lica course file

68

Click here to load reader

Upload: vasuhai

Post on 22-Nov-2014

336 views

Category:

Documents


31 download

TRANSCRIPT

Page 1: Lica Course File

B.V.C.INSTITUTE OF TECHNOLOGY AND SCIENCE BATLAPALEM

UNIT I INTEGRATED CIRCUITS

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 2: Lica Course File

Syllabus: Differential Amplifier-DC and AC analysis of Dual input Balanced output configuration,Properties of other differential amplifier configuration(Dual Input Unbalanced Output,Single Ended Input-Balanced/Unbalanced Output),DC Coupling and Cascaded Differential Amplifier Stages,Level translator.Schedule:

S.NO

NAME OF THE TOPICPERIODSREQUIRED

1 Differential Amplifier 12 DC analysis of Dual input Balanced output configuration 23 AC analysis of Dual input Balanced output configuration 24 Properties of Dual Input Unbalanced Output configuration 25 Properties of Output Single Ended Input-Balanced Output

Differential Amplifier configuration2

6 Properties of Output Single Ended Input-Unbalanced Output Differential Amplifier configuration

2

7 DC Coupling and Cascaded Differential Amplifier Stages 28 Level translator 2

Total no of periods required 15

Objective: By this Unit students should gain knowledge on

The basic concepts of Different types of differential Amplifier configurations.

Determination of voltage gain and differential input resistance,and the output resistance for a given differential amplifier configuration and cascaded differential amplifier configuration.

The use of a level translator circuit with the cascaded differential amplifier configuration

Assignment Questions

1. (a) Derive the output voltage of an op - amp based differential amplifier.

(b) List out electrical characteristics of an op - amp.

2. (a) Discuss about dc analysis of Dual input balanced output amplifier.

(b) Why cascading is necessary for differential amplifier and explain its operation.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 3: Lica Course File

3.(a) Explain the use of constant bias circuit in operation of differential

amplifier.

(b) Explain how large open circuit voltage gain of an op - amp can be obtained by using cascading of differential amplifier stages.

4.(a) Explain how large open circuit voltage gain of an op - amp can be obtained by using cascading of differential amplifier stages.

(b) Explain ac analysis of differential amplifier.

5.(a) Define CMRR? Explain how this can be improved for differential

amplifier with suitable diagram.

(b) What is the voltage at point A and B for the circuit shown in figure 1 if v1=5v and v2=5.1v.

6.(a) Explain cascade connection of differential amplifier for active load.

(b) Write the properties of different configurations of differential

amplifier.

7. (a) List out different configurations of differential amplifier. Explain any one of them in detail.

(b) Determine the emitter current in transistor Q3 of figure 1. If VBE =

0.7V and β = 100

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 4: Lica Course File

Figure 1

8.(a) Why is it necessary to use an external offset voltage compensating network with practical op - amp circuits.

(b) Compare and contrast an ideal op - amp and practical op - amp.

9. (a) Discuss the differences between the differential amplifiers used in the first two stages of op - amp.

(b) Draw an ideal voltage transfer curve of an op - amp.

10. (a) Draw the pin diagram and schematic symbol of a typical op - amp IC 741 and explain the function of each pin.

(b) Discuss the three basic types of linear IC packages and briefly explain the characteristics of each.

Quiz Questions

1 . A typ ic a l h i gh ga i n I C d i ff e re nt i a l a m p l i fi e r ( a) C o n s i s t s of D ar l i n gt o n p a i r ( b ) H a s n o p r ov i s i o n f o r c o n n e c t i n g e x t e r n a l c o m p e n s a ti n g c om p o n e nt s ( c ) H a s t h r e e d i ff e r e nti a l a m p l i fi e r s t a ge s w i t h an op e n l o op ga i n a r ou n d 2 0 , 00 0

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 5: Lica Course File

( d ) H a s p owe r d i s s i p at i on of a b ou t 10 0 m i c r o wat t s

2 . D i ff e r e n c e m o d e g ai n A d o f a s y m m e t r i c a l e m i t t e r c o u p l e d di ff e r e nti a l a m p l i fi e r i s gi ve n by ( a) A d = -h f e R c R s + h i e ( b ) A d = -1 2 h f e R c R s + h i e ( c ) A d = 1 2 h f e R c R s + h i e ( d ) A d = h f e R c R s + h i e

3 . I n a d i ff e r e n c e am p l i fi e r , a l ar ge R e l e a d s t o i n c r e a s e i n ( a) P S R R ( b ) C M R R o f t h e am p l i fi e r ( c ) C o m m on - m o d e g ai n ( d ) D i ff e r e nt i al - m o d e g ai n

4 T h e ga i n o f a d i ff e r e nti a l a m p l i fi e r g e n e r al l y f al l s a t t h e r at e of i nt e gr a l mu l t i p l e o f ( a) 4 d B p e r o c t ave ( b ) 6 d B p e r d e c ad e ( c ) 4 d B p e r d e c ad e ( d ) 6 d B p e r o c t ave

5 I n a d i ff e r e nt i al a m p l i fi e r , u s e o f a c o n s t ant c u r r e nt C E a m p l i fi e r s ta g e i n p l ac e o f e m i t t e r c i r c u i t re s i s t or R e c a u s e s C M R R ( a) I n c r e a s e s o r d e c r e a s e s d e p e n d i n g o n t e m p e r a t u re ( b ) R e m ai n s u n al t e r e d ( c ) To i n c re as e ( d ) To d e c r e as e

6 W h i ch o f th e f o l l ow i n g s t a t e m e nts i s n ot f or a c as c ad e l e ve l s h i f t e r ( a) I t c an s t e p u p t h e i n p u t vol t ag e ( b ) I t s vo l t ag e g a i n i s o n e ( c ) I t c an e i t h e r s t e p u p or s t e p d ow n ( d ) I t c an s t e p d ow n t h e i n p u t vo l ta g e t o a ny l e ve l

7. D i ff e r e nt i al t r an s c on d u c t a n c e g m d o f d i ff e r e nti a l a mp l i fi e r e q u a l s ( W h e r e I o i s t h e c c o l l e c t or c u r r e nt o f t h e C E s t a ge i n t h e e m i t te r c i r c u i t o f t h e d i ff e r e nt i al a m p l i fi e r ) ( a) 2 I 0 V T ( b ) I 0 2 V T ( c ) I 0 4 V T ( d ) √I 0 4 V T

8. A c as c ad e am p l i fi e r u s e s ( a) D i r e c t c o u p l e d C E - C C c ir c u i t s ( b ) T wo s t a ge s o f C E a m p l i fi e r

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 6: Lica Course File

( c ) D i r e c t c o u p l e d C E - C B c i r c u i ts ( d ) D i r e c t c o u p l e d C C - C B c i rc u i ts

9 . M o s t o f t h e l i n e ar I C s ar e b as e d o n t h e two t ra n s i s t o r d i ff e r e nt i al am p l i fi e r b e c a u s e of i t s ( a) H i g h i n p u t r e s i s ta n c e ( b ) I n p u t vo l ta ge d e p e n d e nt l i n e ar tr a n s f e r ch ar ac te ri s ti c s ( c ) H i g h C M R R ( d ) H i g h vol t a g e ga i n

10. T h e d i ff e r e nt i al ga i n o f t h e an Op am p s h ou l d b e ( a) S m a l l ( b ) Ve ry l ar g e ( c ) Ve ry s m al l ( d ) U n i ty

11. W h i ch o f th e f o l l ow i n g s p e c i fi c a ti o n s i s n o t s p e c i fi e d f or a d i ff e re n c e a m p l i fi e r ? ( a) I n p u t - o ff s e t vo l t ag e ( b ) I n p u t b i a s - c u r re nt o ff s e t ( c ) C o m m on - m o d e c u r r e nt r an g e ( d ) O u tp u t - o ff s e t vo l t ag e

12 . T h e l e ve l t r an s l a t or s t ag e i s u s e d f o r ( a) To s h i f t t h e o u t p u t d c l e ve l d ow n t o z e r o ( b ) To s h i f t t h e o u t p u t d c l e ve l d ow n t o V vol t s ( c ) To s h i f t t h e o u t p u t d c l e ve l u p t o z e r o vol t s ( d ) To s h i f t t h e o u t p u t d c l e ve l u p t o V vo l ts

13 . I n a d i ff e r e nti a l a m p l i fi e r t h e d i ff e r e nt i al i np u t re s i s t an c e R i d e q u a l s ( a) h i e / 2 ( b ) 4 h i e ( c ) h i e ( d ) 2 h i e

14 . T h e d i ff e r e nt i al am p l i fi e r g a i n a n d t h e i n p u t r e s i s t an c e o f a d u a l i n p u t b a l an c e d o u tp u t d i ff e r e nti a l i s g i ve n by ( a) R *C r e , 2 β a c r e ( b ) R c / r e , 2 β a c r e ( c ) R C / r e , 2 β a c / r e ( d ) R C / r e , β a c r e

15 . W h i ch ch a r ac t e r i s t i c i s n o t b e l on g i n g to D C ch ar a c t e r i s t i c s ? ( a) S l e w r at e ( b ) I n p u t o ff s e t c u r re nt ( c ) T h e r m a l d r i f t

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 7: Lica Course File

( d ) I n p u t b i a s c u r re nt

16 . T h e ab i l i ty o f d i ff e re nt i a l a m p l i fi e r t o re j e c t a c om m o n m o d e s i gn a l i s c a l l e d ( a) D i ff e r e nt i al m o d e r e j e c ti o n r a ti o ( b ) C o m m on m o d e r e j e c ti o n r a ti o ( c ) S u p p l y vol t a ge m o d e r e j e c ti o n r a t i o d ) Powe r s u p p l y m o d e r e j e c t i on ra t i o

17 . I n a d i ff e r e nti a l am p l i fi e r , u s e o f a con s t a nt c u r r e nt C E am p l i fi e r s t ag e i n p l ac e of e m i t t e r c i r c u i t r e s i s t or R e r e s u l t s i n ve r y h i g h va l u e of ( a) S l e w r at e ( b ) C M R R ( c ) P S R R ( d ) U n i ty ga i n c r o s s ove r f r e q u e n c y

18. T h e t ai l o f a d i ff e r e nt i al a m p l i fi e r a c t s l i ke a ( a) B a t t e r y ( b ) Tra n s i s t o r ( c ) C u r r e nt s o u rc e ( d ) D i o d e

1 9. I n a d i ff e r e nti a l a m p l i fi e r C M RR i s n or m a l l y ( a) 0 ( b ) 1 ( c ) Ve ry l ar g e ( d ) S m a l l

20 . Top o l o gi c a l l y, a d i ff e r e n c e s am p l i fi e r c or r e s p on d s to a T T L ( a) N A N D g at e ( b ) N O R ga t e ( c ) O R ga t e ( d ) A N D g at e

21. W h i ch o f th e f o l l ow i n g s t a t e m e nts i s n ot t r u e f or b al a n c e c ont r ol i n d i ff e r e n c e a m pl i fi e r ( a) I t r e d u c e s o ff s e t d u e t o V b e m i s m a t ch i n g o f th e t r an s i s to r ( b ) I t r e d u c e s o ff s e t d u e t o β m i s m a t ch i n g o f th e t r an s i s to r ( c ) I t i m p r ove s C M R R o f t h e a m p l i fi e r ( d ) I t c an on l y b e u s e d i n d i s c re te a mp l i fi e r

BIBILIOGRAPHY

TEXT BOOKS :1. Linear Integrated Circuits – D. Roy Chowdhury, New Age International (p) Ltd, 2nd Edition,2003.2.Linear Integrated Circuit Applications – S.Salivahanan,TMH Edition

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 8: Lica Course File

REFERENCES :

1. Design with Operational Amplifiers & Analog Integrated Circuits - Sergio Franco, McGraw Hill, 1988.2. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.3. Micro Electronics – Millman, McGraw Hill,1988.4. Operational Amplifiers – C.G. Clayton, Butterworth & Company Publ. Ltd./ Elsevier, 1971.

UNIT II

Syllabus: Characteristics of OP-Amps,Integrated circuits-Types,Classification, Packages Types and temperature ranges, Power supplies, Op-amp Block Diagram,Ideal and practical Op-Amp specifications,DC and AC characteristics,741 op-amp & its features,FET input Op-Amps,Op-Amp parameters & Measurement, Input & Output Offset voltages & currents,slew rates,CMRR,PSRR,drift,Frequency Compensation technique.

Schedule:

S.NO

NAME OF THE TOPICPERIODSREQUIRED

1 Characteristics of OP-Amps 12 Integrated circuits-Types 13 Integrated circuits Classification 14 Integrated circuits Packages Types 15 Integrated circuits temperature ranges, Power supplies 26 Op-amp Block Diagram 17 Ideal and practical Op-Amp specifications 18 practical Op-Amp DC characteristics 29 practical Op-Amp AC characteristics 210 741 op-amp & its features 111 FET input Op-Amps 112 Op-Amps,Op-Amp parameters & Measurement 213 Input & Output Offset voltages & currents 114 slew rates,CMRR,PSRR,drift 115 Frequency Compensation technique 2

Total no of periods required 20Objective:

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 9: Lica Course File

By this Unit students should gain knowledge on The basic concepts of IC,Linear and digital ICs. Two types of ICs classified according to their mode of operation and

significance of each. ICs classification based no of components integrated on the same

chip,3 basic types of linear IC packages and significance of each. 3 basic temperature grades for ICs and different circuit arrangements

for obtaining +ve and -ve supply voltages for an OP-Amp from a single supply.

Ideal and practical OP-Amp specifications. 741 op-amp all IC packages,and their pin diagrams Different versions and important features of 741 IC. Brief explanation of DC Characteristics - I/P bias and offset currents,I/p

& o/P offset voltages,thermal drift. Brief explanation of AC Characteristics - Frequency response and slew

rate and their affct on OP-Amp. External and Internal frequency compensation techniques necessity for

practical OP - Amp. FET i/p OP - Amp,OP - Amp parameters measurement.

Assignment Questions

1. (a) Broadly classify the integrated circuits for a wide range of

applications.

(b) Explain the operation of op - amp using block diagram.

(c) What is a practical op - amp? Draw its equivalent circuit?

2. (a) What is an op-amp? Why it is called so?

(b) Explain the parameters that should be considered for ac and dc applications of an op-amp.

(c) Draw and explain the three open loop op - amp configurations with neat circuit diagram.

3. (a) For the 741 IC op - amp, the supply voltage rejection ratio (SVRR) is 150µV/V.Calculate the change in this op - amp’s input offset voltage Vi o if the supply voltages are varied from ±10V to ±12V.

(b) List and explain the characteristics of an ideal op - amp. (c) Draw the pin diagram of µA741 op - amp.

4. (a) What are the three operating temperature ranges of the IC? (b) List out the AC characteristics of an op - amp and discuss about them.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 10: Lica Course File

(c) Draw an equivalent circuit of op - amp.

5. (a) For an op-amp, PSRR=70dB(min), CMRR=105, differential mode gain, Ad =105 .The output voltage changes by 20v in 4 microseconds. Calculate

i. numerical value of PSRR

ii. Common mode gain iii. Slew rate of the op - amp.

(b) What are the three factors that effect the electrical parameters of an op -amp

(c) Compare and contrast an ideal op - amp and practical op - amp.

6. (a) Compute the maximum possible total output voltages in the amplifier circuits shown in figure 2. The op - amp is the MC1536 with the following specifica- tions:Vi o = 7.5mV maximum; Ii o = 50nA maximum; IB = 250 nA maximum at TA= 250C.(b) Explain the difference between the slew rate and the transient response.

(c) Briefly explain the need for compensating networks in op - amps

Figure 2

7. (a) Explain the effect of slew rate on both open loop and closed loop op - amp circuits.

(b) What is the major difference between the power supply requirements of linear and digital Ics.

(c) Draw and explain an ideal voltage transfer curve for an OP - Amp.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 11: Lica Course File

8. (a) Compare and contrast an ideal operational amplifier and practical operational amplifier.

(b) Give the design procedure of a compensating network for an op - amp that uses ± 10 V supply voltages. Assume necessary data.

9. (a) Explain how the input offset voltage compensated for?

(b) How fast can the output of an op - amp change by 10V, if its slew rate is 1V/µs.

(c) Define thermal drift & slew rate.

10. (a) Discuss the Pole - Zero and Dominant pole compensation techniques for an op - amp.

(b) An op - amp has a slew rate of 1.5V/µs. What is the maximum frequency of an output sinusoid of peak value 10 V at which the distortion sets in due to the slew rate limitation?

11. (a) Calculate the effect of variation in power supply voltages on the output offset voltage for an op - amp circuit.

(b) Why frequency compensation is required for an op - amp and explain frequency compensation technique using suitable diagrams.

12. (a) Explain the differences between ac and dc amplifiers.

(b) What are the differences between the inverting and non-inverting terminals? What do you mean by the term “virtual ground”?

13.(a) In the circuit of figure 2b, R1=100ohms, Rf =4.7kΩ , CMRR=90dB. If the amplitude of the induced 60 Hz noise at the output is 5mv (rms), calculate the amplitude of the common ? mode input voltage Vc m .

(b) With neat block diagram explain the function of various building blocks of an op - amp.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 12: Lica Course File

Figure 2b

Quiz Questions

1 T h e e r r or vol t a ge o f a n i d e a l O p a m p i s ( a) ∞ ( b ) Ve ry l ar g e ( c ) 0 ( d ) Ve ry s m al l

2 . O n e o f t h e Op am p i s N o r to n o r c u r r e nt d i ff e r e n c i n g O p a m p ( a) µ A 7 4 7 ( b ) L M 3 1 8 ( c ) L M 3 9 00 ( d ) µ A 7 4 1

3 . T h e ou t p u t r e s i s ta n c e of a 7 41 C Op am p i s a b o ut ( a) 2 00 Ω ( b ) 7 5 Ω ( c ) 1 0 Ω ( d ) 4 0 Ω

4. O p e n l o o p b a n d w i d t h o f a n O p a m p i s ( a) 5 K H z ( b ) 5 M H z ( c ) 5 G H z ( d ) 5 H z

5 . C u r r e nt c a n n ot fl ow t o g ro u n d t h r o u gh ( a) A n AC gr o u n d ( b ) A v i r t u al gr o u n d ( c ) A n o r d i n ar y g r ou n d

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 13: Lica Course File

( d ) A m e ch an i c a l g r ou n d

6. Ty p i c a l o ut p u t o ff s e t vo l t ag e a n d i n p u t off s e t c u r r e nt of a n O p am p ar e ( a) 1 m V , 1 0 n A ( b ) 1 m V , 1 0 m A ( c ) 1 0 m V , 1 0 mA ( d ) 1 m V , 1 0 n A

7. S l e w r at e o f an i d e al Op am p i s ( a) I n fi n i ty ( b ) U n i ty ( c ) I n d e fi n i t e ( d ) Z e ro

8. T h e c o m mo n m o d e i n p u t i s th e va l u e of th e two i n p u ts ( a) R M S ( b ) A ve r ag e ( c ) Fo r m ( d ) Pe a k

9. I n Op am p c om p e n s at i o n t e ch n i q u e s ar e u s e d t o ( a) To ob t a i n w i d e r f re qu e nc y r an g e o f op e r a t i on an d avoi d i n s ta b i l i ty ( b ) A ch i e ve h i g h e r g ai n at DC ( c ) O b ta i n w i d e r f r e q u e n c y r a n ge of o p e r at i o n ( d ) A voi d i n s t ab i l i ty

10 . A n O p e r a t i on a l a m p l i fi e r i s a ( a) H i g h g ai n C E a m p l i fi e r ( b ) H i g h g ai n d ir e c t c o u p l e d a m p l i fi e r ( c ) C a s c a d e d C E a m p l i fi e r ( d ) H i g h g ai n C B a m p l i fi e r

11 . A ty p i c a l m e d i u m g a i n I C Op am p ( a) H a s o p e n l o o p g ai n of a b ou t 25 00 ( b ) I s s u i t ab l e f o r u s e on l y a t l ow f r e q u e n c i e s ( c ) H a s o n l y o n e i n p u t t e r m i n a l ( d ) H a s o p e n l o o p g ai n of a b ou t 10 0

12 . T h e ou t p u t s t a ge o f a n O p a m p c i r c u i t p r ov i d e s ( a) L ow ou t p u t i m p e d an c e ( b ) H i g h g ai n ( c ) L ow c u r r e nt ga i n ( d ) H i g h o u tp u t i m p e d an c e

13 . I n op e n l o op c on fi g u r at i o n , t h e o p - a m p wo r ks i n

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 14: Lica Course File

( a) R e ve rs e r e g i on ( b ) S a tu r a t i on r e g i o n( c ) C u t o ff re g i o n ( d ) L i n e a r r e gi o n

14 . T h e al g e b r ai c d i ff e r e n c e b e twe e n t h e c u r r e nt s i nt o t h e i nve rt i n g a n d n o n i nve rt i n g t e r m i n al s i s kn ow n a s ( a) I n p u t b i a s c u r re nt ( b ) I n p u t o ff s e t vo l t ag e ( c ) Tot a l o ff s e t vol t a ge ( d ) I n p u t o ff s e t c u r re nt

1 5. P S R R of a g o o d q u a l i ty Op am p i s o f t h e or d e r o f ( a) 6 0 d B ( b ) 2 00 d B ( c ) 2 0 d B ( d ) 1 00 d B 16. .1 A n O p a m p s l e w r at e l i m i t s i t s ou t p u t s w i n g a t h i g h f r e q u e n c y . 2T he b o d e p l o t f or s t an d a r d O p a m p s h ow s t h e g ai n d e c r e a s i n g a t 2 0 d B ]p e r d e c ad e b e yo n d t h e b r e ak f r e q u e n c y ( a) 1 Fa l s e , 2 Fa l s e ( b ) 1 Tru e , 2 Tr u e ( c ) 1 Tru e , 2 Fa l s e ( d ) 1 Fa l s e , 2 Tr u e

1 7. A n e xa m p l e of i nt e r n a l l y c o m p e n s a t e d O p a m p i s ( a) 7 09 ( b ) L M 1 2 0 ( c ) 7 41 ( d ) L M 1 1 0

18 . T h e l o op g a i n β A ( a) I s u s u a l l y < < 1 ( b ) I s u s u a l l y > > 1 ( c ) M ay n ot e q ua l t o 1 ( d ) b e twe e n 0 an d 1

19 . T h e i n p u t b i as c u r r e nt o f 7 41 C Op am p i s a b o u t ( a) 5 0 µ A ( b ) 5 00 n A ( c ) 5 0 n A ( d ) 5 µ A

20. Fo r a n i d e a l o p - a m p t h e b an d w i d th i s ( a) F i n i t e val u e ( b ) I n fi n i ty

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 15: Lica Course File

( c ) U n i ty ( d ) Z e ro

21. T h e f o l l ow i n g p r op e r ty o f O p a m p p e r mi t s vo l t ag e ga i n d ow n t o z e r o f r e q u e n c y ( a) H i g h o p e n l o o p g ai n ( b ) Fe e d b a ck ( c ) D i r e c t c o u p l i n g ( d ) C a p ac i ta n c e c ou p l i n g

BIBILIOGRAPHY

TEXT BOOKS :1. Linear Integrated Circuits – D. Roy Chowdhury, New Age International (p) Ltd, 2nd Edition,2003.2. Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1987.3.Linear Integrated Circuit Applications – S.Salivahanan,TMH Edition

REFERENCES :

1. Design with Operational Amplifiers & Analog Integrated Circuits - Sergio Franco, McGraw Hill, 1988.2. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.3. Micro Electronics – Millman, McGraw Hill,1988.4. Operational Amplifiers – C.G. Clayton, Butterworth & Company Publ. Ltd./ Elsevier, 1971.

UNIT III LINEAR APPLICATIONS OF OP - AMPS

Syllabus: Inverting and Non - inverting amplifier,Integrator and differentiator,Difference amplifier,Instrumentation amplifier,AC amplifier,V to I,I to V converters,Buffers.Schedule:

S.NO

NAME OF THE TOPICPERIODSREQUIRED

1 Inverting and Non - inverting amplifier 22 Integrator and differentiator 13 Difference amplifier 14 Instrumentation amplifier 1

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 16: Lica Course File

5 AC amplifier 16 ,V to I,I to V converters 27 Buffers 2

Total no of periods required 10Objective:

By this Unit students should gain knowledge on Different Non-Linear applications of OP-Amps. Analyse or design a Inverting and Non - inverting amplifier and

determination of their gain equations. Analyse or design a summing amplifier using the noninverting

configuration,integrator and differentiator and their mathematical expressions.

Analyse the operation of AC amplifier. Significance of V to I & I to V converters and buffers.

Assignment Questions

1. (a) Find V0 for the circuit shown in figure 1

(b) Find R1 and Rf in the practical integrator (lossy integrator), so that the peak gain is 20 dB and the gain is 3 dB down from its peak when ω = 10,000rad/sec.

. Use a capacitance of 0.01µF

figure 1

2. (a) Draw the circuit diagram of a two input non-inverting type summing amplifier and derive the expression for the output voltage.

(b) Briefly explain why negative feedback is desirable in amplifier

applications.

(c) How does negative feedback affect the performance of an

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 17: Lica Course File

inverting amplifier?

3. (a) Design a current to voltage converter using OP-AMP and explain how it can be used to measure the output of photocell.

(b) Discuss the differences between differential amplifiers used in the first two stages of OP- AMP.

4. (a) In an integrator circuit, Ri = 10Kohms, CF = 1 second, and the input is a step input Vin = 2V for 0 ≤ t ≤4. Determine the output voltage and sketch it.

(b) Draw the frequency response curve of a differentiator. How is it modified when a small resistor is connected in series with the capacitor?

5. (a) Explain how an op - amp can be used as summing amplifier? Draw the diagram of a four input summer and obtain the expression for the output.

(b) The circuit of a inverting summing amplifier is designed with R1 = R’ =1Kohm, and R2 = 2R1, R3 = 2R2 ,?Rn = 2Rn-1 , the input voltages v1,v2,?vn can be 0 to 10V.

i. For n = 4, what is the smallest output voltage if at least one input is nonzero?

ii. For n = 4, what is the maximum output voltage?6.(a) Find V0 for the circuit shown in figure 3

(b) Find R1 and Rf in the practical integrator (lossy integrator), so that the peak gain is 20 dB and the gain is 3 dB down from its peak when ω = 10,000 rad/sec. Use a capacitance of 0.01µF

Figure 3

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 18: Lica Course File

7.(a) What are the differences between the inverting and non-inverting terminals? What do you mean by the term “virtual ground”.

(b) Briefly explain about the buffers used in amplifier circuits.

8. (a) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to about 1KHz. If a sine wave of 1V peak at 1000 Hz is applied to this differentiator draw the output waveforms.

(b) Why active differentiator circuits are not used in analog computer to solve differential equations.

9. (a) What are the advantages of instrumentation amplifier? Derive an expression for the transfer function of an instrumentation amplifier.

(b) Explain the use of reference terminal provided in an integrated circuit instru- mentation amplifier.10.How the operational amplifier can be used as a differentiator and integrator.

11. (a) Calculate the exact closed loop gain inverting amplifier shown in figure3 if AOL = 2,00,000, Ri = 2MΩ and R0 = 75Ω.(b) Explain about any two linear and nonlinear applications of op - amp.

Figure 3

Quiz Questions

1. I nve r ti n g a m p l i fi e r i s al s o kn ow n a s ( a) C u r r e nt s e r i e s F B am p l i fi e r ( b ) Vo l t ag e s hu nt F B a m p l i fi e r ( c ) Vo l t ag e s e r i e s F B a m p l i fi e r

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 19: Lica Course File

( d ) C u r r e nt s hu nt F B am p l i fi e r

2 Fo r a s q u a r e wave i n p u t, t h e o u tp u t of a d i ff e r e nt i at o r w i l l b e . ( a) S i nu s o i d al wave ( b ) Po s i t i ve & n e ga t i ve s p i ke s ( c ) S q u ar e wave ( d ) Tri a n g l e wave

3. I n an a l og c om p u t at i o n we u s e ( a) I nt e g ra t or s an d d i ff e r e nt i at o rs i n p a i r ( b ) I nt e g ra t or al o n e b u t n o d i ff e re nt i a t or s ( c ) B o t h i nt e g ra t or s an d d i ff e r e nti a t or s ( d ) D i ff e r e nt i at o rs a l on e b u t n o i nte gr a to r s

4. U n d e r i d e al c on d i t i o n s , f o r N o n i nve rt i n g a m p l i fi e r ( a) R 0 = 1 ( b ) R 0 = ∞ ( c ) R i = 0 ( d ) R 0 = 0

5. I n a n O p a m p i nve r t i n g am p l i fi e r c on fi g u r at i o n w i t h a n i n p u t r e s i s t a n c e ( R 1 ) a n d a f e e d b a ck r e s i s t a n c e ( R 2 ) , i t i s n o rm a l p r a c t i c e t o c o n n e c t a re s i s t an c e ( R) e q u a l t o p a ra l l e l c omb i n a ti o n o f (R 1 ) & ( R 2 ) f r o m t h e no n i nve r t i n g i n p u t t o gr o u n d . T h i s i s d o n e t o ( a) C o m p e n s a t e f o r t h e e ff e c t s of i n p u t o ff s e t c u rr e nt ( b ) I m p r ove u p on C M R R ra t i n g of O p am p ( c ) C o m p e n s a t e f o r t h e e ff e c t s of i n p u t b i a s c u r r e nt s ( d ) C o m p e n s a t e f o r t h e e ff e c t s of i n p u t o ff s e t vo l ta ge

6. T h e i n p u t t o an ac t i ve i nt e g ra t or i s 0 V . D u e to t h e off s e t vol t a ge , t he o u tp u t of t h e i nt e gr a t or w i l l b e ( a) S q u ar e wave ( b ) R am p vo l t ag e ( c ) I r r e g u l ar ( d ) S i nu s o i d al

7. O n e o f t h e f ol l ow i n g s t a te m e nt s i n r e f e re n c e t o vol t a ge f o l l owe r c o n fi g u ra t i on u s i n g Op am p i s i n c or r e c t ( a) T h e vo l t ag e g a i n i s u n i ty ( b ) I t s i n p u t i m p e d a n c e i s ve r y h i gh al m o s t a p p r oa ch i n g i ts o p e n l o o p i n p u t i m p e d an c e m ag n i t u d e ( c ) T h e i n p u t i s a p p l i e d at t h e n on i nve r t i n g i n p u t ( d ) I t h a s e x tr e m e l y h i gh i n p u t i m p e d a n c e , mu ch hi g h e r t h a n e ve n i t s op e n l o o p i n p u t i m p e d a n c e

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 20: Lica Course File

8. T h e C M R R i s a p r o b l e m f o r ( a) B o t h i nve r ti n g & n o n i nve rt i n g c o n fi g u ra t i on ( b ) H a s n o t h i n g to d o w i t h th e typ e o f f e e d b a ck ( c ) T h e n on i nve r t i n g am p l i fi e r on l y ( d ) T h e i nve r t i n g am p l i fi e r on l y

9. I n an i nve r t i n g am p l i fi e r , R 1 = 5 K ; R f = 5 0K & V i = 2 V , c al c u l a t e t h e V 0 . ( a) - 25 V ( b ) - 20 V ( c ) - 15 V ( d ) - 10 V

1 0. T h e nu mb e r of o p - a m p s r e q u i r e d t o p e r f o r m a d d i ti o n & s u b tr a c t i on s i mu l ta n e o u s l y ( a) 3 ( b ) 4 ( c ) 1 ( d ) 2

1 1. W h a t i s t h e b as i c e l e m e nt i n i n s t r u m e nta t i on am p l i fi e r ? ( a) O p - a m p ( b ) Tra n s i s t o r ( c ) Tra n s d u c e r ( d ) F E T

1 2. I n a n i nve rt i n g O p am p Z i = 22 K Ω , Z f = 68 K Ω an d V i = +0 . 5 V P - P. T h e ou t p u t vo l t ag e w i l l b e a p p rox i m at e l y ( a) - 1 . 5 V P - P ( b ) 0 ( c ) + 0. 5 V P - P ( d ) + 15 V P - P

1 3. T h e Op am p d i ff e r e nt i at or ( a) I s i n h e r e nt l y u n s t ab l e an d c a n b e s t ab i l i z e d by c o n n e c t i n g a r e s i s t o r i n s e ri e s w i t h t h e c a p ac i t o r ( b ) I s i n h e r e nt l y u n s t ab l e ( c ) C a n b e s t a bi l i z e d by c o n n e c t i n g a r e s i s t o r i n s e r i e s w i th th e c a p ac i to r ( d ) I s i n h e r e nt l y s t ab l e

1 4. X i s t h e ga i n b a n d w i d t h p ro d u c t o f t h e i nve r ti n g am p l i fi e r a n d z i s t h e g ai n b an d w i d th p r o d u c t o f t h e n on i nve rt i n g a m p l i fi e r . T h e n ( a) X Z = R 2 R 1 ( b ) X = Z ( c ) X Z = R 1 R 2 ( d ) X = Z R 2 R 1 + R 2

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 21: Lica Course File

1 5. A n o n i nve rt i n g Op am p h a s Z i = 10 K Ω , f e e d b ack r e s i s to r R f = 12 0 K Ω a n d V i = +0 . 6 V P - P. T h e ou t p u t vol t ag e ( a) + 7. 8 V P - P ( b ) + 7. 2 V P - P ( c ) + 8. 8 V P - P ( d ) - 7 . 8 V P - P

1 6. T h e i nte gr at o r w i l l h ave a D C g a i n ( a) E q u a l t o z e r o ( b ) - 1 ω R C ( c ) E q u a l t o op e n l o op ga i n ( d ) E q u a l t o i n fi n i ty

1 7. I n c as e o f n o n i nve r ti n g s u m m i n g am p l i fi e r t o g e t V 0 = V 1 + V 2 + V 3 t h e c on d i t i on i s ( a) A l l a r e d i ff e r e nt ( b ) A l l r e s i s t an c e s mu s t b e h a l f t h e R f ( c ) A l l r e s i s t an c e s a r e s a m e ( d ) I n p u t r e s i s t an c e s a r e s a m e

18. A n i d e a l O p a m p i s u s e d t o m a ke a n i nve r t i n g am p l i fi e r . T h e two i n p u t te rm i n a l s o f t h e Op a m p a re at t h e s am e p o t e nti a l b e c au s e ( a) T h e op e n l o op ga i n o f th e op - am p i s i n fi n i ty ( b ) T h e i n p u t i m p e d a n c e of th e o p - a m p i s i n fin i ty ( c ) C M R R i s i n fi n i ty, op e n l o op ga i n o f t h e op - am p i s i n fi n i ty ( d ) C M R R i s i n fi n i ty

19. T h e i n p u t s i g n al w i l l b e d i ff e r e nt i at e d p r op e r l y i f t h e t i m e p e r i o d T of t h e i n p u t s i g n a l i s ( a) T ≥ R F C 1 ( b ) T ≤ R F C 1 ( c ) T ≥ R F C F ( d ) T ≥ R F C F

20. I n c as e o f i nve r t i ng s u m m i n g am p l i fi e r i f R 1 = R 2 = R 3 = 3 R f t h e n V 0 i s ( a) V 0 = -[ V 1 + V 2 + V 3 ] / 4 ( b ) V 0 = -[ V 1 + V 2 + V 3 ] / 2 ( c ) V 0 = -[ V 1 + V 2 + V 3 ] / 3 ( d ) V 0 = -[ V 1 + V 2 + V 3 ]

BIBILIOGRAPHY

TEXT BOOKS :1. Linear Integrated Circuits – D. Roy Chowdhury, New Age International (p) Ltd, 2nd Edition,2003.2. Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1987.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 22: Lica Course File

3.Linear Integrated Circuit Applications – S.Salivahanan,TMH Edition

REFERENCES :

1. Design with Operational Amplifiers & Analog Integrated Circuits - Sergio Franco, McGraw Hill, 1988.2. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.3. Micro Electronics – Millman, McGraw Hill,1988.4. Operational Amplifiers – C.G. Clayton, Butterworth & Company Publ. Ltd./ Elsevier, 1971.

UNIT IV NON - LINEAR APPLICATIONS OF OP - AMPS

Syllabus: Non - Linear function generation,Comparator,Multivibrators,Triangular and Square Wave generators,Log and Anti - log amplifiers,Presicion rectifiersSchedule:

S.NO

NAME OF THE TOPICPERIODSREQUIRED

1 Non - Linear function generation 12 Comparator 13 Multivibrators 24 Triangular and Square Wave generators 25 Log amplifiers 16 Anti - log amplifiers 17 Presicion rectifiers 2

Total no of periods required 10Objective:

By this Unit students should gain knowledge on Different Non-Linear applications of OP-Amps. Analyse or design a square wave and triangular wave generators. Analyse or design a different multivibrators,comparator,Log and anti-

log amplifiers. Analyse and discuss the significance of precison rectifiers.

Assignment Questions

1. (a) Distinguish between astable, bistable and monostable multivibrators.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 23: Lica Course File

(b) Determine VTH and VTL (TL: Lower threshold, TH: upper threshold) and hysteresis of the inverting comparator shown in figure 1

Figure 12. (a) Design a logarithmic amplifier for positive input voltages in the range 5mV to 50V.

(b) With suitable circuit diagram explain the operation of a triangular wave gen- erator using a comparator and a integrator

3. (a) Design an RC phase shift oscillator for a frequency of 500Hz.

(b) Explain the operation of an op - amp based monostable multivibrator

4. (a) Design a monostable multivibrator with trigger pulse shape which will drive an LED, ‘ON’ for 0.5 seconds each time it is pulsed.

(b) Derive the frequency of oscillation of a RC phase shift oscillator and explain the operation of the circuit.

5. Design and explain a saw tooth waveform generator using operational amplifier and plot the waveforms for the given specifications frequency = 5kHz, Vsat = ±12Volts.

6. (a) Explain, How to obtain triangular wave using a square wave generator.

(b) With the help of a neat circuit diagram explain the working of a logarithmic amplifier.

7.(a) List the conditions for oscillation in all the three types of oscillators, namely, RC phase shift, Wien - bridge and quadrature oscillators

(b) Derive the expression of the output voltage of an antilog amplifier using op - amp.

8. It is possible to obtain any shaped waveform as output for a basic oscillator.

9. (a) Analyze the behavior of an analog phased detector through necessary circuit diagram, waveforms, mathematical expressions and characteristic curves.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 24: Lica Course File

(b) Design an op - amp based relaxation oscillator and derive the frequency of oscillation.

Quiz Questions1 . A s t a b l e mu l t i v i b ra t o r h a s ( a) O n e s t a b l e o n e q u a s i ( b ) A s ta b l e s t at e( c ) A n o s c i l l a t or ( d ) T wo q u as i s t a te

2. T h e c u r r e nt f ol l owe r ( a) R an g e i s l i m i t e d by t h e b i as c u r re nt as t h e l ow e n d ( b ) I s an i d e a l a m me te r c i r c u i t ( c ) I t i s a n i d e a l a m m e t e r , R an g e i s l i m i t e d by t h e b i as c u r re nt an d ou t p ut c u r r e nt ( d ) R an g e i s l i m i t e d by t h e ou t p u t c u r r e nt c a p ab i l i ty a t h i gh e n d

3. I n a M on o s t a b l e mu l t i vi b r a t or , i f V s a t > > V D a n d R 1 = R 2 c a l c u l at e t h e t i m e e r i o d ( R= 2 k & C = . 00 2 F ) ( a) 2 . 76 ( b ) 2 . 67 0 ( c ) 0 . 27 6 ( d ) 2 2. 6 7

4. S ch m i t t r i g ge r i s b a s i c a l l y ( a) A n o s c i l l a t or ( b ) A n a s t a b l e mu l t i vi b r a t or ( c ) A b i s ta b l e mu l t i v i b r at o r ( d ) A m o n o s t ab l e mu l t i v i b r at o r

6 A p e ak d e t e c t or i s a n e l e c tr o n i c c i r c u i t ( a) T h a t t r ack s t h e i n p u t s i g n al f ai t h f u l l y u nt i l i t d e t e c t s a p e ak ( b ) I t h o l d s th e d e t e c t e d p e a k va l u e u nt i l i t d e te c ts a n p e a k o f l a rg e r val u e ( c ) T h a t t r ack s t h e i n p u t s i g n al f ai t h f u l l y ( d ) I t t r a cks t h e i n p u t s i gn a l f a i t h f u l l y u nt i l i t d e t e c ts a p e a k a n d h o l d s u nt i l n e x t l a r ge r p e ak va l u e

7 T h e w i d t h o f t h e ou t p u t p u l s e of a m o n os t a b l e mu l t i v i b ra t or is g i ve n by ( a) RC ( b ) 3 RC ( c ) √ 2 RC ( d ) 0 . 69 RC

8. I n a A s t ab l e M u l t i v i b ra t or i f R 1 = R 2 t h e n t h e to t al t i m e p e ri o d T = ( a) 3 C

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 25: Lica Course File

( b ) 3 RC ( c ) 2 RC( d ) 2 R

9 C a l c u l a te t h e H y s t e r i s i s vo l t ag e f or a Sch m i t t Tr i gg e r . R 1 = 2 k, R 2 = 1 k an d V s a t = 15 v ( a) 1 3 ( b ) 1 4 ( c ) 1 2( d ) 1 0

10. I n an ac t i ve p e ak d e te c t or , t h e d i s ch ar g i n g t i m e c o n s t ant i s ( a) = t i m e p e ri o d ( b ) < < t i m e p e r i o d ( c ) N o r e l a ti o n ( d ) > > t i m e p e ri o d of t h e i n p u t

1 1. I n c as e o f a s t a b l e c i r c u i t , i f R 1 = 1 . 1 6 R 2 t h e e xp r e s s i on f or ti m e p e r i o d w i l l b e ( a) T = RC ( b ) T = 2RC ( c ) T = 3RC ( d ) T = 4RC

12. I n c as e o f l o g a mp l i fi e r c i r c u i t t h e t e m p e r at u r e c o m p e n s at i o n i s p rov id e d by u s i n g e l e m e nt . ( a) T h e r m i s t o r ( b ) Tra n s i s t o r ( c ) S e n s i s to r ( d ) D i o d e

13. I n a mu l t i v i b r at o r, ( a) Fe e d b ack b e twe e n two s t ag e s i s 0 % ( b ) W h e n on e t ra n s i s t o r i s o n , t h e ot h e r i s o ff ( c ) O u tp u t is avai l a b l e d i s c o nt i nu ou s l y ( d ) Fe e d b ack e m p l oye d i s n e g at i ve

1 4. C i r c u i t u s e d f o r p r o d u c t i on o f d e l ay i s ( a) S ch m i t t t ri g g e r ( b ) A n a s t a b l e mu l t i vi b r a t or ( c ) A m o n o s t ab l e mu l t i v i b r at o r ( d ) A b i s ta b l e mu l t i v i b r at o r

1 5. S ch m i t t t ri g g e r c i r c u i t e mp l oys f e e d b ack m e t h o d . ( a) N e g at i ve ( b ) c l o s e d l o o p

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 26: Lica Course File

( c ) Po s i t i ve ( d ) o p e n l o o p

16. T h e Pe a k D e te c t or c i rc u i t s t or e s t h e f o l l ow i n g va l ue s ( a) h i g h e r n e w va l u e ( b ) L as t two val u e s ( c ) o n l y fi r s t va l u e ( d ) L as t t h re e val u e s

17. T h e Op am p i n a n ac ti ve h al f wave r e c t i fi e r h as a ga i n o f 2 0 0, 0 00 . T h e c l o s e d l o o p s i n c e vol t a ge i s ( a) 1 4 µ V ( b ) 3 . 5 µ V ( c ) 1 µ V ( d ) 7 µ V

1 8. T h e f r e q u e n c y o f o s c i l l a t i on i n c a s e of an as ta b l e mu l t i v i b r at o r d e p e n d s m ai n l y on ( a) R C va l u e s o f t h e c i r c u i t ( b ) Va l u e of V c c p owe r s u p p l y ( c ) Va l u e of t ra n s i s t o r β ( d ) C o l l e c t o r re s i s t or s

1 9. A c om p a r at o r ( a) C o m p ar e s t h e o n l y D C vo l ta ge l e ve l s of two s i gn a l s ( b ) C o m p ar e s t h e o n l y AC vo l ta g e l e ve l s of two s i gn a l s ( c ) M a ke s u s e o f a n O p a m p w i t h h i g h s le w r a te ( d ) C o m p ar e s t h e vol t a ge l e ve l s of two s i g n a l s

2 0. L og a m p l i fi e r s a r e u s e d i n ( a) A n a l og u e d a t a c om p r e s s i on , c o m p ut a t i on an d tr a n s d u c e r l i n e ar i z a t i on ( b ) E x p o n e nt i al t r a n s d u c e r l i n e ar i z a ti o n ( c ) A n a l og u e c om p u t at i o n ( d ) A n a l og u e d a t a c om p r e s s i on

21. I n a S ch m i tt Tr i gg e r t h e U p p e r T h r e s h ol d Vo l ta g e i s gi ve n by( a) [ R 1 / ( R 1 - R 2 ) ] ( + V s a t ) ( b ) [ R 1 / ( R 1 - R 2 ) ] ( - V s a t ) ( c ) [ R 1 / ( R 1 + R 2 ) ] ( + V s a t ) ( d ) [ R 1 / ( R 1 + R 2 ) ] ( - V s a t )

22. A n O p a m p z e ro c ro s s i n g d e te c t or i s b as i c al l y ( a) A s i n e wave t o r a m p wave c o nve r t e r ( b ) A s i n e wave t o s q ua r e wave c o nve r t e r ( c ) A s i n e wave t o t r i a n gu l a r wave c onve r te r

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 27: Lica Course File

( d ) A s qu a r e wave t o s i n e wave c o nve r t e r BIBILIOGRAPHY

TEXT BOOKS :1. Linear Integrated Circuits – D. Roy Chowdhury, New Age International (p) Ltd, 2nd Edition,2003.2. Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1987.3.Linear Integrated Circuit Applications – S.Salivahanan,TMH Edition

REFERENCES :

1. Design with Operational Amplifiers & Analog Integrated Circuits - Sergio Franco, McGraw Hill, 1988.2. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.3. Micro Electronics – Millman, McGraw Hill,1988.4. Operational Amplifiers – C.G. Clayton, Butterworth & Company Publ. Ltd./ Elsevier, 1971.

UNIT V OSCILLATORS AND WAVEFORM GENERATORS

Syllabus: Introduction,Butter worth filters - 1st order,2nd order LPF,HPF filters.Band pass,Band reject and all pass filters.Applications of VCO(566).Schedule:

S.NO

NAME OF THE TOPICPERIODSREQUIRED

1 Introduction 12 Butter worth filters 1st order LPF 13 Butter worth filters 1st order HPF 14 Butter worth filters 2nd order LPF 25 Butter worth filters 2nd order HPF 16 Bandpass,Band reject filters 27 all pass filters 18 Applications of VCO(566) 1

Total no of periods required 10Objective:

By this Unit students should gain knowledge on

Draw the frequency response of an ideal low-pass,a high-pass,a band-pass,a band-reject,and an all-pass filter.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 28: Lica Course File

Design a 1st order & 2nd order low-pass and a high-pass Butter worth active filters to satisfy the given requirements.

Analyse a band-pass and band-reject filters. Significance of all-pass filters. VCO and their applications.

Assignment Questions

1. (a) Explain the advantages of active filter. Explain different configurations of active filter. Discuss their merits and demerits.

(b) List out the applications of VCO 566

2. (a) Draw a band - pass filter circuit with its frequency response curve. Explain its working.

(b) Design a first order wide band reject filter with a higher cutoff frequency of100Hz and a lower cutoff frequency of 1kHz. Calculate the Q of the filter.

3. (a) Explain the term “Frequency Scaling” with a suitable example.

(b) Design a wide band-pass filter with fH =200Hz , fL =1KHz and a pass-band gain=4. Draw the frequency response and calculate Q factor for the filter.

4. (a) List the conditions for oscillation in all the three types of oscillators, namely, RC phase shift, Wien - bridge and quadrature oscillators

(b) Design an op - amp based relaxation oscillator and derive the frequency of oscillation.

5.(a) Define Bessel, Butterworth and Chebysher filters, and compare their frequency response.

(b) Sketch the circuit diagram of band elimination filter and design a wide band- reject having fH =200Hz and fL =1KHz. Assume necessary data

6. (a) Design a fourth order Butterworth low pass filter whose bandwidth is 1kHz.Select all capacitors equal to 1000nF.

(b) Explain the operation of narrow band pass filter and obtain the frequency response.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 29: Lica Course File

7. (a) Derive the expression for the transfer function of 2nd order Low pass filter.

(b) Give the functional block diagram of VCO NE 566 and explain its workingand necessary expression for free running or center frequenc.y

8. (a) Draw the wide band reject filter circuit and also the frequency response of it. (b) Draw the schematic diagram of an all pass filter and determine the phase shift φ between the input and output at f = 2kHz.

9 Derive the expression for the transfer function of 2nd order High pass filter.

10. (a) Derive an expression for the voltage to frequency conversion factor of 566 VCO.

(b) What is pass band and stop band for a filter? How are filters are classified

11 (a) Draw the schematic diagram of Wein bridge oscillator and derive the expres- sion for frequency of oscillation.

(b) What are the conditions to be satisfied by a circuit to produce oscillations?

12. (a) Explain the operation of Quadrature oscillator with neat diagram.

(b) Design a notch filter for fo = 8kHz and Q = 10. Choose C= 500pF

Quiz Questions

1. In general, the change is ---- for the nth order filter.(a) 40n db/decade(b) 60n db/decade(c) 20n db/decade(d) 80n db/decade

2. Gain magnitude value at f=fH in L.P.F(a) < Af(b) Af(c) 0.707Af(d) 0.077Af

3. The voltage gain magnitude equation of second order LPF |Vo/Vin| is(a) Af/(1 + (f/fh)4)1/2

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 30: Lica Course File

(b) Af/(1 + (fh/f)4)1/2(c) Af/(1 + (f/fh)2)1/2(d) Af/(1 + (f.fh)4)1/

4. Quality of Q ,in the narrow band Band Elimination filter(a) Q = 1/(3(3 − AF ))(b) Q = 1/(2(1 − AF))(c) Q = 1/(2(2 − AF ))(d) Q = 1/(2(AF − 1))

5. The phase angle is given in All pas filter(a) Ø= −2 tan−1(2 π/fRC)(b) Ø = −2 tan−1(RC/2 π f)(c) Ø = −2 tan−1(2 π fRC)(d) Ø = −2 tan−1(2 π f/RC)

6. What is the active filter advantage over the passive filter.(a) increased size and increased weight.(b) reduced size and increased weight.(c) increased size and reduced weight(d) reduced size and reduced weight.

7. Band pass filter condition for stop band is(a) 0< fL < f, fH >f(b) 0<f< fL, f > fH(c) 0< fL < f, f > fH(d) 0< f < fH, fH >f

8.Calculate frequency scaling for the example, convert the 1KHz cut off frequency of the LPF, to a cut off frequency of 1.6KHz.(a) 160(b) 0.625(c) 1.6(d) 62.5

9. The relation of quality factor(a) Q = BW/fc(b) Q = fc.BW(c) Q = fc/BW(d) q = f 2c .BW

5. the frequency of VCO (566) , fo =(a) 2VccRC/(Vcc − Vc)(b) 2Vcc/CR(Vcc − Vc)(c) 2(Vcc − Vc)/RcVcc

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 31: Lica Course File

(d) 2(Vcc − Vc)RC/Vcc

10. Band stop or elimination filter conditions for pass bands(a) 0< fL < f, fH >f(b) 0< fL < f, f > fH

(c) 0< f < fL, fH >f(d) 0< f < fL, f > fH

11. Calculate Rf value in the second order HPF(a) Rf= 0.44R1(b) Rf= 1.586R1

(c) Rf= 0.586R1

(d) Rf= 1.44R1

12. VCO available in IC form is NE/SE 566(a) intel(b) Motorola(c) signetic(d) fair child

13. Following is called as passive filter(a) RC component LPF(b) chebyschev LPF(c) cauver LPF(d) butter worth LPF

14. High pass filter representation with stop band and pass band is(a) 0< fL < f, f > fL

(b) 0 < f < fL, f > fL

(c) 0<f< fL, fL >f(d) 0 < fL < f, f > fL

15. In the second order high pass filter, through which component output is feedback towards the input (in filter circuit)(a) Inductor(b) Rf resistor(c) Capacitor(d) R2 resistor

16. In narrow band pass filter---- no. of feedback paths are(a) 1(b) 3(c) 2(d) 4

17. NE/SE 566 VCO is --- pin IC(a) 4(b) 20

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 32: Lica Course File

(c) 16(d) 8

18. Chebyshev filter is preferred because(a) flat pass band, ripple stop band(b) ripple pass band, flat stop band(c) ripple pass band, ripple stop band(d) flat pass band, flat stop band

19. In the second order high pass filter, through which component output is feedback towards the input (in filter circuit)(a) Capacitor(b) Inductor(c) R2 resistor(d) Rf resistor

20. Design first order wide band pass filter(a) HPF O/P connected to I/P of LPF(b) LPF O/P connected to I/P of HPF(c) HPF O/P connected to I/P of HPF(d) LPF O/P connected to I/P of LPF

21. Voltage to frequency conversion factor in vco(566)(a) kc = Δfo/ΔVc

(b) kc=fo/Δfc

(c) Kc =Δ fc/Δfo

(d) kv =Δ Vc Δ.fo

22. Active filter having one extra filter comparing passive filters is(a) BPF(b) All pass filter(c) LPF(d) HPF

23. Cauver filter is preferred because(a) ripple pass band, ripple stop band(b) flat pass band, ripple stop band(c) flat pass band, flat stop band(d) ripple pass band, flat stop band

24. Calculate Q value of the first order band pass filter when fH= 2000Hz and fL = 400Hz(a) 0.559(b) 894(c) 55.9(d) 5.59

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 33: Lica Course File

BIBILIOGRAPHY

TEXT BOOKS :1. Linear Integrated Circuits – D. Roy Chowdhury, New Age International (p) Ltd, 2nd Edition,2003.2. Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1987.3.Linear Integrated Circuit Applications – S.Salivahanan,TMH Edition

REFERENCES :

1. Design with Operational Amplifiers & Analog Integrated Circuits - Sergio Franco, McGraw Hill, 1988.2. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.3. Micro Electronics – Millman, McGraw Hill,1988.4. Operational Amplifiers – C.G. Clayton, Butterworth & Company Publ. Ltd./ Elsevier, 1971.

UNIT VI TIMERS & PHASE LOCKED LOOPS Syllabus: Introduction to 555 timer,functional diagram,Monostable and Astable operations and applications,Schmitt Trigger.PLL - introduction,block schematic,principles and description of individual blocks,565 PLL, Applications of PLL - frequency multiplication,frequency translation,AM, FM & FSK demodulators.

Schedule:

S.NO

NAME OF THE TOPICPERIODSREQUIRED

1 Introduction to 555 timer,functional diagram 12 555 timer Monostable operation and applications 13 555 timer Astable operation and applications 14 Schmitt Trigger.PLL - introduction 15 PLL block schematic principles and description of

individual blocks2

6 565 PLL 17 Applications of PLL - frequency

multiplication,frequency translation1

8 Applications of PLL - AM, FM & FSK demodulators 2

Total no of periods required 10

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 34: Lica Course File

Objective: By this Unit students should gain knowledge on

Explain the operation of the 555 timer as a monostable and an astable multivibrator.

Astable and monostable multivibrator applications. Explain the operating principles of a PLL and operation of 565 PLL. Analyse or design a frequency multiplier and frequency translation ckt

using a 5675 PLL. Different applications of PLL.

Assignment Questions

1. (a) Explain the significance of each of comparators and operation of 555 timer. (b) Explain the application of 555 timer as linear ramp generator.

2. (a) Explain the operation of a zero crossing detector.

(b) Briefly mention the disadvantages of using zero crossing detector and how it is overcome in Schmitt trigger.

3. (a) Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer.

(b) Design monostable multivibrator using 555 timer to produce a pulse width of100 m sec

4. (a) Explain how phase locked loop is used as a frequency translator and AM demodulator.

5. (a) Give the functional block diagram of NE 565 PLL (DIP) and for the given components values. C1 = 390PF, C2 = 680PF and R1 = 10k, Vcc = ±6V Findi. The free running frequencyii. The lock range and capture rangeWhere C1 is capacitor connected between pin number 9 and -Vcc , C2 is the ca- pacitor connected between +Vcc and ouput pin 7, and R1 is connected between pin number 8 and +Vcc .

(b) Give the functional block diagram of VCO NE 565 and explain its working and necessary expression for free running or center frequency.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 35: Lica Course File

6. (a) Draw the block schematic of a PLL describing the function of each block briefly.

(b) What is the purpose of low pass filter in a phase locked loop? Describe different types of low pass filters used in PLL.

7. (a) Draw the dc voltage versus phase difference characteristic of balanced modu- lator phase detector of a PLL indicating all important regions.

(b) Draw the dc output voltage of VCO versus frequency characteristic of a PLLindicating the capture and lock range clearly.

8. (a) Configure a 555 timer as a Schmitt trigger and explain. (b) Explain frequency translation and FSK demodulation using 565 PLL9.(a) Draw the circuit of PLL as frequency multiplier and explain its working.(b) Design an op - amp based relaxation oscillator.

10. Describe any two applications of 555 timer in(a) Astable multivibrator configuration(b) Monostable multivibrator configuration

11. Draw the functional block diagram of 555 IC timer. Explain the function of each block so also explain hoe it can be used as monostable multivibrator. Draw the circuit and explain its operation with neat relevant waveforms and derive the pulse width.

12 How is an astable multivibrator using 555 timer connected in to a pulse posi-tion modulator

Quiz Questions

1. In 14 pin 555 Ic , pin 5is(a) NC(b) control voltage(c) threshold(d) Vcc

2. If the voltage at the trigger input is greater than 2/3 vcc, the output of the timer is(a) low(b) zero(c) high(d) unpredectable

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 36: Lica Course File

3. The time period of the monostable MV using 555 timer can be varied by the voltage applied to the terminal(a) control(b) discharge(c) ground(d) threshold

4. The lock range of a PLL(a) increase with increase in input voltage(b) decrease with decrease in supply voltage(c) voltage mirror(d) increase with increase in supply voltage

5. Voltage control oscillator of LM 565 PLL center frequency(a) 1000KHz(b) 500KHz(c) 200KHz(d) 100KHz

6. Timing range of 555 timer is(a) above one hour.(b) micro seconds to hours(c) nano to micro seconds(d) micro to milli seconds

7. The output of the timer is ----- as long as the trigger input is low(a) unpredictable(b) high(c) low(d) zero

8. Calculate the frequency of astable MV for symmetrical squarewave f = ---- when RA= RB=7.25kiloohms,c=0.1microfarad(a) 0.5 KHZ(b) 2KHZ(c) 1.5KHZ(d) 1KHZ

9. Calculate free running frequency in PLL R1=10kohms C1=0.01μfarad(a) 5khz(b) 6khz(c) 3khz(d) 10khz

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 37: Lica Course File

10. Calculate capture range frequency of the PLL when f2 =3.07khz ,f1= 2.93k hz(a) fc= 1hz(b) fc= 0hz(c) fc= 72.83hz(d) fc= 6khz

11. In 8 pin 555 Ic,pin 7is(a) control voltage(b) Vcc(c) Threshold(d) discharge

12. Threshold terminal(a) monitors the output voltage(b) monitors the voltage at the discharge terminal(c) monitors the voltage across c(d) has no special role to play

13. Estimate dutycycle of astable MV when T= ton+toff(a) RA*RB*100(b) RB*100/(RA+2RB)(c) RA*100/(RB+2RA)(d) 100/(RA+2RB)

14. Wide supply voltage range ---- of IC 566(a) 10v to 0v(b) 10v to 24 v(c) 5v to 12v(d) 0 to 5v

15. Vcc supply of LM565 PLL(a) +/-2V(b) +/- 3V(c) +/- 10V(d) +/- 6V

16. Ic 555 works with the following voltages(dc)(a) +5v -0-(-5)v(b) -10v(c) 25v(d) +5v to +18v

17. The purpose of the transistor q connected to the discharge terminal is to(a) maintain threshold level(b) discharge the external capacitor

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 38: Lica Course File

(c) maintain trigger level(d) charge the external capacitor

18. Following is astable MV application(a) Linear ramp generator(b) Pulse width modulation(c) FSK generator(d) Missing pulse detector

19. Following block is not present in PLL(a) amplifier(b) high pass filter(c) low pass filter(d) phase detector

20. No of LPF blocks are present in frequency translation using PLL(a) 1(b) 3(c) 2(d) 4

21. The time during which the output of a monostable multi vibrator(555) remains high is given by(a) RC(b) 1.1RC(c) R/C(d) 1.5RC

22. IC ----- PLL(a) 1496(b) 565(c) 1596(d) 566

23. The ---- means shifting the frequency of an oscillator by a small factor(a) frequency synthesizer(b) FM detector(c) frequency multiplier(d) Frequency Translation

24. The out put of timer depends on this property of the external trigger pulse:(a) amplitude.(b) width(c) frequency(d) phase

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 39: Lica Course File

25. In the monostable multivibrator R=100 kilo ohms, T=100msec. calculate the value of c.(a) 0.09 μ farad(b) 2μfarad(c) 1.1 μ farad(d) 0.9μ farad

26. Astable MV (555 timer ) generates a frequency for unsymmetrical squarewave(a) 1.45/(RA+RB)C(b) 1.45/(RA+2RB)C(c) 1.45/2RBC(d) 1.45/2RAC

27. The centre frequency of the PLL is determined by the free-running frequency of the Vco(a) f0=1.2/3RC(b) f0=1.2/2RC(c) f0=1.2/RC(d) f0=1.2/4RC

28. Calculate capture range frequency of the PLL when f2 =3.07khz ,f1= 2.93k hz(a) fc= 0hz(b) fc= 72.83hz(c) fc= 6khz(d) fc= 1hz

BIBILIOGRAPHY

TEXT BOOKS :1. Linear Integrated Circuits – D. Roy Chowdhury, New Age International (p) Ltd, 2nd Edition,2003.2. Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1987.3.Linear Integrated Circuit Applications – S.Salivahanan,TMH Edition

REFERENCES :

1. Design with Operational Amplifiers & Analog Integrated Circuits - Sergio Franco, McGraw Hill, 1988.2. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.3. Micro Electronics – Millman, McGraw Hill,1988.4. Operational Amplifiers – C.G. Clayton, Butterworth & Company Publ. Ltd./ Elsevier, 1971.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 40: Lica Course File

UNIT VIID to A & A to D CONVERTERS Syllabus: Introductio, BASIC DAC techniques, Weighted resistor DAC,R - 2R ladder DAC, inverted R - 2R DAC, and IC 1408 DAC, Different types of ADCs - parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC,DAC and ADC Specifications, Specifications of AD 574 ( 12 bit ADC).

Schedule:

S.NO

NAME OF THE TOPICPERIODSREQUIRED

1 Introduction, BASIC DAC techniques 12 Weighted resistor DAC 13 R - 2R ladder DAC, inverted R - 2R DAC 24 IC 1408 DAC, Different types of ADCs 15 parallel comparator type ADC, counter type ADC 26 successive approximation ADC and dual slope ADC 27 DAC and ADC Specifications 18 Specifications of AD 574 ( 12 bit ADC) 1

Total no of periods required 11

Objective: By this Unit students should gain knowledge on

Explain the operation of different types of ADCs and DACs Comparision of different typers of DACs Comparision of different typers of ADCs DAC & ADC specifications and applications of ADC & DACs Discussion about DAC IC and ADC IC and their pin diagrams.

Assignment Questions1. (a) Explain the operation of a Successive Approximation type analog to digital converter.

(b) Calculate the no. of bits required to represent a full scale voltage of 10V with a resolution of 5mV approximately.

2. (a) Draw a schematic diagram of a D/A converter. Use resistance values whose ratios are multiples of 2. Explain the operation of the converter.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 41: Lica Course File

(b) Draw the block diagram of a converting 4-bit A/D converter and explain its operation. Sketch the output waveform.

3. Write shorts on:(a) Tracking type analog to digital converters.

(b) Comparison of conversion times and hardware complexities of various analog to digital converters.

4.(a) Define important performance specifications of Digital to Analog converters listing their typical values.

(b) Describe the operation of an R - 2R ladder type DAC.

5. (a) What are the basic blocks preceding an Analog to Digital converter in a typical application like digital audio recording?

(b) Draw the circuit of weighted resistor DAC and derive expression for output analog voltage Vo

6.(a) Sketch and explain the transfer characteristic of a DAC with necessary equa- tions.

(b) LSB of a 9 - bit DAC is represented by 19.6mv. If an input of 9 zero bits is represented by 0 volts.i. Find the output of the DAC for an input 10110 1101 and 01101 1011.ii. What is the Full scale reading (FSR) of this DAC?

7.(a) Write short notes on A/D converters.(b) Define the following terms as related to DAC:i. Linearityii. Resolution.(c) With the help of a neat circuit diagram and waveforms, explain the operation of a dual slope ADC. What are its special features

8. (a) Explain the difference between Analog to Digital converter and Digital to Analog converters through underlying equations.(b) Illustrate one application each of Analog to Digital and Digital to Analog converters.

Quiz Questions

1. Both ADC and DAC are known as(a) Flash converters(b) Message converters

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 42: Lica Course File

(c) Memory converters(d) Data converters

2. The least significant-bit voltage is given by VSB= -- in DAC(a) VR_2n

(b) VR/2(c) 2VR

(d) VR/2n

3. In a 3 bit ADC, the entire range of voltage should be divided In to ---- intervals(a) 8(b) 4(c) 6(d) 7

4. Number of comparators preferred in 3 bit ADC is(a) 3(b) 7(c) 6(d) 8

5. The basic step of a 10 bit DAC is 8.2mV and 0000000000 reads 0V then 0101101111 will read(a) 2.902V(b) 3.902V(c) 3.092V(d) 2.092V

6. Weighted Resistor DAC makes use of ---- voltage.(a) -ve reference(b) +ve reference(c) Double(d) 0 reference

7. An 8-bit DAC has resolution of 20mV/LSB. Find VOFS

(a) 4.1V(b) 3.1V(c) 6.1V(d) 5.1V

8. Reference current of Ic 1408(a) 4mA(b) 6mA(c) 2mA(d) 10mA

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 43: Lica Course File

9. If the conversion time of 8-bit flash ADC is 10μs, find the maximum frequency of a sinusoidal voltage than can be digitized(a) 42.17 Hz(b) 32.17 Hz(c) 62.17 Hz(d) 52.17 Hz

10. The fastest ADC is(a) ADC1103(b) ADC141(c) MOD 1020(d) CA330D

11. The processing in which a number of analog signals, one at a time, are connected to common load is called(a) De-Multiplexing(b) Analog Multiplexing(c) Multiplexing(d) Analog Detection

12. A 4-bit DAC has a hypothetical voltage of 8V. Calculate VLSB= --- per step(a) 0.5V(b) 1V(c) 2V(d) 0.25V

13. One of the following is odd converter(a) single slope(b) successive approximation(c) R/2R ladder(d) dual slope

14. Indirect ADC method is(a) Dual slope ADC(b) Counter type ADC(c) Successive approximation ADC(d) Tracking or Servo type ADC

15. The cheapest ADC is(a) Successive approximation type(b) Flash type(c) Dual type(d) V/F type

16. In sampling theorem, Nyquist frequency is

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 44: Lica Course File

(a) FS

(b) FS/2(c) FS/3(d) FS/4

17. Resolution in ADC(a) 2Vifs/(2n−1)(b) Vifs/(2n−1)2

(c) Vifs/(2n−1)(d) nVifs/(2n−1)

18. The reference voltage for a dual slope ADC is 100mV. If t1=50ms, find t2 if the input voltage is 150mV(a) 150ms(b) 50ms(c) 75ms(d) 60ms

19.12 bit DAC operates between +5V. The reading when the input is 001001011100 is(a) -1.479V(b) 3.521V(c) -3.521V(d) 1.479V

20. The full-scale range of a DAC is 16V. If the DAC is a 4-bit circuit, calculate the magnitude of the output voltage represented by LSB(a) 15V(b) 8.0V(c) 12V(d) 1.0V

21. Let VR=10V, n=4 and resolution=0.5. Calculate R/RF in the R-2R ladder DAC(a) 1.25(b) 1.9(c) 12.5(d) 125

22. An 8 bit ADC out put all 1‘s whenVi=2.55v Find its resolution ---- mv/LSB(a) 100(b) 1(c) 10(d) 20

23. If the conversion time of 8-bit flash ADC is 10μs, find the maximum frequency of a sinusoidal voltage than can be digitized

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 45: Lica Course File

(a) 42.17 Hz(b) 52.17 Hz(c) 62.17 Hz(d) 32.17 Hz

24. AD 574 is ----- bit ADC(a) 4(b) 10(c) 8(d) 12

25. Noise can be reduced by transmitting as(a) Semi-digital signals(b) Semi-analog signals(c) Digital signals(d) Analog signals

26. Number of comparators preferred in 3 bit ADC is(a) 8(b) 3(c) 7(d) 6

BIBILIOGRAPHY

TEXT BOOKS :1. Linear Integrated Circuits – D. Roy Chowdhury, New Age International (p) Ltd, 2nd Edition,2003.2. Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1987.3.Linear Integrated Circuit Applications – S.Salivahanan,TMH Edition

REFERENCES :

1. Design with Operational Amplifiers & Analog Integrated Circuits - Sergio Franco, McGraw Hill, 1988.2. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.3. Micro Electronics – Millman, McGraw Hill,1988.4. Operational Amplifiers – C.G. Clayton, Butterworth & Company Publ. Ltd./ Elsevier, 1971.

UNIT VIII ANALOG MULTIPLIERS AND MODULATORS

Syllabus:

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 46: Lica Course File

Four Quadrant multiplier, balanced modulator, IC 1496, Applications of analog switches and Multiplexers, Sample & Hold amplifiers.Schedule:

S.NO

NAME OF THE TOPICPERIODSREQUIRED

1 Four Quadrant multiplier 12 balanced modulator 23 IC 1496 14 Applications of analog switches and Multiplexers 25 Sample & Hold amplifiers 2

Total no of periods required 8

Objective: By this Unit students should gain knowledge on

Complete theory and idea about four quadrant multiplier Explain the operation of balanced modulator and balanced modulator

IC 1496.use in analog communications. Brief discussion about S& H amplifiers. Different applications of analog switches and multipliers.

Assignment Questions

1. (a) What is Gyrator circuit? Explain its operation with a neat circuit diagram.

(b) What is a sample and hold circuit? Why is it needed? With neat circuitdiagram, describe the operation of an op - amp based sample and hold circuit.

2. (a) Explain the use of IC 1496 as AM modulator,.

(b) What do you mean by sampling?

3.(a) Explain the operation of balanced modulator with neat sketch.

(b) Explain the logic diagram and functional table of 4 to 1 line multiplexer.

4. (a) What are the different types of multiplexers?

8. (b) Give the working principle of Analog multiplexer. Give block diagram of a 16 input analog multiplexer using CMOS gated and explain how it works.

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 47: Lica Course File

5.What are all basic blocks of analog multiplexer? Explain how the data selections process is performed it.

6. Write short notes on(a) IC 1496 and its applications(b) Sample and hold circuit.

7. (a) Describe the operation of four quadrant multiplier with neat diagram.

(b) Explain the operation of IC 1496 as mixer circuit.

8. Draw the circuit diagram IC 1496 balanced modulator circuit and explain itsoperations. Sketch the output waveform for the square wave inputs with a phase difference ‘φ’.

9. (a) Explain different applications of multiplier circuits.

(b) What is analog switch? Explain the different analog switches with suitable diagrams.

Quiz Questions

1. Four quadrant device accepts ---- signal(a) Two polar(b) One polar(c) Two bipolar(d) One bipolar

2. IC 1496 worked as also(a) VCO(b) PLL(c) Product detector(d) FM demodulator

3. Analog multiplier is used as(a) JFET(b) diode(c) Rectifier(d) Transistor

4. Calculate the change output Vo= ---- When change Vi=5v and FRR=80db(a) 0.5mv(b) 5mv(c) 0.05mv(d) 50mv

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 48: Lica Course File

5. Calculate the FRR when change Vi=5v and Vo=0.5mv(a) 0db(b) 10db(c) 80db(d) 160db

6.----- is specified as the deviation of the actual output from that of the ideal(a) Linearity(b) Offset terms(c) Bandwidth(d) Accuracy

7. The MC 1496 in a balanced modulator circuit maximum modulating signal levels, the Recommended i/p signal levels are---- rms, for the carrier --- rms(a) 300mv, 300mv(b) 60 mv ,300 mv(c) 60mv, 60 mv(d) 300mv , 60mv

8. The switch is closed in JFET when VGS=(a) Zero(b) more negative(c) infinity(d) Constant

9. Sample and hold circuits ----- the crosstalk in the multiplexer(a) increase(b) constant(c) zero(d) reduces

10. Because of propagation delays through the driver and switch Vo will keep tracking Vi some time after the inception of the hold command. This is the(a) hold mode settling time(b) aperture uncertainty(c) acquisition time(d) aperture time

11. Balanced modulator IC(a) MC 2000(b) MC 1429(c) MC 1428(d) MC 1496

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 49: Lica Course File

12. MC 1595L is used as(a) only divider(b) sub tractor(c) Only multiplier(d) Multiplier and divider

13. In general for monolithic S/H circuits aperture time(tap)and aperture Uncertainty(Δtap) are of the order of(a) ns ; ps(b) ms ;ns(c) ns; ms(d) ps; ns

14. MC 1596 device can also be realized as a frequency(a) mono(b) scalar(c) constant(d) doubler

15. A device is used as a divider(a) RC 42000(b) RC 4200(c) RC 420(d) RC 650

16 Calculate the change output Vo= When change Vi=5v and FRR=80db(a) 50mv(b) 5mv(c) 0.05mv(d) 0.5mv

17. Because of propagation delays through the driver and switch Vo will keep tracking Vi some time after the inception of the hold command. This is the(a) aperture time(b) acquisition time(c) aperture uncertainty(d) hold mode settling time

18. Due to ---- it is difficult to compensate Aperture time by advance hold command(a) hold mode settling time(ts)(b) aperture time(c) aperture uncertainty(d) a acquisition time

19. Sample and hold circuits ---- the crosstalk in the multiplexer

Prepared By K.SRINIVAS Asst Prof, ECE Dept

Page 50: Lica Course File

(a) reduces(b) constant(c) zero(d) increase

20. Feed through is usually expressed in terms of the feed through rejection ratio (FRR)(a) 20log2 (Δv0/Δvi)(b) 20log2 (Δvi/Δvo)(c) 20log10 (Δvi/Δvo)(d) 20log10 (Δvo/Δvi)

BIBILIOGRAPHY

TEXT BOOKS :1. Linear Integrated Circuits – D. Roy Chowdhury, New Age International (p) Ltd, 2nd Edition,2003.2. Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1987.3.Linear Integrated Circuit Applications – S.Salivahanan,TMH Edition

REFERENCES :

1. Design with Operational Amplifiers & Analog Integrated Circuits - Sergio Franco, McGraw Hill, 1988.2. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.3. Micro Electronics – Millman, McGraw Hill,1988.4. Operational Amplifiers – C.G. Clayton, Butterworth & Company Publ. Ltd./ Elsevier, 1971.

Prepared By K.SRINIVAS Asst Prof, ECE Dept