kuhn-tucker theory slides

Upload: imstillarockstar

Post on 01-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Kuhn-tucker Theory Slides

    1/21

    3/26/201

    INTRODUCTION TO KUHN-TUCKER THEORY

    OPTIMIZATION WITH INEQUALITYCONSTRAINTS

    Max f(x)

    s.t. gk(x) bk, k= 1,2, , m

    Remarks:

    If the objective is Minf(x), we may changeit to Max f(x).

    If the constraint is gk(x) bk, we maychange it to gk(x) bk.

  • 8/9/2019 Kuhn-tucker Theory Slides

    2/21

    3/26/201

    Graphical Solution

    Max f x x x

    s t x x x

    x

    x

    x x

    ( )

    . .

    ,

    x

    12

    22

    2

    12

    1 2

    2

    1

    1 2

    2 1

    2 0

    1 0

    1 0

    0

    Example

    Graphical Solution

    f x x x

    x x

    ( )

    ( )

    x

    12

    22

    2

    12

    22

    2 1

    1

    Rewrite the objective function as

    This is the equation of a circle of radius rwith center

    at (0,1).

    x x r12

    22 21 ( )

    Let the objective function be equal to r2, i.e.,

  • 8/9/2019 Kuhn-tucker Theory Slides

    3/21

    3/26/201

    Level (Contour) Sets of the

    Objective Function

    0 0.2 0.4 0.6 0.8 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Center:

    (0,1) r

    Constraint Curve x2= x12+ 2x1

    0 0.2 0.4 0.6 0.8 1

    0

    0.2

    0.4

    0.6

    0.8

    1

  • 8/9/2019 Kuhn-tucker Theory Slides

    4/21

    3/26/201

    The Feasible Set

    0 0.2 0.4 0.6 0.8 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Circle of radius r= 1

    0 0.2 0.4 0.6 0.8 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    r= 1

  • 8/9/2019 Kuhn-tucker Theory Slides

    5/21

    3/26/201

    Optimal Solution

    0 0.2 0.4 0.6 0.8 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    r= 1

    (x1*,x2*)= (1,1)

    (x1**,x2**)

    = (0,0)

    Optimal Solution

    There are two optimal solutions:

    (x1*,x2*) = (1,1)

    VOF(x1*,x2*) =x1*2+x2*

    22x2* + 1 = 1

    (x1**,x2**) = (0,0)

    VOF(x1**,x2**) =x1**2

    +x2**2

    2x2** + 1 = 1

  • 8/9/2019 Kuhn-tucker Theory Slides

    6/21

    3/26/201

    Example 2

    Min x y

    s t x y

    x y

    x y

    ( ) ( )

    . .

    ,

    5 6

    2 6

    2 8

    0

    2 2

    ( ) ( )x y r 5 62 2 2Let

    Example 2: The Objective Function

    ( ) ( )x y r 5 6 2 2

    This is the equation of a circle centered at (5,6) with radius r.

    Thus, we wish to minimize r, i.e., we want to determine the

    circle centered at (5,6) with the smallest radius that touchesthe feasible set.

  • 8/9/2019 Kuhn-tucker Theory Slides

    7/21

    3/26/201

    Example 2: The Objective Function

    0 3 5 8 x

    4

    6

    y

    Example 2: The Feasible Set

    0 3 5 8 x

    4

    6

    y

    2x+y= 6

    x+ 2y= 8

  • 8/9/2019 Kuhn-tucker Theory Slides

    8/21

    3/26/201

    Example 2: The Optimal Solution

    0 3 5 8 x

    4

    6

    y

    2x+y= 6

    x+ 2y= 8

    (x*,y*) (optimal solution)

    Example 2. The Optimal Solution

    The optimal solution is the intersection of the

    two lines given by the equations

    2x+y= 6

    x+ 2y= 8

    The optimal solution isx* = 4/3,y* = 10/3

    VOF(x*,y*) = (4/35)2+ (10/36)2= 185/9

  • 8/9/2019 Kuhn-tucker Theory Slides

    9/21

  • 8/9/2019 Kuhn-tucker Theory Slides

    10/21

    3/26/201

    1

    Slaters Constraint Qualification:

    Example

    2 6x y

    x y 2 8

    g x y x y1 6 2 0( , )

    g x y x y2 8 2 0( , )

    Consider the constraints:

    Rewrite the constraints as:

    Slaters Constraint Qualification:Example

    Both functions are concave (because they are

    linear) on R2+, the nonnegative quadrant.

    Choose (x0,y0) = (1,1). Then

    g1(x0,y0) = 62(1)1 = 3 > 0

    g2(x0,y0) = 812(1) = 5 > 0 Hence, the constraints satisfy Slaters

    Constraint Qualification.

  • 8/9/2019 Kuhn-tucker Theory Slides

    11/21

    3/26/201

    Kuhn-Tucker Necessary Conditions

    for Optimality

    Given the problem

    Max f(x), x Rn

    s.t. gk(x) bk, k= 1,2, . . ., m

    wheref,gk(k= 1,2, ..., m) have continuous partial

    derivatives on an open convex subset D of Rnand

    thegks satisfy Slater's constraint qualification.

    If x* is an optimal solution, then there exist scalars

    1*, 2*, ..., m* such that

    Kuhn-Tucker Necessary Conditionsfor Optimality

    ( ) ( *) ( *) , , , . . . ,*a f g j nj kk

    m

    jk

    x x

    1

    0 1 2

    ( ) ( *) , , , . . . ,*b g b k mk k k x 0 1 2

    ( ) , , , . . . ,*c k mk 0 1 2

    ( ) ( *) , , , . . . ,d g b k mk kx 0 1 2

  • 8/9/2019 Kuhn-tucker Theory Slides

    12/21

    3/26/201

    1

    Example 1

    1. Min 4 + 2 4

    s.t. 4

    2. Max 2 2 + +

    s.t. 1

    3. Max 4 2 + +

    s.t. + 0.25

    Steps

    1. Write in standard form.

    2. Check if constraints are concave. If

    yes,

    3. Check if Slaters constraint qualification

    is met. If yes,4. Findxs that satisfy Kuhn-Tucker

    Necessary Conditions

  • 8/9/2019 Kuhn-tucker Theory Slides

    13/21

  • 8/9/2019 Kuhn-tucker Theory Slides

    14/21

    3/26/201

    1

    The Expenditure Minimization

    Problem

    Min E(x, y) =p1x+p2y

    s.t. U(x,y) u

    x, y 0

    The optimal solution is called an expenditure-minimizer.

    Transform to a max problem:

    Max E(x, y) = p1xp2y

    s.t. U(x,y) u 0 x, y 0

    Kuhn-Tucker Conditions whenNonnegativity Constraints are Explicit

    Given the problem

    Max f(x), x Rn

    s.t. gk(x) bk, k= 1,2, . . ., m

    x 0

    wheref,gk

    (k= 1,2, ..., m) have continuous partialderivatives on an open convex subset D of Rnand

    thegks satisfy Slater's constraint qualification.

    If x* is an optimal solution, then there exist scalars

    1*, 2*, ..., m* such that

  • 8/9/2019 Kuhn-tucker Theory Slides

    15/21

    3/26/201

    1

    Kuhn-Tucker Conditions when

    Nonnegativity Constraints are Explicit

    ( ) ( *) ( *) ,*a f gj kk

    m

    jk

    x x

    1

    0

    ( ) ( *) ( *)* *b f g xj k jk

    k

    m

    jx x

    1

    0

    ( ) ( *)*c g bk k k x 0

    ( ) *d k 0

    ( ) ( *)e g bk

    kx 0( ) *f x 0

    Example

    Maxf(x,y) =x+ 2y

    s.t. g(x,y) = x2y+ 2 0

    x,y 0

    It is clear thatfandghave continuous partial

    derivatives.

    We have already shown thatgis concave

    and satisfies Slaters ConstraintQualification.

  • 8/9/2019 Kuhn-tucker Theory Slides

    16/21

    3/26/201

    1

    Kuhn-Tucker Conditions when

    Nonnegativity Constraints are Explicit

    (a) 1 2x 0 2 0 (b) (1 2x)x= 0 (2)y= 0 (c) (x2y+ 2) = 0 (d) 0 (e) x2y+ 2 0 (f ) x,y 0

    Case 1. = 0 This is not possible from

    (a).

    Case 2. > 0 x= 0; not possible from

    (a); hence,x> 0.

    From (c): x2y+ 2 = 0 y= 0 => x2+ 2 = 0 => x= 2 => 1 22 = 0

    => = 1/(22), contrary to 2 from (a); hence,y> 0.

    Kuhn-Tucker Conditions whenNonnegativity Constraints are Explicit

    (a) 1 2x 0 2 0 (b) (1 2x)x= 0 (2)y= 0 (c) (x2y+ 2) = 0 (d) 0

    (e) x2y+ 2 0 (f ) x,y 0

    From (b),

    (2) = 0 => * = 2 =>12(2)x= 0; => x* = ;

    Solving foryin (c):

    y* = 31/16

    It can be shown that

    x* = ,y* = 31/16

    is an optimal solution byshowing that the objectivefunction is concave (Kuhn-Tucker SufficiencyCondition).

  • 8/9/2019 Kuhn-tucker Theory Slides

    17/21

    3/26/201

    1

    Example

    1. Min 3 + 4

    s.t. + 15

    , 0

    Kuhn-Tucker Sufficient Condition forOptimality: Example

    Min x y( ) ( ) 2 32 2

    s t x y. . 3 2 6

    x y, 0

    Transform the problem to conform to the standard form.

    Max f x y x y( , ) ( ) ( ) 2 32 2

    s t g x y x y. . ( , ) 6 3 2 0

    x y, 0

  • 8/9/2019 Kuhn-tucker Theory Slides

    18/21

    3/26/201

    1

    Kuhn-Tucker Sufficient Condition for

    Optimality: Example

    Max f x y x y( , ) ( ) ( ) 2 32 2

    s t g x y x y. . ( , ) 6 3 2 0

    x y, 0

    Note: Constraintgis concave since it is linear.

    Choosex0= 0,y0= 0.

    g(x0,y0) =g(0,0) = 6 > 0.

    Hence, Slaters Constraint Qualification is satisfied.

    Kuhn-Tucker Sufficient Condition forOptimality: Example

    Kuhn-Tucker conditions

    (a) 2(x2)3 0 2(y3)20 (b) [2(x2)3]x= 0 [2(y3)2]y= 0

    (c) (63x2y) = 0 (d) 0 (e) 63x2y 0 (f ) x,y 0

    Case 1. = 0 From (a):

    2(x2) 0 => x 2 2(y3) 0 => y 3 From (b):

    2(x2) = 0 => x= 2 2(y3) = 0 => y= 3

    From (e): 63x2y= 63(2)2(3)

    =6 Hence,x= 2,y= 3; this

    violates (e).

    Therefore, = 0 is notpossible.

  • 8/9/2019 Kuhn-tucker Theory Slides

    19/21

    3/26/201

    1

    Kuhn-Tucker Sufficient Condition for

    Optimality: Example

    Kuhn-Tucker conditions

    (a) 2(x2)3 0 2(y3)20 (b) [2(x2)3]x= 0 [2(y3)2]y= 0 (c) (63x2y) = 0 (d) 0 (e) 63x2y 0 (f ) x,y 0

    Case 2. > 0 From (c):

    63x2y= 0 x= 0 => y= 3

    => = 0 (from (b))contrary to > 0.

    Hence,x> 0.

    y= 0 => x= 2

    => = 0 (from (b))contrary to > 0.

    Hence,y> 0.

    From (b) & (c):

    2(x2)3= 0 2(y3)2= 0 63x2y= 0

    Kuhn-Tucker Sufficient Condition forOptimality: Example

    x y* , * , * 8

    13

    27

    13

    12

    13

    H( , )x y

    2 0

    0 2

    The Hessian matrix of the objective functionfis:

    His a negative definite matrix; hencefis strictly concave.

    By the Kuhn-Tucker sufficiency theorem, (x*,y*) is an

    optimal solution.

    Solution:

  • 8/9/2019 Kuhn-tucker Theory Slides

    20/21

    3/26/201

    2

    Example

    Min ( 5) + ( 4)

    s.t. 2 + 3 10

    , 0

    Example

    Min 42 + 5 3

    s.t. + 2 20

    , 0

  • 8/9/2019 Kuhn-tucker Theory Slides

    21/21

    3/26/201

    Example

    Max 52 4 + 10 +

    s.t. 3 2 5

    , 0

    The Envelope Theorem forConstrained Optimization

    dzd

    f g dx

    df g

    dy

    df gx x y y

    **

    **

    **

    dz

    df g

    **

    Use the first-order conditions on (4):

    (4)

    Note that the right hand side of equation (5) is the derivative

    of the Lagrangean with respect to , i.e.,

    (5)

    dz

    dL x y

    *( *, *, *, )

    Add (3) to the right hand side of (1):