lecture21 canonical transformation

25
Mechanics Physics 151 Lecture 21 Canonical Transformations (Chapter 9)

Upload: kelvin-lois

Post on 20-Feb-2016

58 views

Category:

Documents


4 download

DESCRIPTION

Lecture on Analytical Mechanics. Notes by Masahiro Morii at Harvard.

TRANSCRIPT

Page 1: Lecture21 Canonical Transformation

MechanicsPhysics 151

Lecture 21Canonical Transformations

(Chapter 9)

Page 2: Lecture21 Canonical Transformation

What We Did Last Time

Canonical transformationsHamiltonian formalism isinvariant under canonical + scale transformationsGenerating functions define canonical transformationsFour basic types of generating functions

They are all practically equivalent

Used it to simplify a harmonic oscillatorInvariance of phase space

i i i idFPQ K p q Hdt

βˆ’ + = βˆ’

1( , , )F q Q t 2 ( , , )F q P t 3 ( , , )F p Q t 4 ( , , )F p P t

Page 3: Lecture21 Canonical Transformation

Four Basic Generators

Trivial CaseDerivativesGenerator

1( , , )F q Q t

2 ( , , ) i iF q P t Q Pβˆ’

3 ( , , ) i iF p Q t q p+

4 ( , , ) i i i iF p P t q p Q P+ βˆ’

1i

i

Fpq

βˆ‚=

βˆ‚1

ii

FPQ

βˆ‚= βˆ’

βˆ‚ 1 i iF q Q= i iQ p=

i iP q= βˆ’

2i

i

Fpq

βˆ‚=

βˆ‚2

ii

FQP

βˆ‚=

βˆ‚ 2 i iF q P=i iP p=i iQ q=

3i

i

Fqp

βˆ‚= βˆ’

βˆ‚3

ii

FPQ

βˆ‚= βˆ’

βˆ‚

4i

i

Fqp

βˆ‚= βˆ’

βˆ‚4

ii

FQP

βˆ‚=

βˆ‚

3 i iF p Q=i iP p= βˆ’i iQ q= βˆ’

4 i iF p P= i iQ p=

i iP q= βˆ’

Page 4: Lecture21 Canonical Transformation

Goals for Today

Dig deeper into Canonical TransformationsInfinitesimal Canonical Transformation

Very small changes in q and pDefine generator G for an ICT

Direct Conditions for Canonical TransformationNecessary-and-sufficient conditions for any CT

Poisson BracketInvariant of any Canonical TransformationConnect to Infinitesimal Canonical Transformation

Page 5: Lecture21 Canonical Transformation

Infinitesimal CT

Consider a CT in which q, p are changed by small (infinitesimal) amounts

ICT is close to identity transf.Generating function should be

i i iQ q qΞ΄= + i i iP p pΞ΄= + Infinitesimal Canonical Transformation (ICT)

2 ( , , ) ( , , )i iF q P t q P G q P tΞ΅= +

Identity CT generator Small

2i i

i i

F Gp Pq q

Ξ΅βˆ‚ βˆ‚= = +

βˆ‚ βˆ‚2

i ii i

F GQ qP P

Ξ΅βˆ‚ βˆ‚= = +

βˆ‚ βˆ‚Look at the

generator table

ii i

G GqP p

Ξ΄ Ξ΅ Ξ΅βˆ‚ βˆ‚= β‰ˆ

βˆ‚ βˆ‚ ii i

G Gpq Q

Ξ΄ Ξ΅ Ξ΅βˆ‚ βˆ‚= βˆ’ β‰ˆ βˆ’

βˆ‚ βˆ‚Since Ξ΅ is

infinitesimal

Page 6: Lecture21 Canonical Transformation

Generator of ICT

An ICT is generated by

G is called (inaccurately) the generator of the ICTSince the CT is infinitesimal, G may be expressed in terms of q or Q, p or P, interchangeably

For example:

2 ( , , ) ( , , )i iF q P t q P G q P tΞ΅= +

i ii

GQ qP

Ξ΅ βˆ‚= +

βˆ‚ i ii

GP pq

Ξ΅ βˆ‚= βˆ’

βˆ‚

( , , )G G q p t= i ii

GQ qp

Ξ΅ βˆ‚= +

βˆ‚ i ii

GP pq

Ξ΅ βˆ‚= βˆ’

βˆ‚

Page 7: Lecture21 Canonical Transformation

Hamiltonian

Consider

What does Ξ΅ look like? Infinitesimal time Ξ΄t

Hamiltonian is the generator of infinitesimal time transformation

In QM, you learn that Hamiltonian is the operator that represents advance of time

( , , )G H q p t=

i ii

Hq qp

Ξ΄ Ξ΅ Ξ΅βˆ‚= =

βˆ‚ i ii

Hp pq

Ξ΄ Ξ΅ Ξ΅βˆ‚= βˆ’ =

βˆ‚

i iq q tΞ΄ Ξ΄= i ip p tΞ΄ Ξ΄=

Page 8: Lecture21 Canonical Transformation

Direct Conditions

Consider a restricted Canonical TransformationGenerator has no t dependence

Q and P depends only on q and p

0Ft

βˆ‚=

βˆ‚( , ) ( , )K Q P H q p= Hamiltonian

is unchanged

( , )i iQ Q q p= ( , )i iP P q p=

i i i ii j j

j j j j j j

Q Q Q QH HQ q pq p q p p q

βˆ‚ βˆ‚ βˆ‚ βˆ‚βˆ‚ βˆ‚= + = βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

i i i ii j j

j j j j j j

P P P PH HP q pq p q p p q

βˆ‚ βˆ‚ βˆ‚ βˆ‚βˆ‚ βˆ‚= + = βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

Hamilton’s equations

Page 9: Lecture21 Canonical Transformation

Direct Conditions

On the other hand, Hamilton’s eqns say

i ii

j j j j

Q QH HQq p p q

βˆ‚ βˆ‚βˆ‚ βˆ‚= βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚

i ii

j j j j

P PH HPq p p q

βˆ‚ βˆ‚βˆ‚ βˆ‚= βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚

j ji

i j i j i

q pH H HQP q P p P

βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚= = +

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

j ji

i j i j i

q pH H HPQ q Q p Q

βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚= βˆ’ = βˆ’ βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

Direct Conditions

for a Canonical Transformation

,,

ji

j i Q Pq p

pQq P

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚=⎜ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qQp P

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚= βˆ’βŽœ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠

,,

ji

j i Q Pq p

pPq Q

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚= βˆ’βŽœ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qPp Q

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚=⎜ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠

Page 10: Lecture21 Canonical Transformation

Direct Conditions

Direct Conditions are necessary and sufficient for a time-independent transformation to be canonical

You can use them to test a CT

In fact, this applies to all Canonical TransformationsBut the proof on the last slide doesn’t work

,,

ji

j i Q Pq p

pQq P

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚=⎜ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qQp P

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚= βˆ’βŽœ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠

,,

ji

j i Q Pq p

pPq Q

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚= βˆ’βŽœ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qPp Q

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚=⎜ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠

Page 11: Lecture21 Canonical Transformation

Infinitesimal CT

Does an ICT satisfy the DCs?2( )i i i

ijj j i j

Q q q Gq q P q

Ξ΄ Ξ΄ Ξ΅βˆ‚ βˆ‚ + βˆ‚= = +

βˆ‚ βˆ‚ βˆ‚ βˆ‚

2( )j j jij

i i i j

p P p GP P P q

δδ Ρ

βˆ‚ βˆ‚ βˆ’ βˆ‚= = +

βˆ‚ βˆ‚ βˆ‚ βˆ‚

ii i

G GqP p

Ξ΄ Ξ΅ Ξ΅βˆ‚ βˆ‚= β‰ˆ

βˆ‚ βˆ‚

ii i

G Gpq Q

Ξ΄ Ξ΅ Ξ΅βˆ‚ βˆ‚= βˆ’ β‰ˆ βˆ’

βˆ‚ βˆ‚

2( )i i i

j j i j

Q q q Gp p P p

Ξ΄ Ξ΅βˆ‚ βˆ‚ + βˆ‚= =

βˆ‚ βˆ‚ βˆ‚ βˆ‚

2( )j j j

i i i j

q Q q GP P P p

δΡ

βˆ‚ βˆ‚ βˆ’ βˆ‚= = βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚2( )i i i

j j i j

P p p Gq q Q q

Ξ΄ Ξ΅βˆ‚ βˆ‚ + βˆ‚= = βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚

2( )j j j

i i i j

p P p GQ Q Q q

δΡ

βˆ‚ βˆ‚ βˆ’ βˆ‚= =

βˆ‚ βˆ‚ βˆ‚ βˆ‚2( )i i i

ijj j i j

P p p Gp p Q p

Ξ΄ Ξ΄ Ξ΅βˆ‚ βˆ‚ + βˆ‚= = βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚

2( )j j jij

i i i j

q Q q GQ Q Q p

δδ Ρ

βˆ‚ βˆ‚ βˆ’ βˆ‚= = βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚

Yes!

Page 12: Lecture21 Canonical Transformation

Successive CTs

Two successive CTs make a CT

Direct Conditions can also be β€œchained”, e.g.,

1i i i i

dFPQ K p q Hdt

βˆ’ + = βˆ’ 2i i i i

dFY X M PQ Kdt

βˆ’ + = βˆ’

1 2( )i i i i

d F FY X M p q Kdt+

βˆ’ + = βˆ’ True for unrestricted CTs

,,

ji

j i Q Pq p

pQq P

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚=⎜ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠ ,,

ji

j i X YQ P

PXQ Y

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚=⎜ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠

,,

ji

j i X Yq p

pXq Y

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚=⎜ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠

Easy to prove

Page 13: Lecture21 Canonical Transformation

Unrestricted CT

Now we consider a general, time-dependent CT

Let’s do it in two steps

First step is t-independent Satisfies the DCsWe must show that the second step satisfies the DCs

( , , )i iQ Q q p t= ( , , )i iP P q p t=FK Ht

βˆ‚= +

βˆ‚

,q p 0 0( , , ), ( , , )Q q p t P q p t ( , , ), ( , , )Q q p t P q p t

Time-independent CT Time-only CT

Fixed time

Page 14: Lecture21 Canonical Transformation

Unrestricted CT

Concentrate on a time-only CTBreak t – t0 into pieces of infinitesimal time dt

Each step is an ICT Satisfies Direct Conditionsβ€œIntegrating” gives us what we needed

The proof worked because a time-only CT is a continuous transformation, parameterized by t

( ), ( )Q t P t0 0( ), ( )Q t P t

0 0( ), ( )Q t P t 0 0( ), ( )Q t dt P t dt+ + ( ), ( )Q t P t

All Canonical Transformations satisfies the Direct Conditions, and vice versa

Page 15: Lecture21 Canonical Transformation

Poisson Bracket

For u and v expressed in terms of q and p

This weird construction has many useful featuresIf you know QM, this is analogous to the commutator

Let’s start with a few basic rules

[ ] ,,

q pi i i i

u v u vu vq p p q

βˆ‚ βˆ‚ βˆ‚ βˆ‚β‰‘ βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚Poisson Bracket

[ ]1 1, ( )u v uv vui i

≑ βˆ’ for two operators u and v

Page 16: Lecture21 Canonical Transformation

Poisson Bracket Identities

For quantities u, v, w andconstants a, b[ , ] 0u u =

[ ] ,,

q pi i i i

u v u vu vq p p q

βˆ‚ βˆ‚ βˆ‚ βˆ‚β‰‘ βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚

[ , ] [ , ]u v v u= βˆ’

[ , ] [ , ] [ , ]au bv w a u w b v w+ = +

[ , ] [ , ] [ , ]uv w u w v u v w= +

[ ,[ , ]] [ ,[ , ]] [ ,[ , ]] 0u v w v w u w u v+ + =

Jacobi’s Identity

All easy to prove

This one is worth trying.See Goldstein if you are lost

Page 17: Lecture21 Canonical Transformation

Fundamental Poisson Brackets

Consider PBs of q and p themselves

Called the Fundamental Poisson Brackets

Now we consider a Canonical Transformation

What happens to the Fundamental PB?

[ , ] 0j jk k

i ij k

i i

q qqp q

q q qq p

βˆ‚ βˆ‚βˆ‚ βˆ‚= βˆ’

βˆ‚ βˆ‚ βˆ‚=

βˆ‚[ , ] 0j kp p =

[ , ] j jk k

i i i ij k jk

q qp pq p q

q pp

Ξ΄βˆ‚ βˆ‚βˆ‚ βˆ‚

=βˆ‚ βˆ‚

=βˆ’βˆ‚ βˆ‚

[ , ]j k jkp q Ξ΄= βˆ’

, ,q p Q P→

Page 18: Lecture21 Canonical Transformation

Fundamental PB and CT

Fundamental Poisson Brackets are invariant under CT

,[ , ] 0j j j j jk k i ij k q p

i i i i i k i k k

Q Q Q Q QQ Q q pQ Qq p p q q P p P P

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚ βˆ‚= βˆ’ = βˆ’ βˆ’ = βˆ’ =

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

,[ , ] 0j j j j jk k i ij k q p

i i i i i k i k k

P P P P PP P q pP Pq p p q q Q p Q Q

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚ βˆ‚= βˆ’ = + = =

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

,[ , ] j j j j jk k i ij k q p jk

i i i i i k i k k

Q Q Q Q QP P q pQ Pq p p q q Q p Q Q

Ξ΄βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚ βˆ‚

= βˆ’ = + = =βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

,[ , ] [ , ]j k q p k j jkP Q Q P Ξ΄= βˆ’ = βˆ’ Used Direct Conditions here

Page 19: Lecture21 Canonical Transformation

Poisson Bracket and CT

What happens to a Poisson Bracket under CT?For a time-independent CT

[ ] ,

, ,

,

[ , ] [ , ] [

j j j jk k k k

j i j i k i k i j i j i k i k i

j k j k j k

Q Pi i i i

j k Q P j k Q P

q p q pq p q pu u v v u u v v

q Q p Q q P p P q P p P q Q p Q

u v u v u v

q q q p p q

u v u vu vQ P P Q

q q q p

βˆ‚ βˆ‚ βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚+ + βˆ’ + +

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

βˆ‚ βˆ‚ βˆ‚ βˆ‚β‰‘ βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚

βŽ› ⎞ βŽ› βŽžβŽ› ⎞ βŽ› ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= + +

[ ]

, ,

,

, ] [ , ]

,

j k

j k j k

j k Q P j k Q P

jk jk

q p

u v

p p

u v u v

q p p q

p q p p

u v

Ξ΄ Ξ΄

βˆ‚ βˆ‚

βˆ‚ βˆ‚

βˆ‚ βˆ‚ βˆ‚ βˆ‚

βˆ‚ βˆ‚ βˆ‚ βˆ‚

+

= βˆ’

= Poisson Brackets are invariant under CT

Page 20: Lecture21 Canonical Transformation

Invariance of Poisson Bracket

Poisson Brackets are canonical invariantsTrue for any Canonical Transformations

Goldstein shows this using β€œsimplectic” approach

We don’t have to specify q, p in each PB[ ] ,

,q p

u v [ ],u v good enough

Page 21: Lecture21 Canonical Transformation

ICT and Poisson Bracket

Infinitesimal CT can be expressed neatly with a PB

For a generator G,

On the other hand

We can generalize further…

i ii

GQ qp

Ξ΅ βˆ‚= +

βˆ‚ i ii

GP pq

Ξ΅ βˆ‚= βˆ’

βˆ‚

[ , ] i ii i

j j j j i

q qG G Gq G qq p p q p

Ξ΅ Ξ΅ Ξ΅ Ξ΄βŽ› βŽžβˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚

= βˆ’ = =⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚βŽ ⎠

[ , ] i ii i

j j j j i

p pG G Gp G pq p p q q

Ξ΅ Ξ΅ Ξ΅ Ξ΄βŽ› βŽžβˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚

= βˆ’ = βˆ’ =⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚βŽ ⎠

Page 22: Lecture21 Canonical Transformation

ICT and Poisson Bracket

For an arbitrary function u(q,p,t), the ICT does

That is

[ , ]

ICTi i

i i

i i i i

u u uu u u u q p tq p tu G u G uu tq p p q t

uu u G tt

Ξ΄ Ξ΄ Ξ΄ Ξ΄

Ξ΅ Ξ΅ Ξ΄

Ξ΅ Ξ΄

βˆ‚ βˆ‚ βˆ‚βŽ―βŽ―βŽ―β†’ + = + + +

βˆ‚ βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

= + βˆ’ +βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

βˆ‚= + +

βˆ‚

[ , ] uu u G tt

Ξ΄ Ξ΅ Ξ΄βˆ‚= +

βˆ‚

Page 23: Lecture21 Canonical Transformation

Infinitesimal Time Transf.

Hamiltonian generates infinitesimal time transf.Applying the Poisson Bracket rule

Have you seen this in QM?

If u is a constant of motion,

That is,

[ , ] uu t u H tt

Ξ΄ Ξ΄ Ξ΄βˆ‚= +

βˆ‚[ , ]du uu H

dt tβˆ‚

= +βˆ‚

[ , ] 0uu Ht

βˆ‚+ =

βˆ‚

[ , ] uH ut

βˆ‚=

βˆ‚u is a constant of motion

Page 24: Lecture21 Canonical Transformation

Infinitesimal Time Transf.

If u does not depend explicitly on time,

Try this on q and p

[ , ] [ , ]du uu H u Hdt t

βˆ‚= + =

βˆ‚

[ , ] i ii i

j j j j i

p pH H Hp p Hq p p q q

βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚= = βˆ’ = βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚

[ , ] i ii i

j j j j i

q qH H Hq q Hq p p q p

βˆ‚ βˆ‚βˆ‚ βˆ‚ βˆ‚= = βˆ’ =

βˆ‚ βˆ‚ βˆ‚ βˆ‚ βˆ‚ Hamilton’sequations!

Page 25: Lecture21 Canonical Transformation

Summary

Direct ConditionsNecessary and sufficientfor Canonical Transf.

Infinitesimal CTPoisson Bracket

Canonical invariantFundamental PB

ICT expressed by

Infinitesimal time transf. generated by Hamiltonian

,,

ji

j i Q Pq p

pQq P

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚=⎜ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qQp P

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚= βˆ’βŽœ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠

,,

ji

j i Q Pq p

pPq Q

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚= βˆ’βŽœ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qPp Q

βŽ› ⎞ βˆ‚βŽ› βŽžβˆ‚=⎜ ⎟ ⎜ ⎟⎜ βŽŸβˆ‚ βˆ‚βŽ ⎠⎝ ⎠

[ ],i i i i

u v u vu vq p p q

βˆ‚ βˆ‚ βˆ‚ βˆ‚β‰‘ βˆ’

βˆ‚ βˆ‚ βˆ‚ βˆ‚

[ , ] [ , ] 0i j i jq q p p= = [ , ] [ , ]i j i j ijq p p q Ξ΄= βˆ’ =

[ , ] uu u G tt

Ξ΄ Ξ΅ Ξ΄βˆ‚= +

βˆ‚