Page 12 / 30 

  . ;  = ,  = ,  =  

Let

ℎ() =  + +  

on the spectrum of , we have  () = ℎ()  (1) = ℎ(1) ,  =  +  +   …… ()  (2) = ℎ(2) ,  =  + 2 + 4   …… ()  (3) = ℎ(3) ,  =  + 3 + 9   …… () 

Solving

(), () () simultaneously, we proceed as follows;

From (),  =  −  −  substituting in () & (), we get a new set of equations with twounknowns as;  −  =  + 3   …… ()  −  = 2 + 8 …… () 

Solving () & (), we get;

 = − 52  + 4 − 32  ;  = 12 ( − 2 + ) 

Substituting these values in equation

(), we obtained the last unknown

;

 = 3 − 3 +  

∴  = 3 − 3 +  ;  = − 52  + 4 − 32  ;  = 12 ( − 2 + )  

Now,   = +   +   

=≫  = (3 − 3 +  ) 1 0 00 1 00 0 1

+ − 52  + 4 − 32   1 4 1 00 2 00 0 3

  

+ 12 ( − 2 + ) 1 4 1 00 2 00 0 3  

ℎ =≫  = 1 0 00 1 00 0 1 + 1 4 1 00 2 00 0 3  + 1 4 1 00 2 00 0 3  

=≫  = 1 0 00 1 00 0 1 + 1 4 1 00 2 00 0 3  + 1 1 2 4 00 4 00 0 9  =  +  +   1 2 4 00 00 0 9  

Page 13: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 13/30

EE 571 Linear Systems Home Work 3 Page 13 / 30 

=≫  =  +  +   4 + 12   10 + 400  + 2 + 4   00 0  + 3 + 9

=   4( − ) 5 (  − )0   00 0

   

=≫   =    ( − ) (  − )      

−  :

It can also be calculated using Inverse Laplacean Transformation as the formula is as under;  = ( − ) 

( − ) = 1 0 00 1 00 0 1 −

1 4 1 00 2 00 0 3 

= − 1 − 4 − 1 0

0 − 2 00 0 − 3

 

| − | = − 1 − 4 − 1 00 − 2 00 0 − 3 = ( − 1) − 2 00 − 3 = ( − 1)( − 2)( − 3) 

 ( − ) =⎣⎢⎢⎢⎢⎡ − 2 00 − 3   − 0 00 − 3 0 − 20 0   − − 4 − 1 00 − 3 − 1 − 1 00 − 3   − − 1 −40 0    − 4 − 1 0 − 2 0     − − 1 −100 0   − 1 −40 − 2⎦⎥⎥

⎥⎥⎤ 

 ( − ) = ( − 2)( − 3) 0 04( − 3) ( − 1)( − 3) 010( − 2) 0 ( − 1)( − 2) 

 ( − ) = ( − 2)( − 3) 4( − 3) 10( − 2)0 ( − 1)( − 3) 00 0 ( − 1)( − 2) 

( − ) = ( − )| − |  

( − ) =   1( − 1)( − 2)( − 3) ( − 2)( − 3) 4( − 3) 10( − 2)

0 ( − 1)( − 3) 00 0 ( − 1)( − 2) 

( − ) =⎣⎢⎢⎢⎢⎡   1 − 1   4( − 1)( − 2)   10( − 1)( − 3)0   1 − 2   0

0 0   1 − 3   ⎦⎥⎥⎥⎥⎤ 

Page 14: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 14/30

EE 571 Linear Systems Home Work 3 Page 14 / 30 

 = {( − )} = ⎩⎪⎨⎪⎧

⎣⎢⎢⎢⎢⎡   1 − 1   4( − 1)( − 2)   10( − 1)( − 3)

0   1 − 2   00 0   1 − 3   ⎦⎥⎥⎥⎥⎤

⎭⎪⎬⎪⎫

 

=> ⎩⎨⎧   4( − 1)( − 2) =   4( − 2) −   4 − 1  10( − 1)( − 3) =   5( − 3) −   5 − 1⎭⎬

⎫ 

 

 =

( −

)

 = 

  ( − ) (  − )

     ∴

  − =

  − =  . 

Solutions for : −  :

  = 0 4 30 2 0 1 60 − 2 5 − 2 0The characteristic polynomial of is ;

∆() = ( − ) = −4 −30 − 2 0 − 1 60 2 5 + 2 0 =

 

Clearly  has only one disctinct eigenvalue 0 with multiplicity 3, ( − 0) = 3− 2 = 1 

Thus  has only one independent eigenvector associated with 0 ;  =  

=≫ 0 4 30 2 0 1 60 − 2 5 − 2 0

= 00

Here we set  = 1,  = 0 now the above system can be written as;4 + 3 = 0 =≫  = 0Hence  = (     ) = ( ) 

We can compute generalized eigenvectors of  from equations below;  =  

Page 15: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 15/30

EE 571 Linear Systems Home Work 3 Page 15 / 30 

=≫ 0 4 30 2 0 1 60 − 2 5 − 2 0

= 100

 

4 + 3 = 1,20 + 16 = 0 

Solving both of the above equations gives;  = ( − ) 

Now,   =  

=≫ 0 4 30 2 0 1 60 − 2 5 − 2 0

=  04−5

 

4 + 3 = 0,20 + 16 = 4 

Solving both of the above equations gives;  = ( − ) 

Now we have;

= [     ] = − −   

|| = 1 0 00 4 − 30 − 5 4  = 1  4 −3−5 4  = 1 

 = ()||   = 11 ⎣⎢⎢⎢⎢⎡ 4 −3−5 4    − 0 −30 4  0 40 −5−  0 0−5 4 1 00 4   − 1 00 −5

0 04 −3   − 1 00 −3 1 00 4   ⎦⎥⎥⎥⎥⎤

= 1 0 00 4 50 3 4 = 1 0 00 4 30 5 4 

Thus the repre of  with respect to the basis {     }  is ;

  =

  = 1 0 00 4 30 5 4

0 4 30 2 0 1 60 − 2 5 − 2 0

1 0 00 4 − 30 − 5 4  =

1 0 00 4 30 5 4

0 1 00 0 40 0 − 5

 

=≫  =   =  

Since the Jordan form have repeated eigenvalues with multiplicity 3 so we can determine   as

follows;

Page 16: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 16/30

EE 571 Linear Systems Home Work 3 Page 16 / 30 

 

 =    

 

    =  

 

So

 =   = 1 0 00 4 − 30 − 5 4   1   20 1 0 0 1 1 0 00 4 30 5 4 

=≫  =   = 1 0 00 4 − 30 − 5 4

  1 4 + 52   3 +2

0 4 + 5 3 + 40 5 4  = 1   52   + 4 2  + 3

0 1 + 20 160 −25 1 − 20 

=≫  =   = 1   52   + 4 2  + 30 1 + 20 160 −25 1 − 20  

−  :

The characteristic polynomial of  is;

∆() = ( − ) = −4 −30 − 2 0 − 1 60 25 + 20

= − 2 0 − 1 625 + 20

 = ( − 400 + 400) =  

Let ℎ() =  + +  

on the spectrum of , we have  () = ℎ()  (0) = ℎ(0) ,  =  + +  =≫  =  =≫  = 1  (0) = ℎ(0),  =  + 2 =≫ () =  + 2(0) =≫  =  

 (0) = ℎ(0),  = 2 =≫ () = 2 =≫  = 

Solving above equations we have;

 = 1;  = ;  =  2  

 = +   +   

Page 17: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 17/30

EE 571 Linear Systems Home Work 3 Page 17 / 30 

=≫  = 1 0 00 1 00 0 1

+ 0 4 30 2 0 1 60 − 2 5 − 2 0

+

2 0 4 30 2 0 1 6

0 − 2 5 − 2 0

 

=≫  = 1 0 00 1 00 0 1 + 0 4 30 20 160 −25 −20 + 2 0 4 30 2 0 1 60 − 2 5 − 2 0 

=≫  = 1 4 30 1 + 20 160 − 2 5 1 − 2 0 + 2 0 5 40 0 00 0 0 = 1 4 + 5 2   3 +4 20 1 + 20 160 −25 1 − 20  

=≫   =     +  +

+ − −  

−  :

It can also be calculated using Inverse Laplacean Transformation as the formula is as under;  = ( − ) 

( − ) =  1 0 00 1 00 0 1 − 0 4 30 2 0 1 60 − 2 5 − 2 0 = −4 −30 − 2 0 − 1 60 2 5 + 2 0 

| − | = −4 −30 − 2 0 − 1 60 2 5 + 2 0 = − 2 0 − 1 625 + 20 = {( − 20)( + 20) +400} =

 

 ( − ) =⎣⎢⎢⎢⎢⎡ − 2 0 − 1 625 + 20   − 0 − 1 60 + 20 0 − 200 25  

− − 4 − 32 5 + 2 0 −30 + 20   − −40 25   −4 −3 −20 −16   − −30 − 1 6 −40 − 20⎦⎥⎥

⎥⎥⎤ 

 ( − ) =      0 04 + 5 ( + 20) −253 + 4 16 ( − 20) 

 ( − ) =    + + ( + ) − ( − ) 

( − ) = ( − )| − |  

Page 18: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 18/30

EE 571 Linear Systems Home Work 3 Page 18 / 30 

( − ) =   1

  4 + 5 3 + 40 ( + 20) 160 −25 ( − 20) = ⎣⎢⎢⎢⎢⎡1   4 +   5   3 +   4

0   1 + 20   160 − 25   1 − 20 ⎦⎥⎥⎥⎥⎤ 

  = ( − ) = ⎩⎪⎨⎪⎧

⎣⎢⎢⎢⎢⎡    +      +      +   −    −  ⎦⎥

⎥⎥⎥⎤⎭⎪⎬⎪⎫

 

  = ( − ) = +

   + + − − ∴

= =  .  

Question # 06 (Problem 4.1 on page 117 from Chen’s Book)

An oscillation can be generated by;

   =    − …… () 

Show that its solution is:

() =    − () 

Solution-Proof:

Let

  =   0 1−1 0 

So (1) can be written as follows;

 () =  () =    () 

The characteristic polynomial of

  is;

∆() = ( − ) =  −11   = ( + 1) = ( − ) = ( + )( − ) 

  . ;  = ,  = − 

Let ℎ() =  +  

on the spectrum of , we have

Page 19: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 19/30

EE 571 Linear Systems Home Work 3 Page 19 / 30 

Computation of :

 () = ℎ() 

 ( ) = ℎ( ) ,  =  +   … … ()  (−) = ℎ(−) ,  =  −   … … () 

Equations () & () can also be written as follows; = cos() + ∙ () =  +   … … ()  = cos() − ∙ () =  −   … … () 

Solving equations () & (), we get the values;

 = cos()   &  = sin() 

Now,

  = +   = cos() 1 00 1 +sin()  0 1−1 0 =  ()   ()−()   () 

Computation of  (Alternative Method):

  = ( − ) =   1 + 1   1−1 =    + 1   1 + 1−1 + 1    + 1 

 = {( − )} =    + 1     1 + 1   −1 + 1    + 1 =  ()   ()−()   () 

 () =   () =    () =  ()   ()−()   ()() 

Hence;

 () =  ()   ()−()   ()()  

Question # 07 (Problem 4.4 on page 117 from Chen’s Book)

Find the companion-form and modal-form equivalent equations of;

    = − − − + , = [ − ] 

Solution: Let

Page 20: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 20/30

EE 571 Linear Systems Home Work 3 Page 20 / 30 

  = − 2 0 01 0 10 − 2 − 2

, = = 101

, = [1 − 1 0], = [0] 

Determining of Companion Form Equivalent Equations:

  = − 2 0 01 0 10 − 2 − 2 101 = −22−2 ,  = ( ) = − 2 0 01 0 10 − 2 − 2 −22−2 =  4−40  

= [ ] = − − −

  =   ( ) 

|| = 1 − 2 40 2 − 41 − 2 0  = 1(0 − 8) − 0 + 1(8 − 8)  = −8 (∴ ) 

 =  ||   =   1−8 ⎣⎢⎢⎢⎢⎡ 2 −4−2 0    − 0 −41 0  0 21 −2− −2 4−2 0 1 41 0   − 1 −21 −2−2 42 −4   − 1 40 −4 1 −20 2    ⎦⎥⎥

⎥⎥⎤

= − 18 − 8 − 4 − 2− 8 − 4 00 4 2  =⎣⎢⎢⎢⎢⎡1   12   141   12   00 − 12   − 14⎦⎥⎥

⎥⎥⎤ 

 =  ||   =   . . − . . − . = ( )

 

Now

  =  =   1 1 00 . 5 0 . 5 − 0 . 50 . 2 5 0 − 0 . 2 5 − 2 0 01 0 10 − 2 − 2 1 − 2 40 2 − 41 − 2 0  

   =  =  −1 0 1− 0 . 5 1 1 . 5−0.5 0.5 0.5 1 − 2 40 2 − 41 − 2 0  = 0 0 − 41 0 − 60 1 − 4 

Similarly we can find ,     ;

 = =   1 1 00 . 5 0 . 5 − 0 . 50 . 2 5 0 − 0 . 2 5 101 = 100 =  = [1 − 1 0] 1 − 2 40 2 − 41 − 2 0  = [1 − 4 8]  &  = = 0 

Page 21: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 21/30

EE 571 Linear Systems Home Work 3 Page 21 / 30 

   =  = − −

− ;  = =

;

 =  = [ − ];  = =    

Finally we can write the Companion form equivalent equations as under;

  = − − − + , = [ − ]  

Determining of Model Form Equivalent Equations:

   = − − −

+

, = [ − ] ( ) 

Characteristic Polynomial = | − | =   + 2 0 0− 1 − 10 2 + 2 =  ( + 2){( + 2) + 2} 

| − | = ( + 2)( + 2 + 2) = ( + 2)( + 2 + 1 − 1 + 2) = ( + 2){( + 1) − } | − | = ( + )( + − )( + + ) =≫  = −,  = − + ,  = − −  

The associated wtih = −2 is any non-zero solution of;

(  + 2) = 0 0 01 2 10 − 2 0

 = 0 =≫ 0 0 01 2 10 − 2 0

= 00

Here we set  = , now the above system can be written as; + 2 +  = 0,  = 0 =≫  = −Hence  = (     ) = ( 0 − ) = (1 0 −1) 

Where  is any arbitrary number. We may suppose = 1/√ 2 ; = (1/√ 2 0 − 1 /√ 2) 

The

associated wtih

 = −1 +  is any non-zero solution of;

(  − (−1 + )) = −1 − 0 01 − 1 + 10 −2 −1 −  = 0 =≫ −1 − 0 01 − 1 + 10 −2 −1 − = 000 

Here we set  = , now the above system can be written as; + (− 1 + ) +  = 0,  = 0 =≫  = (1 − ) 

Hence  = (     ) = (0 ( 1 − ) ) = (0 1 1 − ) 

Page 22: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 22/30

EE 571 Linear Systems Home Work 3 Page 22 / 30 

Where  is any arbitrary number. We may suppose = 1/√ 3 ;

 = (0 1/√ 3 1 − √ 3   ) 

The associated wtih  = −1 −  is any non-zero solution of

(  − (−1 − )) = −1 + 0 01 1 + 10 −2 −1 +  = 0 =≫ −1 + 0 01 1 + 10 −2 −1 + = 000 

Here we set  = , now the above system can be written as; + (1 + ) +  = 0,  = 0 =≫  = (−1−) 

Hence

 = (     ) = (0 ( − 1 − ) ) = (0 1 − 1 − ) 

Where  is any arbitrary number. We may suppose the same   since complex conjugate eigenvalue,

=   √  ;

 = (0   1√ 3   − 1 − √ 3   )  

Now for the modal form  can be written as;

 = [   () ()] = [() () ] =⎣⎢⎢⎢⎢⎢⎡

  √    √    −   √    −   √    −   √ ⎦⎥⎥

⎥⎥⎥⎤  

|| =    0 0   1√ 20   1√ 3   0

−  1√ 3   −

  1√ 3   −

  1√ 2

 =   1√ 2   0   1√ 3−   1√ 3   −   1√ 3 =   1√ 2 13 =   13√ 2 

Page 23: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 23/30

EE 571 Linear Systems Home Work 3 Page 23 / 30 

=  = ||   =   113√ 2

⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡

 

  1

√ 3   0

−   1√ 3   −   1√ 2   −   0 0

−   1√ 3   −   1√ 2     0   1

√ 3

−   1√ 3   −   1√ 3−   0   1√ 2−   1√ 3   −   1√ 2     0   1√ 2−   1√ 3   −   1√ 2   −   0 0−   1√ 3   −   1√ 3

 0   1√ 21√ 3   0    − 0   1√ 20 0  0 00   1√ 3 ⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤

 

= 3√ 2⎣⎢⎢⎢⎢⎢⎡−   1√ 3   1√ 2   0   13−   1√ 3   1√ 2   1√ 3   1√ 2   0−   1√ 3   1√ 2   0 0⎦⎥⎥

⎥⎥⎥⎤

= −√ 3 0   √ 2−√ 3   √ 3 0−√ 3 0 0  = −√  −√  −√    √  √     

  =  = −√ 3 −√ 3 −√ 30   √ 3 0

√ 2 0 0

  − 2 0 01 0 10 − 2 − 2

⎣⎢⎢⎢⎢⎢⎡ 0 0   1√ 20   1√ 3   0

−   1√ 3   −   1√ 3   −   1√ 2⎦⎥⎥⎥⎥⎥⎤ 

  =  = −√ 3 −√ 3 −√ 30   √ 3 0√ 2 0 0   ⎣⎢⎢⎢⎢⎡

  0 0 −√ 2−   1√ 3   −   1√ 3   02√ 3   0   √ 2 ⎦⎥⎥⎥⎥⎤ = − 1 1 0− 1 − 1 00 0 − 2 

Similarly we can find ,     ;

 = = −√ 3 −√ 3 −√ 3

0   √ 3 0√ 2 0 0   101 = 

−2√ 30√ 2    

 =  = [1 − 1 0]⎣⎢⎢⎢⎢⎢⎡ 0 0   1√ 20   1√ 3   0−   1√ 3   −   1√ 3   −   1√ 2⎦⎥⎥

⎥⎥⎥⎤

= 0 −   1√ 3   1√ 2 &  = = 0 

Page 24: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 24/30

EE 571 Linear Systems Home Work 3 Page 24 / 30 

⎩⎪⎨⎪⎧   =  = − − −

− ;  = = −√ 

√   ;

 =  = −   √    √  ;  = =   ⎭⎪⎬⎪⎫

 

So now we can write the Modal form equivalent equations as under;

  = − − − − + −√ √    , = −   √    √   

Question # 08 (Problem 4.8 on page 118 from Chen’s Book)

Are the two sets of state equations;

   = + , = [ − ] &    = − + , = [ − ]equivalent? Are they zero-state equiavlent?

Solution: Note that;

(A)  the equivalent state equations have the same characteristic polynomial and consequently

the same set of eigenvalues and same transfer matrix. 

(B)  Two state equations are said to be Zero-state equivalent if they have the same transfer

matrix. 

So here we will determine and compare the characteristic polynomial and tranfer mater in both of

the set of equations to know about equivalency; 

(i)  For the 1st set of Equations:

() = ( − ) = [1 − 1 0] − 2 −1 −20 − 2 −20 0 − 1 110 

. = | − | = − 2 −1 −20 − 2 −20 0 − 1

= ( − 2) − 2 −20 − 1

= ( − 1)( − 2) 

( − ) = ( − )| − |   =   1( − 1)( − 2)⎣⎢⎢⎢⎢⎡ − 2 −20 − 1   − 0 −20 − 1 0 − 20 0   − − 1 − 20 − 1 − 2 −20 − 1   − − 2 −10 0 

  − 1 − 2 − 2 −2   − − 2 −20 −2 − 2 −10 − 2⎦⎥⎥⎥⎥⎤

 

( − ) =   1( − 1)( − 2) ( − 2)( − 1) 0 0( − 1) ( − 2)( − 1) 02 + 2 − 4 2( − 2)   ( − 2) 

Page 25: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 25/30

EE 571 Linear Systems Home Work 3 Page 25 / 30 

( − ) = ⎣⎢⎢⎢⎢⎢⎡   1 − 2   0 0

1( − 2)   1 − 2   02( −1)( − 1)( − 2)   2( − 1)( − 2)   1 − 1⎦⎥⎥⎥⎥⎥⎤

= ⎣⎢⎢⎢⎢⎢⎡   1 − 2   1( − 2)   2( − 2)

0   1 − 2   2( − 1)( − 2)0 0   1 − 1   ⎦⎥⎥⎥⎥⎥⎤ 

Substituting the corresponding values, we get as under,

() = ( − ) = [1 − 1 0]

⎣⎢⎢⎢⎢⎢⎡

  1 − 2   1( − 2)   2( − 2)0   1 − 2   2( − 1)( − 2)

0 0  1

− 1   ⎦⎥⎥⎥⎥⎥⎤ 110 

() = ( − ) = [1 − 1 0]⎣⎢⎢⎢⎡   1 − 2 +   1( − 2)1 − 20   ⎦⎥⎥

⎥⎤ 

() = ( − ) =   1 − 2 +   1( − 2) −   1 − 2 =  − 2 + 1 − + 2( − 2)   =   1( − 2) 

() = ( − ) =  

( − )  

(ii)  For the 2st set of Equations: Similar to above, we can proceed as follows; 

() = ( − ) = [ − ] − − − − − +  

. = | − | = − 2 −1 −10 − 2 −10 0 + 1 = ( − 2) − 2 −10 + 1 = ( + 1)( − 2) 

( − ) = ( − )| − |   =   1( + 1)( − 2) ⎣⎢⎢⎢⎢⎡ − 2 −10 + 1   − 0 −10 + 1 0 − 20 0   − − 1 − 10 + 1 − 2 −10 + 1   − − 2 −10 0    − 1 − 1 − 2 −1   − − 2 −10 −1 − 2 −10 − 2⎦⎥⎥⎥⎥

⎤ 

( − ) =   1( + 1)( − 2) ( − 2)( + 1) 0 0( + 1) ( − 2)( + 1) 01 + − 2 ( − 2)   ( − 2) 

Page 26: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 26/30

EE 571 Linear Systems Home Work 3 Page 26 / 30 

( − ) = ⎣⎢⎢⎢⎢⎢⎡   1 − 2   0 0

1( − 2)   1 − 2   0 − 1( + 1)( − 2)   1( + 1)( − 2)   1 + 1⎦⎥⎥⎥⎥⎥⎤

= ⎣⎢⎢⎢⎢⎢⎡   1 − 2   1( − 2)   − 1( + 1)( − 2)

0   1 − 2   1( + 1)( − 2)0 0   1 + 1   ⎦⎥⎥⎥⎥⎥⎤ 

Substituting the corresponding values, we get as under,

() = ( − ) = [1 − 1 0]

⎣⎢⎢⎢⎢⎢⎡

  1 − 2   1( − 2)   − 1( + 1)( − 2)0   1 − 2   1( + 1)( − 2)

0 0  1

+ 1   ⎦⎥⎥⎥⎥⎥⎤ 110 

() = ( − ) = [1 − 1 0]⎣⎢⎢⎢⎡   1 − 2 +   1( − 2)1 − 20   ⎦⎥⎥

⎥⎤ 

() = ( − ) =   1 − 2 +   1( − 2) −   1 − 2 =  − 2 + 1 − + 2( − 2)   =   1( − 2) 

() = ( − ) =  

( − )  

onclusion:

. = | − | = ( − 1)( − 2). = | − | = ( + 1)( − 2)  Since at least the characteristic polynomials of the 1st and 2nd set of equations are not equal so both the

systems are not equivalent. However since;

() = () =   ( − ) = &  =  =  

so both of the givens sets of state equations are zero-state equivalent.

Question # 09 (Problem 4.16 on page 119 from Chen’s Book)

Find fundamental matrices and state transition matrices for

()     =  & ()    = − −  

Solution ():

Page 27: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 27/30

EE 571 Linear Systems Home Work 3 Page 27 / 30 

  ()  () =  ()() 

Writing each state as a separate equation, re-arranging and integrating both sides, we see

 () = ()() = () =≫⎩⎪⎨⎪⎧ ()   = ()   ()()

  =   ⎭⎪⎬

⎪⎫ =≫⎩⎪⎨⎪⎧() = ()

  + (0)ln () =  2 +   ⎭⎪⎬

⎪⎫ 

=≫ () =   =   = (0).   ℎ (0) =  

=≫   () = ()

  + ()() = ().  

 

()  (0) = 10 =≫ () =    & ()  (0) = 01 =≫ () =  . .    

Both of the initial states are taken to be linearly independent so;

 () =  . .    = ()  

Now = (, ) = () ()  

So,

 () = ()| ()|   =   1.  .   − . 0 1    = 1 −.   .

0 .    

(, ) = () 

() = 1 .

0 .   1 −. .

0 .    

=≫ (, ) = 1 −.   .   + . .

0 . .    

=≫ (, ) = 1 .  − .   + .

  0 .    

Page 28: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 28/30

EE 571 Linear Systems Home Work 3 Page 28 / 30 

=≫ (, ) = 1 .   .   + .

  0 .

  ∴  ′

   

=≫ (, ) = () () =  .   . .    = ()

Solution ():

  ()  () = − − ()() 

Writing each state as a separate equation, re-arranging and integrating both sides, we see

() = −() + ()() = −()   =≫ ⎩⎪⎨⎪⎧ ()   =  [−() + ()]   ()()   = − 1

  ⎭⎪⎬⎪⎫ 

=≫ () =  [−() + ()]() =    =≫ () =  [−() + ()]

() = (0) ; (0) =   

=≫ () =  [−() + ()]   =  [−() + (0)]

  =  [−() + (0)]  

=≫   () = −() + () 

Since the above equation has the General function () and its derivative   () so its derivative can

be coputed by multiplying both sides by  and then solving by integration by parts from → .

=≫   ()   = − () 

  + ()    + () 

=≫ ()   = − ()  

  − ()    

  + (0)     + (0) 

=≫ ()   = − ()( − 1) − ()( − 1)   + 12 (0)( − 1) + (0) 

=≫ ()   = −()( − 1) + ()

  − ()   + 12 (0)( − 1) + (0) 

=≫ 0 = −()( − 1) − () + 12 (0)( − 1) + (0) 

Page 29: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 29/30

EE 571 Linear Systems Home Work 3 Page 29 / 30 

=≫ 0 = −() + 12 (0)( − 1) + (0) =≫ () = 12 (0)( − 1) + (0) 

=≫ () = 12 (0)( − ) + (0) 

=≫ () = .()( − ) + () () = ()   

()  (0) = 10 =≫ () =     & ()  (0) = 01 =≫ () = . ( − )  Both of the initial states are taken to be linearly independent so;

 () =   . ( − )

  = ()  

Now

= (, ) = () ()  

So,

 () = ()| ()|   =   1    −0.5( − )0   =   −0.5( − )0    

(, ) = () () =   0.5( − )0     −0.5( − )0    

=≫ (, ) =   −0.5( − ) +0.5( − )0    =≫ (, ) = () () = ()   .() − ()   = ()Question # 10 (Problem 4.20 on page 120 from Chen’s Book)

Find the state transition matrix of    = − −

 

Solution: Let   ()  () = − − ()() 

Writing each state as a separate equation, re-arranging and integrating both sides, we see

Page 30: [HW3 LS EE571] Akhtar Rasool

8/12/2019 [HW3 LS EE571] Akhtar Rasool

http://slidepdf.com/reader/full/hw3-ls-ee571-akhtar-rasool 30/30

() = −() 

() = −()  =≫ ⎩⎪⎨⎪⎧()() = −()

()() = −()⎭⎪⎬⎪⎫

 =≫ ⎩⎪⎨⎪⎧   ()()  

  = −()

  ()()   = −()   ⎭⎪⎬⎪⎫

 

=≫  ln () = () −(0)+ln () = −() −(0)+ =≫ () = ()() = ()  =≫ () = (). () = ().    

=≫ () = (0). ()() = (0). ()    ℎ  = (0) =  = (0) =  

()  (0) = 10 =≫ () = ()   & ()  (0) = 01 =≫ () =    () Both of the initial states are considered to be linearly independent so;

 () = ()   () =  

Now we need

= (, ) = () ()  

So,

 

(

) = ()

| ()|   =  1

() () ()   0

0 () =

  1()   00   1()

 

(, ) = ()   00 ()   1()   00   1()

= ()()   00 ()() 

=≫ (, ) = () () = ()()   ()() =