isolating promoters from corynebacterium …flow from metabolic pathways to other products [5, 6]....

23
1 Preprint: Please note that this article has not completed peer review. Isolating promoters from Corynebacterium ammoniagenes ATCC 6871 and application in CoA synthesis CURRENT STATUS: ACCEPTED Yingshuo Hou Institute of Microbiology Chinese Academy of Sciences Siyu Chen Institute of Microbiology Chinese Academy of Sciences Jianjun Wang Institute of Microbiology Chinese Academy of Sciences Guizhen Liu Kaiping Genuine Biochemical Pharmaceutical Co.Ltd Sheng Wu Institute of Microbiology Chinese Academy of Sciences [email protected]Corresponding Author ORCiD: https://orcid.org/0000-0001-8205-7753 Yong Tao Institute of Microbiology Chinese Academy of Sciences DOI: 10.21203/rs.2.10395/v3 SUBJECT AREAS Biotechnology and Bioengineering KEYWORDS Corynebacterium ammoniagenes· transcriptome· promoter· Coenzyme A.

Upload: others

Post on 15-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

1

Preprint:Pleasenotethatthisarticlehasnotcompletedpeerreview.

IsolatingpromotersfromCorynebacteriumammoniagenesATCC6871andapplicationinCoAsynthesisCURRENTSTATUS:ACCEPTED

YingshuoHouInstituteofMicrobiologyChineseAcademyofSciences

SiyuChenInstituteofMicrobiologyChineseAcademyofSciences

JianjunWangInstituteofMicrobiologyChineseAcademyofSciences

GuizhenLiuKaipingGenuineBiochemicalPharmaceuticalCo.Ltd

ShengWuInstituteofMicrobiologyChineseAcademyofSciences

[email protected]:https://orcid.org/0000-0001-8205-7753

YongTaoInstituteofMicrobiologyChineseAcademyofSciences

DOI:10.21203/rs.2.10395/v3

SUBJECTAREASBiotechnologyandBioengineering

KEYWORDSCorynebacteriumammoniagenes·transcriptome·promoter·CoenzymeA.

Page 2: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

2

AbstractBackground�Corynebacteriumammoniagenesisanimportantindustrialorganismthatiswidelyused

toproducenucleotidesandthepotentialforindustrialproductionofcoenzymeAbyC.ammoniagenes

ATCC6871hasbeenshown.However,theyieldofcoenzymeAneedstobeimproved,andthe

availableconstitutivepromotersareratherlimitedinthisstrain.Results�Inthisstudy,20putative

DNApromotersderivedfromgeneswithhightranscriptionlevelsand6promotersfrommolecular

chaperonegeneswereidentified.Toevaluatetheactivityofeachpromoter,redfluorescenceprotein

(RFP)wasusedasareporter.Wesuccessfullyisolatedarangeofpromoterswithdifferentactivity

levels,andamongtheseafragmentderivedfromtheupstreamsequenceofthe50Sribosomal

proteinL21(Prpl21)exhibitedthestrongestactivityamongthe26identifiedpromoters.

Furthermore,typeIIIpantothenatekinasefromPseudomonasputida(PpcoaA)wasoverexpressedin

C.ammoniagenesunderthecontrolofPrpl21,CoAyieldincreasedapproximately4.4times.

Conclusions�Thisstudyprovidesaparadigmforrationalisolationofpromoterswithdifferent

activitiesandtheirapplicationinmetabolicengineering.Thesepromoterswillenrichtheavailable

promotertoolkitforC.ammoniagenesandshouldbevaluableincurrentplatformsformetabolic

engineeringandsyntheticbiologyfortheoptimizationofpathwaystoextendtheproductspectrumor

improvetheproductivityinC.ammoniagenesATCC6871forindustrialapplications.

BackgroundCorynebacteriumammoniagenes(formerlyknownasBrevibacteriumammoniagenes)isaGram-

positive,non-pathogenicsoilbacteriumwithhighguanine–cytosine(GC)DNAcontent.Duetothe

divergentevolutionofC.ammoniagenes,differentstrainsareusedtoproducedifferentmetabolites.

Forexample,C.ammoniagenesATCC6872isusedintheproductionofnucleotidesandnucleosides

[1],whileC.ammoniagenesATCC6871showsarelativelyhighsynthesiscapacityofcoenzymeA

(CoA),whichisaubiquitousandessentialcofactorfoundinallthreedomainsoflifeandisinvolvedin

numerousmetabolicpathways[2-4].

SequencingoftheC.ammoniagenesgenomehashelpedtoidentifykeyenzymesfordivertingcarbon

flowfrommetabolicpathwaystootherproducts[5,6].However,amajorbreakthroughingenetic

Page 3: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

3

manipulationtopreciselyregulatetheexpressionofindividualbiosyntheticgenesisstillinprocess.

ProgressinthemanipulationofC.ammoniagenesgeneshasbeenachievedthroughthedevelopment

ofeffectivetransformationprotocolsandcloningvectors[7].MostvectorsarebasedontherelatedC.

glutamicumendogenouscrypticplasmidsthathaveincorporatedE.colielementsfortransfer

betweenthespecies[8-10].AlmostallthesevectorshaveadoptedE.colipromotersorC.

ammoniagenesnativepromoterstoexpressforeignproteinsinC.ammoniagenes[11-13].Although

someofthesepromotersareactiveinC.ammoniagenes,theactivitiesarequitelow[14].

ToefficientlyengineerC.ammoniagenes,itisnecessarytoscreenendogenouspromoters.Paikand

coworkersisolated22representativepromotersfromthegenomeofC.ammoniagenesATCC6872

andtheactivityofoverexpressedchloramphenicoltransacetylasefromthestrongestpromoterIJ73

was2.85U[7].SimilarstudieshavebeenperformedbyParkandcoworkers,wherethey

overexpressedtheattenuatorbindingproteininC.ammoniagenesATCC6872usingtheendogenous

promoterCJ1[15].However,theabovepromotershavenotbeenuniversallyappliedinC.

ammoniagenesATCC6871(seetext),probablyduetothedivergentevolutionofC.ammoniagenes

genomes.Forinstance,thesequenceidentitiesofpromotersIJ59andIJ73fromC.ammoniagenes

ATCC6872withthehomologouspromotersfromC.ammoniagenesATCC6871are93%and89%,

respectively.Therefore,duetotheimportanceofCoA,itisnecessarytofindpromotersthatare

effectiveinC.ammoniagenesATCC6871.

Endogenouspromoterscanbeobtainedbygenomicdissectionorpromotertrappinget.al[16].

Nonetheless,withtheadventofgenomicsandtranscriptomics,wecanisolatepromotersmore

rationally.Studieshaveshownthatstrongpromotersareusuallyobtainedfromthepromotersof

essentialgeneswhosetranscriptionlevelsarepresumedtobehighandconstant[17].Inaddition,we

foundthatsomecommonly-usedstrongpromoterssuchasPdnakinGluconobacteroxydansandPgro

inCorynebacteriumglutamicumarepromotersofmolecularchaperones[18,19].Inthisstudy,the

promotersfor20geneswithhightranscriptionlevelsand6molecularchaperone-encodinggenesare

identifiedbybioinformaticmethodsandtheiractivitieswerefurtherexaminedexperimentally.Among

Page 4: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

4

them,Prpl21wasfoundtobethestrongestpromoter,whichwasusedinthebiosynthesisofCoA,

increasingtheyieldby4.4times.

ResultsScreeningpromotersandconstructionofprobe-vector

C.ammoniagenesATCC6871cellsgrowninLBmediumandfermentationmediumtotheexponential

phase(OD600nm≈2.0)werecollectedandsenttoMegagenomics(Beijing,China)forRNA-seq.Atotal

of2411geneswereidentifiedfromthetranscriptomicdata.Consideringthattherearemanycasesin

whichgenesareinthesameoperon,geneticlocianalysiswasperformedandtheresultsshowedthat

1508genesin547operonswereexpressed.Ingeneral,genesinthesameoperonsshareacommon

promoter,sothefirstgeneineachoperonwasselected.Thus,thetotalnumberofremaininggenes

was1450(2411-1508+547).Transcriptionabundanceanalysiswasusedtoselect71geneswith

transcriptionlevelsinthetop100inbothRNA-seqprofiles.Sequencesupstreamofthetop20genes

werepredictedandscoredusingtheonlinepromoterpredictiontoolasdescribedbelow.The

annotationsandRPKMvaluesforthesegenesareshowninTable1.Atranscriptomicdataanalysis

flowchartandthetranscriptionlevelsofgenesareshowninFigure1.

Previousstudieshaveshownthatmostpromotersofmolecularchaperonesexhibithightranscription

levelsinprokaryotes,soall6annotatedmolecularchaperonesintheC.ammoniagenesATCC6871

genome(AccessionNumber:NZ_CP009244)(twoGroEL,twoDnaJ,oneDnaK,andoneCo-chaperone

GroES)wereidentifiedandtheirpromoterswerepredictedasdescribedinmaterialsandmethods.

TheinformationofthesegenesandtranscriptomicRPKMvaluesarealsolistedinTable1.By

predictingthepromoterregions,26promoterswereconstructedaccordingtotherulesdescribed

belowandtheircorrespondingRFPexpressionplasmidswerenamedaspXMJ190-Pn.Thesequences

ofthe26promotersarelistedinTableS3.

Foracomprehensivecomparison,twoconservedhomologouspromotersCJ1andIJ59thatareactive

inC.ammoniagenesATCC6872werealignedagainstthegenomeofC.ammoniagenesATCC6871by

BLASTandwereclonedintopXMJ190togivepXMJ190-CJ1andpXMJ190-IJ59[7,15],respectively.

Moreover,previousstudieshaveshownpromotersthatworkwellinC.glutamicummayalsobeactive

Page 5: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

5

inC.ammoniagenes[20].Thus,astrongendogenousC.glutamicumpromoternamedPgro(the

promoterofgroESgene)wasclonedaspXMJ190-Pgro[19].Inaddition,themostwidelyusedtac

promoterandconservedSDsequencewasalsoselectedandclonedintopXMJ190aspXMJ190-Ptac

[21].ThepXMJ190wasusedasnegativecontrol.Aflowchartforconstructionoftheprobevectorsto

identifypromotersisshowninFigure2.Alloftheaboveconstructedplasmidswerevalidatedby

sequencingandthentransformedintoC.ammoniagenesATCC6871.

AnalysisandcomparisonofpromotersinC.ammoniagenesATCC6871

Toanalyzetheactivitiesofourclonedpromoters,wefirstmadeavisualassessmentofallC.

ammoniagenesATCC6871strainsharboringpXMJ190,pXMJ190-CJ1,pXMJ190-IJ59,pXMJ190-Pgro,

pXMJ19-PtacandpXMJ190-PnseriesplasmidsonLBplatescontaining20μg/mlchloramphenicol.Red

fluorescencewasobservedbymicroscopy,withdifferentintensitiesindifferentcolonies,indicating

thattherewasvariableexpressionofRFPfromthe26putativepromoters(Figure3a).Amongthese

promoters,Prpl21,Prpl10,PgroELB,andPdnaKexhibitedstrongactivityinC.ammoniagenesATCC6871,

withPrpl21beingthestrongestpromoter.Theremainingpromotershadverylowornon-existentred

fluorescence.

Toquantifytheactivitiesoftheclonedpromoters,growth-normalizedfluorescenceintensitieswere

measuredusingamicroplateassayandthedataareshowninFigure3bandTableS2,theresults

showedthatwesuccessfullyisolated20endogenouspromoterswithdifferentactivities.Amongthe

20promoters(PrrlA-Psbp)fromgeneswithhightranscriptionlevels,Ptmr,Pnat,PatpG,PgpdⅠ,Pacnare

essentiallyinactive,whilePgroELAfromthe6molecularchaperonepromoterswasalsoinactive.

Meanwhile,fourstrongpromoters,includingthePrpl21with43433RFU/ODintensityandfollowedby

PdnaK(19125RFU/OD),PgroELB(8166RFU/OD)andPrpl10(6490RFU/OD)wereidentifiedwhose

fluorescencelevelswereconsistentwiththoseobservedonplates.Thus,arangeofpromoterswith

differenttranscriptionalactivities,includingfourstrongpromoters,wereidentifiedandcanbeused

directlyinfurtherapplications.Accordingtotheobtaineddata,onlytwopromoters(Prpl21andPrpl10)

Page 6: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

6

fromthe20geneswithhighlevelsoftranscriptionhadstrongactivities,whiletwopromoters(PgroELB

andPdnaK)sourcedfromthesixmolecularchaperonegenesexhibitedrelativelyhighactivities,which

mayindicatethatisolatingpromotersfrommolecularchaperonesmaybeamoreefficientstrategy.

AlthoughmostofthepromotersidentifiedfromtheRNA-seqprofilesexhibitedlowlevelexpressionor

weresilent,theredfluorescenceintensityofPrpl21wasalmost2.3timesthatofthehighestpromoter

(PdnaK)derivedfromupstreamregionsofthemolecularchaperones.Thissuggestsisolatingpromoters

fromgeneswithhightranscriptionlevelsmayyieldstrongpromoters.

Whenitcomestotheknownpromoters,thepromoterCJ1hadsomecertainactivity(4171RFU/OD),

theIJ59(2866RFU/OD)promoterhadalmostnonactivity,andtheactivityofPgro(5872RFU/OD)was

slightlyhigherthanthePtac(5683RFU/OD)promoterbutstilllowerthanpromoterPrpl10(6490

RFU/OD).Thisdemonstratesthepromotersthatworkwellinonespeciesorhomologousstrainsmay

notpossessthesamecharacteristicsinanother.

ApplicationofPrpl21inC.ammoniagenesforimprovingtheproductionofCoA

IthasbeenreportedthatCoA,aubiquitousandessentialcofactorinbiochemicalreactions,canbe

producedbyC.ammoniagenesATCC6871[25].IntheCoAbiosyntheticpathway,thecommittedstep

catalyzedbypantothenatekinase(coaA)issubjecttofeedbackinhibitionbyCoAandacyl-CoAs[26].

BacterialcoaAproteinsarecategorizedbasedontheiraminoacidsequencesintothreetypes,namely

typeI,II,andIII.C.ammoniagenescarriesatypeIcoaAwhichishighlyregulatedbyCoAandits

derivatives.Incontrast,typeIIandIIIenzymesareinsensitivetoCoAanditsthioesters[27,28],

therefore,inordertoreducefeedbackinhibitionandincreasetheproductionofCoA,thetypeIII

pantothenatekinasefromPseudomonasputida(PpcoaA)wasselectedandoverexpressedbythe

controlofthestrongestpromoterPrpl21inC.ammoniagenesATCC6871[29,30].

ConsideringtherearenodirectenzymeassaysfortypeIIIpantothenatekinase,RFPwasco-expressed

withPpcoaA.AsshowninFigure4a,brightredfluorescencewasobservedinthetubewithcells

containingpXMJ190-Prpl21-PpcoaA-RFP,suggestingthatRFPandPpcoaAweresuccessfullyco-

expressed.Bymeasuringtheredfluorescenceintensity,thestrainharboringpXMJ190-Prpl21-PpcoaA-

Page 7: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

7

RFPhadupto7560RFU/OD.ThisvaluewaslowerthanthatobservedwhenRFPexpressedalone

underthecontrolofPrpl21,possiblyduetothelongdistancefromthetranscriptioninitiationsiteand

theincreasedcellularburdencausedbyco-expressionoftwoproteins.TheexpressionofRFPand

PpcoaAwasalsobeobservedbySDS-PAGE.AsshowninFigure4b,significantbandsofapproximately

27kDaand32kDawereobservedindicatingthatRFPandPpcoaAwereoverexpressedandthatthe

Prpl21promoterfunctionedwellinC.ammoniagenes.Furthermore,threecrucialsubstrates

(pantothenicacid(2mM),L-cysteine(2mM),ATP(6mM))wereaddedtothereactionmixture

containingacertainnumberofbacterialcells(OD600nm≈40)at39℃.CoenzymeAproduction

increasedtoasatisfactoryyieldofapproximately315U/mLin6h(Figure4c),whichwasalmost4.1

timeshigherthanthesameconditionswithoutpXMJ190-Prpl21-PpcoaA-RFPinthecells(76U/mL).The

resultsindicatedthatPpcoaAwassuccessfullyoverexpressedunderthecontrolofpromoterPrpl21and

increasedtheanabolicflowofCoA.TofurtherimprovetheCoAproduction,theRFPgenewas

removedfromtheplasmidpXMJ190-Prpl21-PpcoaA-RFPforeliminatingtheburdenofRFPexpressionin

cells.WiththePpcoaAoverexpressedaloneinC.ammoniagenes,theCoAproductionwasreached

332±13U/mL,whichwasslightlyincreasedthanthePpcoaAandRFPco-expressionalsystem.

DiscussionC.ammoniagenesATCC6871isaproducerofCoA,however,itsgeneticoperationhasbeenrarely

reported,anditsindustrialapplicationpotentialstillneedstobeimproved.Inordertofurther

increasetheproductionofCoA,endogenouspromotersfromC.ammoniagenesATCC6871were

screenedinthisstudy.Firstly,20putativepromotersbasedongeneswithhightranscriptionlevels

and6promotersupstreamofmolecularchaperoneswereidentifiedandcharacterizedfor

transcriptionalactivitybyusingRFPasthereportergene.Amongthe26putativepromoters,20with

differenttranscriptionalactivitieswereisolatedincluding15fromthehightranscriptionlevelgenes

and5frommolecularchaperonegenes.Theoutputefficiencydemonstratesthatisolatingpromoters

frommolecularchaperones(5/6)mightbeamoreefficientstrategythanusingRNA-seq(15/20).

Therefore,isolatingpromotersfrommolecularchaperonegenesismoreeffortlessandcost-effective

Page 8: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

8

thanRNA-seq.TheseresultsmayascribetothattheRPKMvaluesofthegenesonlyrepresentthe

abundanceofRNAanddonotequivalenttoitspromoteractivities,whichmightbecausedbymultiple

factors,suchasthecodonusageofgenes,copynumbersofgenes,thehalf-livesofmRNAand

limitationsinherentintranscriptomics[22-24].Itthus,isolatingpromotersbasedonRNA-Seqrequires

furtherverificationbyexperiments.

Nevertheless,weshouldnotethattheredfluorescenceintensityofthehighestpromoter(Prpl21)

identifiedfromRNA-seqwasalmost2.3timesthanthehighestpromoter(PdnaK)derivedfrom

molecularchaperonegenes,soisolatingpromotersbasedonthegenestranscriptionaldatamaybe

morelikelytoyieldpromoterswithhighestactivity.Toourbestknowledge,Prpl21fromtheupstream

sequenceofthe50SribosomalproteinL21isthestrongestC.ammoniagenesATCC6871promoter

reportedsofar.ThepromotersobtainedinthisworkwillenrichtheavailablepromotertoolkitforC.

ammoniagenesandshouldbevaluableincurrentplatformsformetabolicengineeringandsynthetic

biologyfortheoptimizationofpathwaystoextendtheproductspectrumorimprovetheproductivity

inC.ammoniagenesATCC6871.

TofurtherverifythecapacityofPrpl21,thekeygenePpcoaAinthebiosyntheticpathwayofCoAwas

overexpressedinC.ammoniagenesATCC6871withtheaimofreducingthefeedbackinhibitionand

increasingtheproductionofCoA.TheCoAproductionofmanipulatedC.ammoniageneswas

approximate4.4timestothecontrol,whichconfirmedthatPpcoaAoverexpressedandfunctionalized

successfullyinC.ammoniagene.Theseresultsprovethattheselectedpromoterforthe

overexpressionofforeigngenesinC.ammoniagenescouldbeusedasanefficienttoolforimproving

theyieldofmajorproductsinC.ammoniagenes.However,eliminatingtheburdenofco-expressing

RFPonlyslightlyincreasetheCoAproduction,possiblyduetotheundiscoveredlimitationsexistinthe

CoAsyntheticpathway.Thus,moreeffortsshouldbefocusontheresolvingofrate-limitingstepsof

CoAsynthesisinC.ammoniagenes.

ConclusionsInsummary,thisstudyprovidesarationalstrategytoisolateendogenouspromotersfromC.

ammoniagenesATCC6871,whichmaybehelpfulinothersimilarscientificresearch.Throughthis

Page 9: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

9

strategy,wesuccessfullyisolatedarangeofpromoterswithdifferenttranscriptionalactivitiesandthe

strongestonewasappliedtoimprovetheCoAproductioninC.ammoniagenesATCC6871,raising

hopeforfurtherimprovingtheindustrialproductionlevelofCoA.

MethodsBacterialstrains,media,andgrowthconditions

TheC.ammoniagenesATCC6871waspurchasedfromChinaGeneralMicrobiologicalCulture

CollectionCenter(CGMCC,Beijing,China).E.coliTop10(Tsingke,Beijing,China)wascultivatedin

Luria-Bertani(LB)brothoronLBplateswith2%(w/v)agarat37℃asahostfortransformation.C.

ammoniagenesATCC6871growninNCMmediumat30℃wasusedasthetransformationhostforE.

coli/Corynebacteriavectorsusedinthisstudy.Aftertransformationbyelectroporation(1.8kV),

transformantswereplatedonBHISplateswith20μg/mLchloramphenicolat30℃.Fermentation

medium(glucose100g/L,peptone12g/L,yeastpowder8g/L,MgSO4·7H2O10g/L,KH2PO410g/L,

K2HPO410g/L,urea7g/L,pH7.5-7.8)wasusedtocultivatestrainsproducingCoA.Cultivationfor

expressionanalysiswasperformedinatleastbiologicalduplicates.

RecombinantDNAtechniques

C.ammoniagenesgenomicDNAwasisolatedusingagenomicDNAisolationkit(Tiangen,Beijing,

China).Kitsforplasmidisolation,extractionofDNAfromagarosegelsandPCRproductpurification

werealsopurchasedfromTiangen(Beijing,China).I-52×High-FidelityMasterMixandTrelief™

SoSooCloningKitwerepurchasedfromTsingke(Beijing,China)andusedforroutinemolecular

biologyapplications.

Constructionofprobe-vectorpXMJ190

TheshuttlevectorpXMJ19(akindgiftfromProfessorDong,Figure2a)wasusedasthebackbonefor

vectorsconstructedinthisstudy.Toeliminateinterferencefromthepromoteralreadypresentin

pXMJ19,thetacpromoterandlacoperatorwereremoved.Ageneencodingredfluorescentprotein

(RFP)wasinsertedintotheMCStoformaprobe-vectornamedpXMJ190(Figure2b).Gibsonassembly

wasusedtoassembleDNAfragmentsupstreamofthereportergenerfp,resultinginseamless

ligationbetweenfragmentsandtheprobe-vector[31,32].

Page 10: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

10

GeneticmanipulationofC.ammoniagenes

Toincreasetransformationefficiency,recipientsweregrownin100mLofNCMmediumat30°Cuntil

anOD600nmofapproximately1.0.Cellswereincubatedonicefor20minandharvestedby

centrifugationinapolypropylenetubeat4000rpmfor10minat4°C.Afterwashingtwiceincold

distilledwaterandtwowashesinice-cold10%glycerol,cellswereresuspendedin1mLof10%

glycerol.Forelectroporation,100μLofthefreshlypreparedelectro-competentcellsweremixedwith

3μLplasmid(50ng/μLinddH2O)inacoldsterileelectroporationcuvette(1mmelectrodegap)and

pulsedimmediatelywithaMicroPulserelectroporator(Bio-RadLaboratories,Inc.,Hercules,CA).The

electroporatorwasusuallysetatavoltageof1.8kV.Cellsweresubsequentlyresuspendedin0.9mL

ofBHIS,heatedat46°Cfor6minutesandwithdrawnimmediatelyforrecoverybyincubatingfor3h

at30°Candthenplatedforselectionoftransformants.

Constructionandanalysisofselectedpromoters

ThetranscriptionallevelsofgenescanbeestimatedbyReadsPerKilobaseperMillionmappedreads

(RPKM),sothegeneswererankedbyRPKMvaluebasedontranscriptionaldatafromC.

ammoniagenesandthetop20geneswereselected.Allofthegeneswereidentifiedfromthegenome

andtheirpromoterswerepredictedasbelow.Sixannotatedmolecularchaperonesinthegenome

weresortedandtheirpromoterswerepredictedasoutlinedbelow.Accordingtopreviousstudies,the

promoter-5’-UTRjunctioninfluencesmRNAandproteinlevels[23,33].Therefore,weintegratedthe

corresponding5’-UTRintoeachpromoter.

PromotersequenceswerepredictedusingtheNeuralNetworkPromoterPredictiononlinetool

(http://www.fruitfly.org/seq_tools/promoter.html)[34].Thepromoterpredictionscorethresholdwas

setto0.7.Moreover,duetothepossibilityoftandempromoters,alleligiblepromotersequences

within300bpupstreamofthestartcodonwereconsidered[35].Forcorrecttranscriptioninitiation,

thecomplete“promoter”consistedof5’-UTR,predictedpromoterregionandShine-Dalgarno

sequence,whichtypicallycorrespondtotheregion60bpupstreamofapredictedpromoterand1bp

upstreamofthestartcodon.The60bpextensionupstreamofthepromoteraccountsforpotential

Page 11: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

11

UP-elements[36,37].

PromoterswereamplifiedfromC.ammoniagenesATCC6871andC.glutamicumATCC13032

genomicDNAwiththecorrespondingprimers.Oligonucleotideprimersusedinthisworkarelistedin

TableS1.PCRproductswereligatedintothevectorpXMJ190usingGibsonassemblyasshownin

Figure2c.AllplasmidswereconstructedinE.coliTOP10andthentransformedintoC.ammoniagenes

ATCC6871forsubsequentanalysis.

Fluorescenceintensityassay

ToevaluateRFPexpressionunderthecontrolofthevariouspromoters,C.ammoniagenesstrains

harboringvariousvectorsweregrownovernightonLBplatescontaining20μg/mlchloramphenicol.

FluorescencewasobservedusingaLUYOR-3430stereomicroscopewithafluorescenceexcitation

source(LUYOR,USA)setat501nmandmatchinglensestodetectRFP.Pictureswerecapturedwitha

camera.

Formoreaccuratecomparisons,thefluorescenceintensitiesofbacteriaharboringdifferentplasmids

weremeasuredusingaSynergyH4microplatereader(BioTek,USA).Inordertoexcludeother

interferingfactors,harvestedcellswerewashedoncewithPBS(pH7.4)andthenresuspendedinPBS

(pH7.4)atanOD600nmofapproximately1.0.TheexcitationwavelengthforRFPwassetat554nm

andemissionwassetat586nm.FluorescenceintensitieswerenormalizedbyOD600nmandwere

usedtoindicatetheactivitiesofthepromoters.BacteriaharboringpXMJ19-Ptacwereinducedwith1

mMIPTG.

ConstructionoftherecombinantplasmidpXMJ190-Prpl21-PpcoaA-RFP

Tofurtherexaminethefunctionoftheisolatedpromoters,atypeIIIpantothenatekinasefromP.

putidaKT2440(PpcoA)andRFPwereco-expressedunderthecontrolofthestrongestpromoterPrpl21.

ThePpcoaAgenewasamplifiedbyPCRfromthegenomicDNAofP.putidaKT2440,andtheShine-

DalgarnosequencefortranslationofRFPwascalculatedusingtheRBScalculatoronlinetool

(https://www.denovodna.com/software/).AllprimersusedinthissectionarelistedinTableS1.The

recombinantplasmidpXMJ190-Prpl21-PpcoaA-RFPwasconstructedwithGibsonassemblyandpositive

Page 12: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

12

colonieswereconfirmedbyDNAsequencing(Tsingke,China).Recombinantplasmidswere

transformedintoC.ammoniagenesATCC6871forfurtherexperiments

SDS-PAGEanalysis

C.ammoniagenesstrainswerepreculturedin10mLLBmediumat30°Candshakenat220rpmfor

24h.Tenpercentoftheculturewasinoculatedina250mLshakeflaskcontaining100mL

fermentationmedium.After24hcultivation,cellsampleswereharvestedbycentrifugationat12,000

rpmfor10min.Fortymicrogramsofcelllysatewereloadedperlane.ThePpcoaAandRFPexpression

wasanalyzedby15%(v/w)polyacrylamidegelelectrophoresis(PAGE)withcell-freeextractunder

denaturingconditions.Mini-ProteanIIIElectrophoresisSystem(Bio-Rad,USA)wasutilizedtoperform

theoperation.CoomassieBrilliantBlueR-250(0.2%,w/v)wasutilizedtostainproteinonthegel.

AnalysisofCoAproduction

CoenzymeAcontentwasdeterminedaccordingtothemodifiedphosphotransacetylasemethod[38,

39].AllreagentswerepurchasedfromNationalInstitutesforFoodandDrugControl.Briefly,3.0mLof

Trisbuffer(pH7.6),0.1mLofacetylphosphatedilithiumsalt(15.2g/L)and0.1mLofthetest

solutionwereaddedintoa1cmcuvetteandmixed.Absorbanceat233nmwasrecordedasE0;and

then0.01mLofthephosphotransacetylase(30-40U/mL)solutionwasadded,mixedwellandthe

highestabsorbancewithin3to5minuteswastakenasE1.Finally,another0.01mLof

phosphotransacetylasesolutionwasadded,mixedwellandtheabsorbancewasreadasE2.The

numberofCoAunitspermilliliterwascalculatedasU=(2E1-E0-E2)×5.55×413.

AbbreviationsCoA:coenzymeA;IPTG:Isopropylβ-D-1-thiogalactopyranoside

DeclarationsEthicsapprovalandconsenttoparticipate

Notapplicable.

Consenttopublication

Notapplicable.

Availabilityofdataandmaterials

Page 13: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

13

AlldatageneratedoranalyzedduringthisstudyareincludedinthismanuscriptandtheAdditional

filesassociatedwithit.

Competinginterests

Theauthorsdeclarethattheyhavenocompetinginterests.

Funding

ThisstudywasfundedbyNationalNaturalScienceFoundationofChina(31570077).Thefundingbody

didnotplayanyroleinthedesign,execution,analysis,andinterpretationsofdataorinwritingthe

manuscript.

Authors’contributions

YH,SW,YTdesignedalltheexperiments;YHandSCcarriedouttheexperiments,YHorganizedand

interpretedthedata,anddraftedthemanuscript.JW,GL,SWandYTcontributedtodiscussion,

revisedandcorrectedthemanuscript.Allauthorsreadandapprovedthefinalmanuscript.

Acknowledgements

WearegratefultoProfessorZhiyangDong(InstituteofMicrobiology,ChineseAcademyofSciences,

China)forgenerouslyprovidingtheplasmidpXMJ19.ThisworkwassupportedbyGrantfromNational

NaturalScienceFoundationofChina(31570077toS.W.).

References1. KamadaN,YasuharaA,TakanoY,NakanoT,IkedaM.Effectoftransketolase

modificationsoncarbonflowtothepurine-nucleotidepathwayinCorynebacterium

ammoniagenes.ApplMicrobiolBiotechnol.2001;56(5-6):710-717.

2. LiuL,YangH,ShinHD,LiJ,DuG,ChenJ.Recentadvancesinrecombinantprotein

expressionbyCorynebacterium,Brevibacterium,andStreptomyces:from

transcriptionandtranslationregulationtosecretionpathwayselection.Appl

MicrobiolBiotechnol.2013;97(22):9597-9608.

3. ShimosakaT,TomitaH,AtomiH.RegulationofCoenzymeABiosynthesisinthe

HyperthermophilicBacteriumThermotogamaritima.JBacteriol.2016;198(14):1993-

Page 14: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

14

2000.

4. SibonOC,StraussE.CoenzymeA.tomakeitoruptakeit?NatRevMolCellBiol.

2016;17(10):605-606.

5. FujioT,MaruyamaA.Enzymaticproductionofpyrimidinenucleotidesusing

CorynebacteriumammoniagenescellsandrecombinantEscherichiacolicells:

enzymaticproductionofCDP-cholinefromoroticacidandcholinechloride(PartI).

BiosciBiotechnolBiochem.1997;61(6):956-959.

6. IshigeT,HondaK,ShimizuS.Wholeorganismbiocatalysis.CurrOpinChemBiol.

2005;9(2):174-180.

7. PaikJE,LeeBR.IIsolationoftranscriptioninitiationsignalsfromCorynebacterium

ammoniagenesandcomparisonoftheirgeneexpressionlevelsinC.ammoniagenes

andEscherichiacoli.BiotechnolLett.2003;25(16):1311-1316.

8. OzakiA,KatsumataR,OkaT,FuruyaA.TransfectionofCorynebacteriumglutamicum

withTemperatePhageφCG1.AgricBiolChem.1984;48(10):2597-2601.

9. SantamariaR,GilJA,MesasJM,MartinJF.Characterizationofanendogenousplasmid

anddevelopmentofcloningvectorsandatransformationsysteminBrevibacterium

lactofermentum.JGenMicrobiol.1984;130(9):2237-2246.

10. SonnenH,ThierbachG,KautzS,KalinowskiJ,SchneiderJ,PuhlerA,KutznerHJ.

CharacterizationofpGA1,anewplasmidfromCorynebacteriumglutamicumLP-6.

Gene.1991;107(1):69-74.

11. Billman-JacobeH,WangL,KorttA,StewartD,RadfordA.Expressionandsecretionof

heterologousproteasesbyCorynebacteriumglutamicum.Appl EnvironMicrobiol.

1995;61(4):1610-1613.

12. SalimK,HaedensV,ContentJ,LeblonG,HuygenK.Heterologousexpressionofthe

Mycobacteriumtuberculosisgeneencodingantigen85AinCorynebacterium

Page 15: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

15

glutamicum.ApplEnvironMicrobiol.1997;63(11):4392-4400.

13. TsuchiyaM,MorinagaY.GeneticControlSystemsofEscherichiaColiCanConfer

InducibleExpressionofClonedGenesinCoryneformBacteria.NatBiotechnol.

1988;6(4):428-430.

14. LeeSM,LeeJY,ParkKJ,ParkJS,HaUH,KimY,LeeHS.TheregulatorRamAinfluences

cmytAtranscriptionandcellmorphologyofCorynebacteriumammoniagenes.Curr

Microbiol.2010;61(2):92-100.

15. ParkJU,JoJH,KimYJ,ChungSS,LeeJH,LeeHH.Constructionofheat-inducible

expressionvectorofCorynebacteriumglutamicumandC.ammoniagenes:fusionof

lambdaoperatorwithpromotersisolatedfromC.ammoniagenes.JMicrobiol

Biotechnol.2008;18(4):639-647.

16. DeanerM,AlperHS.PromoterandTerminatorDiscoveryandEngineering.Adv

BiochemEngBiot.2018;162:21-44.

17. Genome-wideidentificationandevaluationofconstitutivepromotersin

streptomycetes.MicrobCellFact.2015;14:172.

18. HuY,WanH,LiJ,ZhouJ.EnhancedproductionofL-sorboseinanindustrial

Gluconobacteroxydansstrainbyidentificationofastrongpromoterbasedon

proteomicsanalysis.JIndMicrobiolBiot.2015;42(7):1039-1047.

19. SchaferA,SchwarzerA,KalinowskiJ,PuhlerA.CloningandcharacterizationofaDNA

regionencodingastress-sensitiverestrictionsystemfromCorynebacterium

glutamicumATCC13032andanalysisofitsroleinintergenericconjugationwith

Escherichiacoli.JBacteriol.1994;176(23):7309-7319.

20. ItayaH,KikuchiY.SecretionofStreptomycesmobaraensispro-transglutaminaseby

coryneformbacteria.ApplMicrobiolBiotechnol.2008;78(4):621-625.

21. JakobyM,KramerR,BurkovskiA.NitrogenregulationinCorynebacterium

Page 16: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

16

glutamicum:isolationofgenesinvolvedandbiochemicalcharacterizationof

correspondingproteins.FEMSMicrobiolLett.1999;173(2):303-310.

22. JacobsE,MillsJD,JanitzM.TheroleofRNAstructureinposttranscriptionalregulation

ofgeneexpression.JGenetGenomics.2012;39(10):535-543.

23. MutalikVK,GuimaraesJC,CambrayG,MaiQA,ChristoffersenMJ,MartinL,YuA,Lam

C,RodriguezC,BennettG,KeaslingJD,EndyD,ArkinAP.Quantitativeestimationof

activityandqualityforcollectionsoffunctionalgeneticelements.NatMethods.

2013;10(4):347-353.

24. RytterJV,HelmarkS,ChenJ,LezykMJ,SolemC,JensenPR.Syntheticpromoter

librariesforCorynebacteriumglutamicum.ApplMicrobiolBiotechnol.

2014;98(6):2617-2623.

25. ShimizuS,EsumiA,KomakiR,YamadaH.ProductionofCoenzymeAbyaMutantof

BrevibacteriumammoniagenesResistanttoOxypantetheine.ApplEnvironMicrobiol.

1984;48(6):1118-1122.

26. VallariDS,JackowskiS,RockCO.RegulationofpantothenatekinasebycoenzymeA

anditsthioesters.JBiolChem.1987;262(6):2468-2471.

27. BrandLA,StraussE.Characterizationofanewpantothenatekinaseisoformfrom

Helicobacterpylori.JBiolChem.2005;280(21):20185-20188.

28. LeonardiR,ChohnanS,ZhangYM,VirgaKG,LeeRE,RockCO,JackowskiS.A

pantothenatekinasefromStaphylococcusaureusrefractorytofeedbackregulation

bycoenzymeA.JBiolChem.2005;280(5):3314-3322.

29. OgataY,ChohnanS.ProkaryotictypeIIIpantothenatekinaseenhancescoenzymeA

biosynthesisinEscherichiacoli.JGenApplMicrobiol.2015;61(6):266-269.

30. OgataY,KatohH,AsayamaM,ChohnanS.RoleofprokaryotictypeIandIII

pantothenatekinasesinthecoenzymeAbiosyntheticpathwayofBacillussubtilis.

Page 17: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

17

CanJMicrobiol.2014;60(5):297-305.

31. EnglerC,KandziaR,MarillonnetS.Aonepot,onestep,precisioncloningmethod

withhighthroughputcapability.PloSOne.2008;3(11):e3647.

32. GibsonDG,YoungL,ChuangRY,VenterJC,HutchisonCAⅢ,SmithHO.Enzymatic

assemblyofDNAmoleculesuptoseveralhundredkilobases.NatMethods.

2009;6(5):343-345.

33. KosuriS,GoodmanDB,CambrayG,MutalikVK,GaoY,ArkinAP,EndyD,ChurchGM.

Composabilityofregulatorysequencescontrollingtranscriptionandtranslationin

Escherichiacoli.ProcNatlAcadSciUSA.2013;110(34):14024-14029.

34. ReeseMG.Applicationofatime-delayneuralnetworktopromoterannotationinthe

Drosophilamelanogastergenome.ComputChem.2001;26(1):51-56.

35. MingYM,WeiZW,LinCY,ShengGY.DevelopmentofaBacillussubtilisexpression

systemusingtheimprovedPglvpromoter.MicrobCellFact.2010;9:55.

36. EstremST,GaalT,RossW,GourseRL.IdentificationofanUPelementconsensus

sequenceforbacterialpromoters.ProcNatlAcadSciUSA.1998;95(17):9761-9766.

37. ZhaoZ,LiuX,ZhangW,YangY,DaiX,BaiZ.Constructionofgeneticpartsfromthe

Corynebacteriumglutamicumgenomewithhighexpressionactivities.Biotechnol

Lett.2016;38(12):2119-2126.

38. StadtmanER,NovelliGD,LipmannF.CoenzymeAfunctioninandacetyltransferby

thephosphotransacetylasesystem.JBiolChem.1951;191(1):365-376.

39. TsuchiyaY,PhamU,GoutI.MethodsformeasuringCoAandCoAderivativesin

biologicalsamples.BiochemSocTrans.2014;42(4):1107-1111.

TablesTable1.IdentifiedmolecularchaperonegenesorthosewithhighlevelexpressionfromRNA-seqdata.

Name DownstreamProduct AverageRPKM Score

PrrlA 23SribosomalRNA 988873 0.99

Page 18: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

18

PrrlB 23SribosomalRNA 913696 0.97

Ptmr Transfer-messengerRNA 853640 0.96

Pfer Ferritin 46832 0.92

PraiA Ribosomalsubunitinterfaceprotein 44446 0.91

Pusp Universalstressprotein 28915 0.83

Prpl29 50SribosomalproteinL29 24596 0.89

Pnat N-acetyltransferase 18830 0.96

PatpG F0F1ATPsynthasesubunitgamma 16820 0.80

Ptuf ElongationfactorTu 14228 0.98

Prpl21 50SribosomalproteinL21 13153 0.81

Pfnt NarK/NasAfamilynitratetransporter 12650 0.94

PgpdⅠ TypeⅠglyceraldehyde-3-phosphatedehydrogenase 12223 0.83

Phfp Hemoglobinflavoprotein 12078 0.86

Pacn Aconitatehydratase 10439 0.84

Prpl10 50SribosomalproteinL10 10398 1.00

Pabm Antibioticbiosynthesismonooxygenase 9935 0.73

Page 19: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

19

PfbaⅡ ClassⅡfructose-bisphosphatealdolase 9740 0.77

Prpl11 50SribosomalproteinL11 9473 0.82

Psbp ABCtranspoter,substrate-bindingprotein 9120 0.99

PgroELA MolecularchaperoneGroEL 6594 0.89

PgroELB MolecularchaperoneGroEL 6261 0.87

PdnaJA MolecularchaperoneDnaJ 239 0.85

PdnaJB MolecularchaperoneDnaJ 703 0.87

PgroES Co-chaperoneGroES 2215 1.00

PdnaK MolecularchaperoneDnaK 4523 0.98

Figures

Page 20: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

20

Figure1

RationalselectionofpromotersformRNA-seqprofile.a:Theflowchartforselectionof

promotersfromthetranscriptomicdata.b:Thetranscriptionlevelsofselected20genesin

twodifferentsamples

Page 21: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

21

Figure2

Flowchartfortheconstructionofprobe-vectorthatusedforscreeningpromoters.a:The

shuttlevectorpXMJ19servesasthebackbone.b:Theprobe-vectorpXMJ190withreporterof

RFPanddeletionofPtacandOlac.c:pXMJ190-Pnrepresentvectorswiththe26putative

promotersinsertedintheupstreamofRFP.

Page 22: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

22

Figure3

Differentactivitiesofselectedpromoters.a:Observedredfluorescenceofbacteriausinga

LUYOR-3430stereomicroscopewithafluorescenceexcitationsource(LUYOR,USA)setat

501nm.b:MeasuredfluorescenceintensitiesofbacteriausingaSynergyH4microplate

reader.CellswerewashedoncewithPBS(pH7.4)andthenresuspendedinPBS(pH7.4)at

anOD600nmofapproximately1.0.TheexcitationwavelengthforRFPwassetat554nm

andemissionwassetat586nm.Errorbarsshowthestandarddeviationofthree

measurements.

Page 23: Isolating promoters from Corynebacterium …flow from metabolic pathways to other products [5, 6]. However, a major breakthrough in genetic 3 manipulation to precisely regulate the

23

Figure4

ApplicationofPrpl21inC.ammoniagenesforimprovingtheproductionofCoA.a:The

comparisonoffluorescenceintensitiesbetweencellsharboringpXMJ190-Prpl21-PpcoaA-RFP

andwildtypecells.b:SDS–PAGEanalysisofRFPandPpcoaAco-expressioninC.

ammoniagenes.Sampleswerepreparedwithanequalconcentrationofcells,and40μgof

celllysatewereloadedperlane.LaneM:proteinmarker.c:TheCoAproductionofcells

harboringpXMJ190-Prpl21-PpcoaA-RFPandcontrol.Errorbarsshowthestandarddeviation

ofthreemeasurements.

SupplementaryFilesThisisalistofsupplementaryfilesassociatedwiththispreprint.Clicktodownload.

Supplementarymaterials.docxRawdata.xlsx