knl4343 lecture8

Upload: yikamnn

Post on 13-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 KNL4343 lecture8

    1/32

    KNL4343VLSI Design And Technology

    Lecture 08: MOS & Wire Capacitances

    Norhuzaimin Julai

    [Adapted from Rabaeys Digital Integrated Circuits, 2002, J. Rabaey et al.]

  • 7/23/2019 KNL4343 lecture8

    2/32

    Review: Delay Definitions

    t

    Vout

    Vin

    input

    waveform

    output

    waveform

    tp= (tpHL+ tpLH)/2

    Propagation delay

    t

    50%

    tpHL

    50%

    tpLH

    tf

    90%

    10%

    tr

    signal slopes

    Vin Vout

  • 7/23/2019 KNL4343 lecture8

    3/32

    CMOS Inverter: Dynamic

    VDD

    Rn

    Vout = 0

    Vin = VDD

    CL tpHL= f(Rn, CL)

    Todays focus

    Next lectures focus

    Transient, or dynamic, response determines themaximum speed at which a device can be operated.

  • 7/23/2019 KNL4343 lecture8

    4/32

    Sources of Capacitance

    Cw

    CDB2

    CDB1

    CGD12

    CG4

    CG3

    wiring (interconnect) capacitance

    intrinsic MOS transistor capacitances

    Vout2Vin

    extrinsic MOS transistor (fanout) capacitances

    Vout

    VoutVin

    M2

    M1

    M4

    M3

    Vout2

    CL

  • 7/23/2019 KNL4343 lecture8

    5/32

    MOS Intrinsic Capacitances

    Structure capacitances

    Channel capacitances

    Depletion regions of the reverse-biasedpn-junctions of the drain andsource

  • 7/23/2019 KNL4343 lecture8

    6/32

    MOS Structure Capacitances

    xdSource

    n+

    Drain

    n+W

    Ldrawn

    xd

    Poly Gate

    n+n+

    tox

    Leff

    Top view

    lateral diffusion

    CGSO= CGDO = Cox xd W = Co W

    Overlap capacitance (linear)

  • 7/23/2019 KNL4343 lecture8

    7/32

    MOS Channel Capacitances

    SD

    p substrate

    B

    GVGS +

    -

    n+n+

    depletion

    regionn channel

    CGS= CGCS+ CGSO CGD= CGCD+ CGDO

    CGB= CGCB

    The gate-to-channel capacitance depends uponthe operating region and the terminal voltages

  • 7/23/2019 KNL4343 lecture8

    8/32

    Review: Summary of MOS Operating Regions

    Cutoff (really subthreshold) VGS VT

    Exponential in VGS with linear VDSdependenceID= ISe

    (qVGS

    /nkT)(1 - e -(qVDS/kT)) (1 - VDS) where n 1

    Strong Inversion VGS >VT

    Linear (Resistive) VDS

  • 7/23/2019 KNL4343 lecture8

    9/32

    Average Distribution of Channel Capacitance

    Operation

    Region

    CGCB CGCS CGCD CGC CG

    Cutoff CoxWL 0 0 CoxWL CoxWL +2CoW

    Resistive 0 CoxWL/2 CoxWL/2 CoxWL CoxWL +2CoW

    Saturation 0 (2/3)CoxWL 0 (2/3)CoxWL (2/3)CoxWL +2CoW

    Channel capacitance components are nonlinear andvary with operating voltage

    Most important regions are cutoff and saturation

    since that is where the device spends most of its time

  • 7/23/2019 KNL4343 lecture8

    10/32

    MOS Diffusion Capacitances

    S D

    p substrate

    B

    GVGS +

    -

    n+n+

    depletion

    regionn channel

    CSB= CSdiff CDB= CDdiff

    The junction (or diffusion) capacitance is from thereverse-biased source-body and drain-body pn-junctions.

  • 7/23/2019 KNL4343 lecture8

    11/32

    Source Junction View

    side walls

    channel

    W

    xj

    channel-stop

    implant (NA+)

    source

    bottom plate

    (ND)

    LS

    substrate (NA)

    Cdiff= Cbp + Csw = CjAREA+ Cjsw PERIMETER

    = Cj LS W + Cjsw (2LS + W)

    junctiondepth

  • 7/23/2019 KNL4343 lecture8

    12/32

    Review: Reverse Bias Diode

    All diodes in MOS digital circuits are reversebiased; the dynamic response of the diode

    is determined by depletion-region charge orjunction capacitance

    Cj= Cj0/((1VD)/0)m

    where Cj0is the capacitance under zero-bias conditions (afunction of physical parameters), 0is the built-in potential(a function of physical parameters and temperature)

    and m is the grading coefficient

    m = for an abruptjunction (transition from n to p-material isinstantaneous)

    m = 1/3 for a linear(or graded) junction (transition is gradual)

    Nonlinear dependence (that decreases with increasing

    reverse bias)

    +

    -

    VD

  • 7/23/2019 KNL4343 lecture8

    13/32

    Reverse-Bias Diode Junction Capacitance

    0

    0.5

    1

    1.5

    2

    -5 -4 -3 -2 -1 0 1

    VD(V)

    Cj

    (fF)

    linear (m=1/3)

    abrupt (m=1/2)

    Cj0

  • 7/23/2019 KNL4343 lecture8

    14/32

    MOS Capacitance Model

    CGS

    CSB CDB

    CGD

    CGB

    S

    G

    B

    D

    CGS= CGCS+ CGSO CGD= CGCD+ CGDO

    CGB= CGCB

    CSB= CSdiff CDB= CDdiff

  • 7/23/2019 KNL4343 lecture8

    15/32

    Transistor Capacitance Values for 0.25

    Cox(fF/m2)

    Co(fF/m)

    Cj(fF/m2)

    mj b(V)

    Cjsw(fF/m)

    mjsw bsw(V)

    NMOS 6 0.31 2 0.5 0.9 0.28 0.44 0.9

    PMOS 6 0.27 1.9 0.48 0.9 0.22 0.32 0.9

    Example: For an NMOS with L = 0.24 m, W = 0.36 m,LD= LS= 0.625 m

    CGC= CoxWL = 0.52 fF

    CGSO= CGDO= CoxxdW = CoW = 0.11 fF

    so Cgate_cap= CoxWL + 2CoW = 0.74 fF

    Cbp= CjLSW = 0.45 fF

    Csw= Cjsw(2LS+ W) = 0.45 fF

    so Cdiffusion_cap= 0.90 fF

  • 7/23/2019 KNL4343 lecture8

    16/32

    Review: Sources of Capacitance

    Vout

    Cw

    VinCDB2

    CDB1

    CGD12

    M2

    M1

    M4

    M3

    Vout2

    CG4

    CG3

    wiring (interconnect) capacitance

    intrinsic MOS transistor capacitances

    Vout2Vin

    extrinsic MOS transistor (fanout) capacitances

    Vout

    CL

    ndrain

    pdrain

  • 7/23/2019 KNL4343 lecture8

    17/32

    Gate-Drain Capacitance: The Miller Effect

    A capacitor experiencing identical but opposite voltageswings at both its terminals can be replaced by acapacitor to ground whose value is two times the originalvalue

    Vin

    CGD1

    M1

    VoutV

    V

    VinM1

    Vout

    V

    V

    2CGB1

    M1 and M2 are either in cut-off or in saturation.

    The floating gate-drain capacitor is replaced by acapacitance-to-ground (gate-bulk capacitor).

  • 7/23/2019 KNL4343 lecture8

    18/32

    Drain-Bulk Capacitance: Keqs (for 2.5 m)

    high-to-low low-to-high

    Keqbp Keqsw Keqbp Keqsw

    NMOS 0.57 0.61 0.79 0.81PMOS 0.79 0.86 0.59 0.7

    We can simplify the diffusion capacitance calculations

    evenfurther by using a Keqto relate the linearizedcapacitor to the value of the junction capacitance underzero-bias

    Ceq= KeqCj0

  • 7/23/2019 KNL4343 lecture8

    19/32

    Extrinsic (Fan-Out) Capacitance

    The extrinsic, or fan-out, capacitance is the total gatecapacitance of the loading gates M3 and M4.

    Cfan-out= Cgate(NMOS) + Cgate(PMOS)

    = (CGSOn+ CGDOn+ WnLnCox) + (CGSOp+ CGDOp+ WpLpCox)

    Simplification of the actual situation

    Assumes all the components of Cgateare between Voutand GND(or VDD)

    Assumes the channel capacitances of the loading gates are constant

  • 7/23/2019 KNL4343 lecture8

    20/32

    Layout of Two Chained Inverters

    InOut

    Metal1

    VDD

    GND

    1.2m=2

    1.125/0.25

    0.375/0.25

    PMOS

    NMOS

    Polysilicon

    W/L AD (

    m2) PD (

    m) AS (

    m2) PS (

    m)

    NMOS 0.375/0.25 0.3 1.875 0.3 1.875

    PMOS 1.125/0.25 0.7 2.375 0.7 2.375

    0.125 0.5

  • 7/23/2019 KNL4343 lecture8

    21/32

    Components of CL(0.25 m)

    C Term

    Expression Value (fF)

    HL

    Value (fF)

    LHCGD1 2 Con Wn 0.23 0.23

    CGD2 2 Cop Wp 0.61 0.61

    CDB1 KeqbpnADnCj + KeqswnPDnCjsw 0.66 0.90

    CDB2 KeqbppADpCj + KeqswpPDpCjsw 1.5 1.15

    CG3 (2 Con)Wn + CoxWnLn 0.76 0.76

    CG4 (2 Cop)Wp + CoxWpLp 2.28 2.28

    Cw from extraction 0.12 0.12CL 6.1 6.0

  • 7/23/2019 KNL4343 lecture8

    22/32

  • 7/23/2019 KNL4343 lecture8

    23/32

    Parallel Plate Wiring Capacitance

    electrical field lines

    W

    H

    tdi dielectric (SiO2)

    substrate

    Cpp= (di/tdi) WL

    current flow

    permittivity

    constant

    (SiO2= 3.9)

    L

  • 7/23/2019 KNL4343 lecture8

    24/32

    Permittivity Values of Some Dielectrics

    Material di

    Free space 1Teflon AF 2.1

    Aromatic thermosets (SiLK) 2.62.8

    Polyimides (organic) 3.13.4

    Fluorosilicate glass (FSG) 3.24.0Silicon dioxide 3.94.5

    Glass epoxy (PCBs) 5

    Silicon nitride 7.5

    Alumina (package) 9.5

    Silicon 11.7

  • 7/23/2019 KNL4343 lecture8

    25/32

    Sources of Interwire Capacitance

    interwire

    fringe

    pp

    Cwire= Cpp+ Cfringe+ Cinterwire

    = (di/tdi)WL+ (2di)/log(tdi/H)

    + (di/tdi)HL

  • 7/23/2019 KNL4343 lecture8

    26/32

    Impact of Fringe Capacitance

    (from [Bakoglu89])

    H/tdi= 1

    H/tdi= 0.5

    Cpp

    W/tdi

  • 7/23/2019 KNL4343 lecture8

    27/32

    Impact of Interwire Capacitance

    (from [Bakoglu89])

  • 7/23/2019 KNL4343 lecture8

    28/32

    Insights

    For W/H < 1.5, the fringe component dominates theparallel-plate component. Fringing capacitance canincrease the overall capacitance by a factor of 10 or more.

    When W < 1.75H interwire capacitance starts to dominate

    Interwire capacitance is more pronounced for wires in the

    higher interconnect layers (further from the substrate)

    Rules of thumb

    Never run wires in diffusion

    Use poly only for short runs

    Shorter wireslower R and C

    Thinner wireslower C but higher R

    Wire delay nearly proportional to L2

  • 7/23/2019 KNL4343 lecture8

    29/32

    Wiring Capacitances

    Field Active Poly Al1 Al2 Al3 Al4

    Poly 88

    54

    Al1 30 41 57

    40 47 54

    Al2 13 15 17 36

    25 27 29 45

    Al3 8.9 9.4 10 15 41

    18 19 20 27 49

    Al4 6.5 6.8 7 8.9 15 35

    14 15 15 18 27 45

    Al5 5.2 5.4 5.4 6.6 9.1 14 3812 12 12 14 19 27 52

    fringe in aF/m

    pp in aF/m2

    Poly Al1 Al2 Al3 Al4 Al5

    Interwire Cap 40 95 85 85 85 115

    per unit wire length in aF/m for minimally-spaced wires

  • 7/23/2019 KNL4343 lecture8

    30/32

    Dealing with Capacitance

    Low capacitance (low-k) dielectrics (insulators) such

    as polymide or even air instead of SiO2 family of materials that are low-kdielectrics

    must also be suitable thermally and mechanically and

    compatible with (copper) interconnect

    Copper interconnect allows wires to be thinner withoutincreasing their resistance, thereby decreasinginterwire capacitance

    SOI (silicon on insulator) to reduce junction

    capacitance

  • 7/23/2019 KNL4343 lecture8

    31/32

    Next Time: Dealing with Resistance

    MOS structure resistance - Ron

    Wiring resistance

    Contact resistance

  • 7/23/2019 KNL4343 lecture8

    32/32

    Next Lecture and Reminders

    Next lecture

    MOS resistance

    - Reading assignmentRabaey, et al, 4.3.2, 4.4.1-4.4.4

    Reminders