integrated forest biorefinery - biomass utilisation at the follum mill

35
Various Integrated Forest Biorefinery (IFB) options… and suitable technologies for the future Follum mill and it’s partners? 20110921 Follum mill Lasse Blom (Eigil Søndegård & Henrik Plesner) ®

Upload: lasse-blom

Post on 27-Jun-2015

1.266 views

Category:

Technology


1 download

DESCRIPTION

By producing multiple products, a Integrated Forest Biorefinery (IFB) takes advantage of the various components in the biomass and their intermediates maximising the value derived from the biomass feedstock. These can be grouped into: BioMaterials, BioChemicals, BioFuels and BioEnergy.

TRANSCRIPT

Page 1: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Various Integrated Forest Biorefinery (IFB)options… and suitable technologies for the 

future Follum mill and it’s partners?2011‐09‐21Follum millLasse Blom

(Eigil Søndegård & Henrik Plesner)

®

Page 2: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Table of Content

▪ Introduction – Why we do the things we do?

▪ Background – What is done before?

▪ The biomass resources – The sobering facts!

▪ Bio‐business options at Follum –New and “old” ideas!

Page 3: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Introduction– Why we do the things we do?

Page 4: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Why we do the things we do?

EU Commission 2050 roadmap to a low carbon economy where the target is 80% reduction (100%=1990).

Target

What about Norway’s contribution?

We will not reach the EU goal in 2050 if we continuous in the samepace as today with GHG reductions!!!!

Page 5: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Feedstock resources in Norway▪ Wood resources in Norway

– Growing stock: 765 mill. m3– Annual growth : 28 mill. m3– Annual logging: 10 mill. m3

▪ Annual harvesting today is 16 TWh. Total biomass harvesting is estimated to be approx 30 – 35 TWh (NVE, NINA), but competing usage will queue up.

▪ As an example; The conversion to biofuels will at its best be 15 TWh if all biomass is utilised for biofuels solely, while the need is 75 TWh (SSB) in the transport sector. This means that we will only cover 20% of the transport fuel needed.

▪ We have too scare biomass resourcesin Norway to “save the world”.

“We need to find the right way to utilising our biomass sustainable!”

Page 6: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Background – What is done before?

Page 7: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

BioDiesel – Xynergo – not an option yet…!

BioDiesel left out in the cold…!

▪ BioDiesel from biomass is still not technically fully developed

▪ Poor energy efficiency for biodiesel▪ Market uncertainties▪ Authority uncertainties ‐ if it had to 

really on this to be implemented?▪ Needed large production volume to 

be economical feasible, and this again was dependent on locationand the source of available biomass

▪ Openness, honesty and co‐operation is key for project success

Page 8: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

BioOil – Xynergo – not an option yet…!

▪ Fast pyrolysis oil has many undesirable properties:– High water content: 15‐30%– High O content: 35‐40%– High acid: pH=2.5, TAN>100 mg KOH/g oil– Unstable (phase separation, reactions)– Low HHV: 16‐19 MJ/kg– Catalytic methods can be used to improve 

these properties for the bio‐oil

▪ The quality of bio‐oil is today not goodenough for direct  pure bio‐oil usage

▪ Market uncertainties, small volumes▪ The bio‐oil need to be hydrolysed to be

usable for further processing at refineries, and will therefore become expensive.

What now then?

Page 9: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

The PROFIT‐Project Introduction▪ “PROFITable bioenergy and paper production through innovative raw 

material handling and process integration” (PROFIT‐Project) – Sub‐project 1. Raw materials logistics– Sub‐project 2. Improved paper production– Sub‐project 3. Bioenergy production and Process Integration 

▪ The industry and R&D partners are: Norske Skog, Viken Skog, PFI, Chalmers, NTNU, Bio Varme, Follum Industripark, Andritz og Moelven.

▪ The project main goal:– The project aims at establishing innovative systems and technological solutions for 

integrated raw material and heat handling in a paper mill, waste combustion plant, pellet plant and a synthetic biofuel plant, opening for:• Considerable increase in wood logging for bioenergy purposes, amounting to a 

minimum of 0.4 TWh/year, only in the Follum case, however with considerably higher potentials

• Development of a new, innovative fractionation system for chip handling, allowing for a more optimal use of the wood raw material

• Cost‐effective production of pellets• Cost‐effective production of synthetic biodiesel• A step‐change in critical pulp properties (e.g. strength, variation, optical 

properties, energy consumption) ensuring more uniform and improved TMP pulp quality.

Page 10: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

The PROFIT‐Project progress…when looking back!

[2010, Mar] – Wood pellets

[2010, May] – Torrefaction pellets

[2011, Feb] – Bio‐oil (pyrolysis)

[2011, May] – Gasification

[Today] Biomass IntegratedGasification CombinedCycle (BIGCC)”A rugged road!...”

Page 11: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

The PROFIT‐Project progress…when looking back!

Wood pellets:Pros:‐ Most suitable for smallmarkets and therefore alsosuitable for smaller local industries.

Cons:‐ Market uncertainties‐ The PROFIT SP1 concluded thatwood pellets would not be suitablefor the Follum mill!!!

‐ We would like to use the biomass ourselves for producing specialproducts.

Torrefaction pellets:Pros:‐ Higher energy density than wood pellets (30%).

‐ Good for pre‐treatment for theEntrained Flow Gasifier (EFG).

Cons:‐ Market uncertainties.‐ The energy densification may in somecases not be economical valid.

‐ Some issues with spontaneousignition when stockpiled.

‐ A “hype wave” product (?)‐ Torrefied material gives much dust forall the gasification types, except the EFG.

Bio‐oil (pyrolysis):Pros:‐ Good logistics, but may not be worth it.Cons:‐ The bio‐oil need to be hydrolysed to beusable for further processing at refineries, and will therefore become expensive.

‐ The quality of bio‐oil is today not goodenough for direct  pure bio‐oil usage.

Gasification:Pros:‐ Numerous usage options.‐ Flexible feed and products.‐ Circulating Fluidized Bed the best option for Follum.

Cons:‐ High investment costs, but the chosentechnology will make it very flexible system

Biomass Integrated Gasification Combined Cycle (BIGCC):• Steam – for the mill• Heat – for the district heating• Electricity – for the grid• Methane, Hydrogen &/or Methanol – for the transport sector

2010 May 2011 Feb2010 Mar

2011 May

2011 Jul

[START]

Page 12: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

The Biomass Resources– The sobering facts

Page 13: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

The Biomass Resources – the sobering facts

▪ Forests comprise about @80% of the world’s biomass▪ Biomass supply @14% of the world’s energy needs▪ Depending on the energy source, the markets vary:

– Fossil fuels => World market– Electricity => Region market– Biofuel => District market– District heating => City market

▪ Biomass is often scattered in small “local reservoirs” and is not suitable for a global market

▪ Biomass fuel prices can vary significantly between countries, due to different national policy instruments

▪ Logistics are one of the major cost saving potentials▪ Biorefinery needs to be close to the source of biomass

Page 14: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Raw materials availability at Follum

▪ Investigate feedstock resources in the Follum mill area, with main focus on forest residues (GROT) has been performed

Biomass origin at Follum

Hønefoss… in the heart of the Norwegian forests!

Norway

85 km

Page 15: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Biomass inventory around the Follum mill

Total annual effect available biomass around Follum mill (upto 85 km)

12.7

8.0 8.9

12.8

1.5

6.4

2.5 2.0 1.10

2

4

6

8

10

12

14

16

GROTMas

sevir

ke fu

ruEne

rgigra

n

Heltre

Biovirk

eRivn

ingsv

irke

Sagflis

Tørrflis

Kutterf

lis

Tota

l Effe

ct (M

W)

≈ 55 MW

Page 16: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Bio‐businesses options at Follum– New and “old” ideas!

Page 17: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Product portfolio development at the Follum mill

?

Forest BioRefineries and Energy Conversion techn.:• Wood pellets• Torrefaction• District Heating• Pyrolysis oil• Gasification• Extracting “products”• Steam Turbines• Heat Pumps• Etc.

0

50

100

150

200

250

300

350

400

1000

Ton

n

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10OP11

Newsprint Sulphitepaper SC UMI MFC Book

Standard Newsprint

Improved Newsprint

Coated Magazine

Page 18: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Integrated Forest Biorefineries (IFB’s):

IFB

BioChemicals

BioEnergyBioFuels

BioMaterials

‐ Paper ‐ Nanofibres‐ Fibers ‐ Textile‐ Composites ‐ PHA‐ Polymers ‐ etc

‐ BioGas ‐ BioButanol‐ BioDiesel ‐ BioMethanol‐ BioEthanol ‐ BioSNG‐ BioHydrogen ‐ etc

‐ Proteins ‐ Glycerine.‐ Lignin ‐ Acetone‐ Turpentine ‐ Fertilizers‐ Gasification ‐ etc

‐ Chips ‐ Hydrolysis.‐ Pellets ‐ Fuel Cells‐ Torrefaction ‐ BioOil‐ Combustion ‐ etc

▪ Definition: By producing multiple products, a Integrated Forest Biorefinery (IFB) takes advantage of the various components in the biomass and their intermediates maximising the value derived from the biomass feedstock. These can be grouped into:

Page 19: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

How to get successful BioBusinesses– with  Utility and Product Integrations

BioMaterials

BioFuels

BioChemicals

BioEnergy

Knowledge + Solutions      =        Environment + BioBusiness

®

Page 20: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

What decide the technology options?

Resources Market

▪ The biorefinery technology chosen is dependent on both upstream and downstream external influences and internal needs

Follum mill and co‐companies

Raw material and pre‐treatment

Integrated Forest 

Biorefinery

Post treatment

Page 21: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

What is the best biorefinery pathway?▪ “It’s time to frame and tame the activities!”… we are in the forests of opportunities!

Biogas

Pellets(wood, torrefaction)

Steam Turbines

District Heating

BioDiesel

BioOil

Gasification ?BioButanol

Combustion

Page 22: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Strategic‐ and Classical Process DesignNumber of design options

Product portfolio design

Screening out

Feasibility study

Pre‐study

Main‐study

Engineering

Very early stage selection

Early stage selection

Strategic Process Design

Classical Process Design

▪ Product portfolio Design▪ Strategic Process Design

– Generate product alternatives (matrix)

– Very early stage design– Early stage design

▪ Classical Process Design– Feasibility‐, main‐ and engineering design

– Evaluation, ROI, ROCE and IRR.

1

2

3

Timeline

Idea input

Page 23: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

R&D Pilot/Demonstration Commercial

BioHydrogenSupercritical Gasification

Bio‐oil applications

BioOil (Fast/flash Pyrolysis)

BioEthanol from cellulose

BioDiesel

BioGas (Anaerobic digestion)

CombustionDensification (pelletising)

SynGas (Gasification of biomass)Glucomannan extraction

Harvesting lignin

Harvesting PHA

BioMethanol

BioButanol

Harvesting of Hemicellulose

Developing stages

Time

Carbonisation (slow pyrolysis)

Option(s) selected from a technical pool

▪ A continuous loop– Screening becomes very site specific!

No.: Ideas / processes: Discussions / comments:

Status:R&D /

Demo /Com

FBR groups:BioMaterials /

BioChemicals /BioFuels /BioEnergy

& ECT

1 - R

ecove

red pap

er pro

cess

ing

(50%)

2 - C

hemica

l pulping (3

2%)

3 - Therm

omechan

ical p

ulping

(18%)

Priorit

ies (A

, B &

C)

GHG emission comments:

1-0 Bio pellets (wood pellets) - Sale of pellets to Central Europe coal plants or domestic market.- Using the existing TMP1 refiner as prefiltration to a pelletizing machine

Com BioEnergy X X A

- Pellets gives more CO2 savings in stationary CHP plants than production of bio-fuel.- It is said that the coal fire plant can burn 20% mixture of wood pellets without doing large rebuilds.The well-to-gate emissions for wood fuel handling is 10 kg CO2/MWh [9].As an average, the CO2 emission reduction for wood is 336 kg CO2/MWh if coal power plant is the marginal user.

1-1 Torrefied pellets - Torrefied pellets can substitute coal almost 100%.Demo BioEnergy X X A

It is expected that the CO2 emission reduction is the same as for the wood pellets (336 kg CO2/MWh).

1-2 Charcoal pellets - A product that has various applications; (1) it can substitute Active Carbon for water purification, (2) it can be used as soil improvement (ref CenBio and Michael J.Atal).-The biomass source can also be revenue of waste streams from TMP.

Demo BioEnergy X X X B

Same as above.

1-3 Steam pellets - Steam explosions of chips as pre-treatment can be an option. Positive is that it is a fast process, but it uses higher pressure than our surplus LP steam- Plant at Kongsvinger (Norway) - still some operating challenges.

(Com) BioEnergy X X B

Same as above.

1-4 Lignin pellets - Lignin pellets (wood pellets+lignin), better energy yield than torrefaction, DME, Ethanol and Methane.- Can only be made when lignin is available

Demo BioEnergy X BIn this case. The lignin will boost the energy content of the pellets with 20% (?), which then will give a CO2 reduction of 270 kg CO2/MWh if coal is the marginal user.

2-0 Enhance the steam system - Ongoing separate activity in the PROFIT project (Energy Conversion Technologies)- Usage of the TMP de-compressors?- With upto 100 MWel available of, we will be self sufficient with electricity at Follum.

Com BioEnergy X X X B

As an overall figure, the CO2 reduction from thermal energy is around 225 kg CO2/MWh.

2-1 Steam turbines - Todays steam turbine is too large (history dependent)- ÅF report available

Com BioEnergy X X X B

If the electricity produced will substitute electricity from coal, the CO2 reduction will be 770 - 31 = 740 kg CO2/MWh, but if electricity is produced from NG with CCS in 2050, the reduction will only be 120 - 99 = 20 kg CO2/MWh. [9]

2-2 Condense turbine on the surplus LP steam Payback in 4-5 years

Com BioEnergy X X X B

Normally, a condense turbine is used used on surplus steam, which means that the energy produced from this is CO2 neutral. This again means that the CO2 reduction is 770 kg CO2/MWh if the marginal electricity producer is coal. If natural gas is the marginal producer, the reduction is 345 kg CO2/MWh.

2-3 Pressure Release Valve (PRV) options Many mills are today uses PRV's- DifGen usage- Steam Turbine

Com BioEnergy X X X B

3-0 Heat Pump technology -The mapping during the pinch analysis will identify the surplus heat potensial at the mill- Wich technology uses Akershus Energi to recover their heat in the waste streams? Com BioEnergy X X X B

The CO2 emission reduction is all dependent on the application. This can varies all from 100% reduction for coal as marginal producers (770 kg CO2/MWh) down to the efficiency of the HP based on the marginal producer. If natural gas in 2020, this will be around 345*0.33=114 kg CO2/MWh.

4-0 Absorption Heat Pump - Direct AHP like a scrubber can be used for heating of the water at the WTP- AHP Coolers are also available- This can be the heat recovery from the furnace flue gas, or the heat from discharge process pipes

Com BioEnergy X X X B

Same as above.

5-0 Gasification - Poor energy conversion efficiency today, but can be an initial start for a future SNG conversion plant producing various products?- There are many technologies available- A process integration of electricity production and District Heating (CHP) will give an efficiency of >85%

Com BioEnergy X X A

By gasification, 1 kg of fossil fuel can be replaced using about 3.5 kg of biomass.

Com

R&D!Pilot!Demo!Com!

R&D?Pilot?Demo?Com?

R&DPilotDemo

New ideas!

Old ideas!

12

3

Page 24: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

BioBusinesses at Follum… with its synergies

Partners

FeedstockCO2 emissions

Transport/Distribution:

Electricity pricesSpot Price Market in Norway (NOK/MWh)

0

100

200

300

400

500

600

700

08 J

an

08 M

ar08

May

08 J

ul

08 S

ep

08 N

ov

09 J

an

09 M

ar09

May

09 J

ul

09 S

ep

09 N

ov

10 J

an

10 M

ar

10 M

ay10

Jul

10 S

ep

10 N

ov

11 J

an

NO

K/M

Wh

Absolute vs. Specific CO2 emissions

35

36

37

38

39

40

41

42

43

1990 2000 2007 2008

Abso

lute

(Meg

a to

nnes

/y)

0

0.1

0.2

0.3

0.4

0.5

0.6

Spec

ific

(tonn

es/p

rod.

tonn

es)

Environment

Customers

Authorities/Legislations

Sales/Marketing

Products

▪ Process Integration and industry synergies

It is important to find “real synergies”, and not only “placebo synergies”.

Page 25: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Forest BioRefinery BioBusiness options

District Heating

BioGas

Wood Pellets

Torrefied Pellets

El. TurbinesPaper

Turpentine

Gasification

Bio‐OilsFuture???

Past &Future

Examples of a “brownfield”mill becoming an Integrated Forest Biorefinery (IFB):

Page 26: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

What decide the options?

Raw material availability Market

▪ The gasification technology chosen is dependent on both upstream and downstream external influences and internal needs

Follum mill and co‐companies

Raw material and pre‐treatment

iGasificationiCombustion

Gas cleaning and 

conditioning

Post treatment (synthesis)

Page 27: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Biomass CHPPLUSS® Options 

Chipping

DryingiGasification

and conditioning

Combustion(Oxidation)

‐ Circulating Fludized Gasifier, or‐ Entrained Flow Gasifier, or‐ Updraft Flow Gasifier

‐ Gas Engine, or‐ Gas Turbine

Methanation,or similar

Steam Turbine

Steam to Mill (MP & LP):

‐ Belt (Andritz), or‐ Drum, or‐ Belt/Drum integrated, or‐ No drier

Bio Fuels:‐Methane‐Methanol‐ BioDME

Combined Cycle

BiomassResidues

Bark

50 MW200k m3/a

30 MW 25 MW

Alte

rnatives

80 MW 63 MW 32 MWth40 MW

8 MWel

23 MW

18 MW

Process efficiencies:

η Gasification = 78 %

η Methanation = 82 %

η Steam Turbine = 80 %

η Combustion = 80 %

Process efficiencies:

η Gasification = 78 %

η Methanation = 82 %

η Steam Turbine = 80 %

η Combustion = 80 %

Colour legend:

Blue – Fixed figures

Red – Export products

Colour legend:

Blue – Fixed figures

Red – Export products

7 MWel

Internal & District Heating 3.7 MW4.5 MW

w=40%

w=10%

iCombustion

Electricity to the grid

Gasification Oxidation

Alt.1

Alt.2

‐ Backpressure turbine

Alternatives:

Alt.1: Biomass Integrated Gasification Combined Cycle (BIGCC)

Alt.2: Integrated Combustion

Alternatives:

Alt.1: Biomass Integrated Gasification Combined Cycle (BIGCC)

Alt.2: Integrated Combustion

Bleed‐off option

Bleed‐off o

ption

Page 28: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Optimalization of energy with pinch analysis

Heat &Power

Fuel & ProductGases (Syngas)

Liquids(Bio‐oil)

500˚C800‐1400˚C650˚C

Thermo‐chemical conversion

Combustion PyrolysisGasification

Excess air Partial air No air

50%

100%

60%

70%

80%

90%

Combus

tion‐ CH

P

Gasific

ation ‐

EFG

Gasific

ation ‐

CFB Bio‐oil

FuelHP Steam (>60 bar)MP Steam (20 bar)LP Steam (<3 bar)

It should be noted that there are differences in efficiency also between the technologies among Combustion, Gasification and Pyrolysis.

Page 29: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

BioFuel – Conversion routes

▪ BioFuel product pathway examples

Gasification has become broadly recognized as an attractive conversion process. The reasons most often mentioned are the high efficiency and the back‐end flexibility. [102]

MethaneMethane

Page 30: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

CO2 emission reduction vs. Energy efficiency for various fuels

CO

2 em

issi

on re

lativ

e to

Gas

olin

e

Tota

l ene

rgy

effic

ienc

y

100%

Gasoline FTD Ethanol Methane

85%

41%

FastPyrolysis

77%

45%

20% 20%

Raps fuel

50%

It should be noted that the more conversion stages to get to theend product, the lower total energy efficiency is generated!

Since generally biomass will be relatively expensive, high efficient conversion processes are needed to obtain economically attractive systems.

Page 31: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Various technology options

Various gasification technologies have theiradvantageous anddisadvantages, and thereis no such thing as a technology that “fits all”.

The ENERGOS integratedcombustion has the advantage that it canhave a slip‐stream withsyngas out before the combustion chamber.

CFB EFG UFG

Integrated Combustion

The product we decideto produce decidesquite much whichtechnology we will use!

Page 32: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Overall strategy

▪ Flexibility, flexibility, flexibility….

Electricity

Gas (methane?), Liquid (Methanol?)…

Gasification

Biomass

Sale or energy storage with methane, methanolor similar products!

Steam for local usage

El. certificates

Page 33: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Future thoughts…

▪ A biomass gasification plant will replace Follum’s multi fuel boiler (MBK).▪ A CFB producing BioMethane will have the advantage that methane from 

sludge digestion could be added at a later stage. But the other option will be to gasify the biosludge instead of anaerobic digestion.

▪ Because of its high efficiency and low emissions, the BIGCC can also be applied to a growing market niche, the repowering of older facilities. [66]

▪ In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low‐cost hydrogen and syngas for chemical synthesis, as well as baseload power. [66]

▪ The higher thermodynamic efficiency of the IGCC cycle minimizes carbon dioxide emissions relative to other technologies. [92]

▪ The Milena gasifier produces much methane compared to other, due to its indirect gasifier. [58]

Page 34: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Biomass Gasification Reference plants▪ Södra Cell Varö has operated a low temperature bark gasifier since 1987. 

The gas is used in the lime Klin [10].▪ Värnamo BIGCC, starting up again now▪ UPM, Fortum, Gasification plant from Metso integrated with the bio‐boiler▪ Gasification plant in Karlsruhe (Metso?)▪ Nexterra Systems Corp. Their first installation with direct‐fires syngas

derived from wood, into industrial process boilers, at Kruger Products. [32]▪ Gøteborg Energi, CFB, 20 MW. Starting to build soon, 2011. Expansion of the 

plant in 2016 to 80 MW. Producing methane, SNG for the grid.▪ Chalmers University, CFB, 2‐4 MW, operated in many years.▪ ECN is developing the Milena indirect gasifier. 10 MW. [58]▪ Entrained flow gasifier test plant (2ton/day) at Kawagoe, Japan. [74]▪ Lahti Energia, Waste Gasification, 2x80 MW, cost 157 MEuro, start April 

2012.▪ UPM, Andritz‐Carbonara, UPM Kaukas, pilot plant, Laapenranta.

Page 35: Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

®

Thank you for your time!Questions?

®For more info: www.re‐cube.net