lecture 4 rf amplifier design - · pdf filelecture 4 rf amplifier design ... •...

45
Johan Wernehag, EIT Lecture 4 RF Amplifier Design Johan Wernehag Electrical and Information Technology

Upload: buikhanh

Post on 06-Mar-2018

237 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT

Lecture 4

RF Amplifier Design

Johan WernehagElectrical and Information Technology

Page 2: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 3

Lecture 4

• Design of Matching Networks– Various Purposes of Matching

• Voltage-, Current- and Power Matching

– Design by Lumped Circuit Elements

• L, Pi and T Networks• Design by Using the Smith Chart

– Design by Line Structures• Transformation by a Transmission

Line• Quarter-Wave Transformer• Line Section with Optimised

Length and Z0

• Stubs

• Passive Components– Lumped Components

• Resistors• Capacitors• Inductors• Transformers

– Substrate andConductor Materials

– Transmission Lines• Coaxial Line• Microstrip• Stripline• Discontinuities

– Bends, corners

Page 3: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 4

The Purpose of Matching

�Minimum noise power

�Maximum output power

�Maximum transfer of power

In most cases bandwidth and filtering are important parameters too

Page 4: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 5

Maximum Transfer of Power

RL W[ ]

Rela

tive

load

sign

al le

vel VL

• Voltage matching

PL

• Power matching

I L

• Current matching

RS = 100W

Page 5: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 6

Complex Conjugate Matching

ZL = ZS* Þ

RL = RS

XL = -XS

ìíï

îï• Maximum transfer of power when

resonance

Page 6: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 7

Z or G Representation

ZL = ZS* Þ

RL = RS

XL = -XS

ìíï

îï• Impedance

GL =ZL - Z0

ZL + Z0

=ZS

* - Z0

ZS* + Z0

= GS*• Reflection coefficient (Z0 is resistive)

Page 7: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 8

Available Power from Source, PAVS

PAVS =VL

2

RL

=VS2 RL

ZS + ZL

æèç

öø÷

21RL

ZL=ZS* =

VS2

4RS

• The maximum amount of power that can be delivered from the source is defined as:

NOTE!The unit of VS is here VRMS!

Active power

Page 8: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 9

The Need of a Matching Network

• If ZL and/or ZS are fixed a matching network is needed to ensure proper matching

Page 9: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 10

Network Design by Lumped Circuits

• L network– low-pass– high-pass– fixed circuit Q

• Pi and T network– low-pass– high-pass– desired circuit Q

Page 10: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 11

L Network, Four Different Variations

Low-pass, RL > RS Low-pass, RL < RS

High-pass, RL > RS High-pass, RL < RS

- Series component in serie with the smallest impedance- Shunt component in || with the largest impedance

Page 11: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 12

Designing Reactive Circuit Elementsin the Smith Chart

Page 12: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Add susceptance (connect an inductor in parallel) until you end up in Y = Yo = 1/50 mho.

step 3

1⁄ = 1.5 50Ω⁄⇒ = 42

1/wC= 0.47 50Ω

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 13

Experiment: Design a matching network by using the Smith chart and the VNA

step 1

step 2Subtract reactance (connect a capacitor in series) until you reaches the conductance circle g = 1/50 mho.1/wC= 0.47 50Ω ⇒ ≈ 55

Page 13: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 14

Eight possible L-type Networks

Page 14: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 15

Matching Networks by Line Structures

• Transformation by a serial transmission line– line section with optimised length and Z0

– quarter-wave transformer– matching by multiple sections

• Stubs– short-circuited and open stubs– symmetrical stubs

Page 15: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 16

a) lossless line

b) lossy line

Zin = Z0

ZL + Z0 tanhg l

Z0 + ZL tanhg l

Impedance Transformation by a Single Serial Line

G in,Zin GL

Z0

l

Page 16: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 17

The Quarter-Wave Transformer

• For a line at thelength l/4 is

if ZL is resistiveZin =Z0

2

ZL

• may be used for matching between arbitrary resistive source and load impedances.

Z0 = ZLZinUseful to

remember!

ZinGin

ZLGL

Page 17: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 18

Quarter-Wave Transformer at Multiple Sections

• Transformation in several and minor impedance steps may provide a larger bandwidth

• If the characteristic impedances are distributed according to binomial coefficients maximum-flatness is achieved.

Binomial coefficients

Z01 = RSRL

RS

æèç

öø÷

18

Ex. three sections:

Z02 = Z01RL

RS

æèç

öø÷

38= RS

RL

RS

æèç

öø÷

48

Z03 = Z02RL

RS

æèç

öø÷

38= RS

RL

RS

æèç

öø÷

78

G in G in

Zin

Z01 Z02

l4

l4

RS RL

Page 18: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 19

Quarter-Wave Transformer at Multiple Sections (cont.)

Page 19: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 20

Impedance Transformation by Stubs and Serial Lines

• Short-circuited or open line sections may be used as reactive shunt elements.

• Combined with a serial line matching can be achieved between arbitrary loci in the Smith chart.

Zin

= ZS*

Y1 = Gin + jB1

Z01

l1

ZS

1Zin

= Yin = Gin + jBin

lstub

Z0stubYstub = j (Bin - B1)

Page 20: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 21

Length and Termination of the Stubs

Page 21: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 22

Designing the Length of the Stub

Page 22: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 23

Symmetrical Stubs

• The length of the symmetrical stubs is designed to individually provide the half value of the requested susceptance.

jB

jB

Single stub

l single

jB2

jB2

j B2

Symmetrical stubs

l symm

l symmj B

2

• Note: ≠ 2

Page 23: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 24

Z

f

Ideal resistor

fSRF

R

Rp

fSRF = Self Resonance Frequency

Resistors

high-frequency model

Page 24: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 25

Resistor

Frequency characteristics - example

f [Hz]

R= 50WL = 0.25nHC = 200fF

Z

Resistive

Self resonance

Page 25: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 26

Capacitorshigh-frequency model

Z

ffSRF

capacitive inductiveRESR

RESR = equivalent series resistance

Page 26: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 27

Capacitor

Frequency characteristics - example

f [Hz]

R= 2WL = 1nHC = 1pF

Cp = 100fF

LC

Cp

R

Z

Page 27: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 28

Inductorshigh-frequency model

Z

ffSRF

RP

capacitiveinductive

RP = equivalent parallel resistance

Page 28: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 29

Inductor

Frequency characteristics - example

f [Hz]

R= 3WL = 5nH

Cp = 100fF

Z

L

C

R

Page 29: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 30

Inductor

The Q-factor frequency dependence

XT = wL

R ~ wR ~ XT

SRF(self resonance

frequency)

Q

ωSkin effect Parasitic capacitance

The losses increases rapidly versus the

frequency

Cparasitic doesn’t affect the Q if the inductor is

used in a resonant circuit!

Q =XRS

XT = wLR= RDC

XT = total reactance of the inductor

Page 30: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 31

Transformer

• Windings on a ferrite rod or toroid core

• These materials provides a high permeability that unfortunately decreases at higher frequencies

• Usable at best up to a few GHz

Page 31: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 32

Loss in Substrate Materials

• For dielectric materials often the loss tangent used to specify the losses:

tand =swe

• for material with low loss where d is the loss angletand » d

• The loss tangent is also related to thequality factor or Q-factor of the material: tand =

1Qd

Page 32: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 33

Properties of some Substrate Materials

Material r tan

Ceramic 10 0.004

Beryllium oxide 6 0.0003

Duorid 2.6 0.0001

Teflon fibre-glass 2.3 0.0015

Silicon 11.7 0.004

Quarz 3.8 0.0001

Epoxy fibre-glass 4 0.02

Aluminium oxide 10 0.0003

Page 33: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 34

Properties of some Metals

Metal [S/m]

Aluminium 3.816 • 107

Copper 5.813 • 107

Gold 4.098 • 107

Iron 1.03 • 107

Silver 6.173 • 107

Page 34: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 35

J

z

J0J0e----

di

Skin Effect

• The magnetic flux inside the conductor will effectively push the current to a narrow region close to the surface

• A large circumference is more essential than a large cross section area of the conductor!

• Skin depth: = the distance were the current densityhas decreased by a factor e

d i =2

wms

Current density

Page 35: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 36

Example of Skin Depth

f [Hz]

di [m]

iron

aluminiumgoldcoppersilver

-

-

Page 36: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 37

Dimension of the Coaxial Cable

D

d

ε

Z0 =138e r

log10 Dd

æèç

öø÷=

=60e r

ln Dd

æèç

öø÷

0

20

40

60

80

100

120

1,0 1,2 1,4 1,6 1,8 2 2,4 3 4 5 6

Z0

Dd

æèç

öø÷

ε = 1 (air)

50

Page 37: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 38

Microstrip

Cross section of a microstrip structure

Complex geometry and non-uniform fields makes a complicated flux image.

er in the substrate is therefore not usable for calculation of for example electrical length in the line structure.

Instead the effective permittivity, eeff , based on the dimensions of the microstrip structure, may be used.

W

hE

ground plane

år

H

Page 38: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 39

Design of Microstrip, Diagram 1

Determine the proper W for a specified Z0 and h

er

W/h

Z0

1

2

4

68

101216

-

Page 39: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 40

Design of Microstrip, Diagram 2

Determine the effective permittivity eeff

W/h

2

4

6

8

10

12

16

-

er

eeff

Page 40: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 41

Design of Microstrip, Summary

Specified Z0, substrate height h and permittivity εr:

3. Calculate the effective wavelength leff =l0

eeff

Specified electrical length lel

4. Calculate the physical length l = lel × leff

1. Select the width W in diagram 1

W/h

Z0

er

2. Select the effective permittivity εeff in diagram 2

W/h

eeff

er

Page 41: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 42

Stripline

W

hconductorsubstrate

ground plane

ground plane

er

Page 42: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 43

Discontinuities

• The design of circuits containing transmission lines must take into account the impact of junctions and transitions between different line widths.

• How to model such a geometry?

Z0,1 Z0,1

Z0,2

l1 l2

l3l3

l2

l1

circuit diagram design

Page 43: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 44

Discontinuities (cont.)

• T-junction, equivalent model

• Methods for manual calculation of the circuit elements in the equivalent model may be found in handbooks.

Z0 1, Z0 1,

Z0 2,

Page 44: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 45

Discontinuities (cont.)

• Symmetrical step, an abrupt transition betweentwo different line widths

W 1 W 2 Z0 1, Z0 2,

• Transmission line, open-circuit termination

Cf

ground plane

conductor

er er

Page 45: Lecture 4 RF Amplifier Design -  · PDF fileLecture 4 RF Amplifier Design ... • Quarter-Wave Transformer ... current to a narrow region close to the surface

Johan Wernehag, EIT RF Amplifier Design ETIN50 - Lecture 4 46

Discontinuities (cont.)

• Some other cases are– corners and bends– serial gap (to realize a serial capacitance)– undesired coupling between nearby structures

• Crosstalk

• CAD tools are necessary for analysis and design of more complex circuits

– ADS and others

• In worst case a complete structure may be simulated by the finite element method and Maxwell’s equations which is both time and memory consuming