linear stability of vertical natural...

42
Linear Stability of Vertical Natural Convection G. D. McBain [email protected] School of Aerospace, Mechanical, & Mechatronic Engineering The University of Sydney, AUSTRALIA 7ANCW 2003 – p.1/43

Upload: others

Post on 29-May-2020

5 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Linear Stability of Vertical NaturalConvection

G. D. McBain

[email protected]

School of Aerospace, Mechanical, & Mechatronic Engineering

The University of Sydney, AUSTRALIA

7ANCW 2003 – p.1/43

Page 2: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Vertical natural convection

We consider here vertical natural convection flows dueto horizontal hearing:

slot single heated wall7ANCW 2003 – p.2/43

Page 3: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Outline

convection in a vertical slotlinear stability equationsdiscretization by Chebyshev collocationresults for vertical slot

other configurationsthe importance of stratificationsingle vertical wall (mountain & valley winds)

Laguerre collocationthe case for heat flux boundary conditions

nonnormal evolution

7ANCW 2003 – p.3/43

Page 4: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Slot convection: base solution

Exact solution of the Oberbeckequations

Waldmann (1938);Jones & Furry (1946);Ostroumov (1952);Gershuni (1953);Batchelor (1954).

linear temperature, cubic velocity

V (x) = (x3 − x)/3

Θ(x) = −x

7ANCW 2003 – p.4/43

Page 5: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Linear stability equations

Derived by Gershuni (1953) and Plapp (1957).

Extends Orr–Sommerfeld equation for convection.

Eigenvalue problem for coupled 4th (vorticity–buoyancy)and 2nd (temperature) order ODEs.

[

iα Gr

64

{

(V − 16c)

(

α2

4− D2

)

+ V ′′

}

+

(

α2

4− D2

)2]

ψ

+ 2Dθ = 0[

(V − 16c) +64

iα Gr σ

(

α2

4− D2

)]

θ − Θ′ψ = 0

7ANCW 2003 – p.5/43

Page 6: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Discretization: interior collocation

Here, the linear stability equations were discretized byinterior ordinate-based Chebyshev collocation.

In general, to interpolate some function f usingCARDINAL BASIS FUNCTIONS φj(x):

f̂(x) =n

j=1

φj(x)f(xj).

where φj(xi) = δij

so that at a collocation point,

f̂(xi) =n

j=1

φj(xi)f(xj) = f(xi).

7ANCW 2003 – p.6/43

Page 7: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Dirichlet boundary conditions

0

1

-1 1x1x2x3x4

ω(x)

ω(xj)φj(x) =

1 − x2

1 − x2j

T ′n+1(x)

(x− xj)T ′′n+1(xj)

7ANCW 2003 – p.7/43

Page 8: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

‘Clamped’ boundary conditions

0

1

-1 1x1x2x3x4

ω(x)

ω(xj)φj(x) =

(1 − x2)2

(1 − x2j)

2

T ′n+1(x)

(x− xj)T ′′n+1(xj)

7ANCW 2003 – p.8/43

Page 9: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Convergence

10-12

10-10

10-8

10-6

10-4

10-2

100

102

10 20 30 40 50 60 70 80 90 100

RE

LAT

IVE

ER

RO

R IN

GR

OW

TH

RA

TE

NUMBER OF INTERIOR COLLOCATION POINTS, n

Pr=106

Pr=103

Pr=100

Conducted at twice the critical Grashof number

N.B.: exponential convergence: ε ∝ e−rx, r > 0.7ANCW 2003 – p.9/43

Page 10: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Results

For each Grashof number, Gr, Prandtl number, σ, andwavenumber, α, a spectrum of complex eigenvaluewavespeeds c is obtained.

These correspond to modes proportional to

eiα(y−ct) = eα=cteiα(y−<ct)

Exponential amplification rate: α=c.Linear stability criterion: =c < 0.

i.e. spectrum confined to lower-half complex plane.

For a given fluid (σ), we’re interested in the lowest Gr forwhich the spectrum crosses into the upper-half complexplane for some α.

7ANCW 2003 – p.10/43

Page 11: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Marginal stability curve: σ = 0

0

1

2

3

4

5000 10000 15000 20000 25000 30000

WA

VE

NU

MB

ER

, α

GRASHOF NUMBER, Gr

STABLE

Grc = 7930.0551, αc = 2.6883

UNSTABLE

7ANCW 2003 – p.11/43

Page 12: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

The hydrodynamic mode (σ = 0)

+ =

7ANCW 2003 – p.12/43

Page 13: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Air (σ = 0.7): neutral curve

0

1

2

3

4

5000 10000 15000 20000 25000 30000

WA

VE

NU

MB

ER

, α

GRASHOF NUMBER, Gr

STABLE

Grc = 8041.4222, αc = 2.8098

UNSTABLE

Very similar to pure hydrodynamic limit σ → 0.

7ANCW 2003 – p.13/43

Page 14: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Air (σ = 0.7): critical mode

+ =

+ =7ANCW 2003 – p.14/43

Page 15: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Water (σ = 7): neutral curve

0

1

2

3

4

5000 10000 15000 20000 25000 30000

WA

VE

NU

MB

ER

, α

GRASHOF NUMBER, Gr

STABLE

Grc = 7868.4264, αc= 2.7671

UNSTABLE

Still very similar to pure hydrodynamic limit σ → 0.

7ANCW 2003 – p.15/43

Page 16: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Water (σ = 7): critical mode

7ANCW 2003 – p.16/43

Page 17: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Oscillatory mode: σ = 11.7

0

1

2

3

4

0 5000 10000 15000 20000 25000 30000

WA

VE

NU

MB

ER

, α

GRASHOF NUMBER, Gr

STABLE

Grc = 7872, αc= 2.767

UNSTABLE

Pr→∞

Oscillatory mode appears from αGr ∼ 5.7 × 103, α→ 0.

7ANCW 2003 – p.17/43

Page 18: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Mode crossover: σ = 12.454

0

1

2

3

4

0 5000 10000 15000 20000 25000 30000

WA

VE

NU

MB

ER

, α

GRASHOF NUMBER, Gr

STABLE

Grc = 7872.9012, αc= 2.7662

UNSTABLE

Pr→∞

Equal minima on monotonic & oscillatory lobes.

7ANCW 2003 – p.18/43

Page 19: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

The oscillatory mode (σ = 12.454)

+ =

7ANCW 2003 – p.19/43

Page 20: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Cusping: σ = 80

0

1

2

3

4

0 5000 10000 15000 20000 25000 30000

WA

VE

NU

MB

ER

, α

GRASHOF NUMBER, Gr

STABLE

UNSTABLE

Pr→∞

Near σ = 80, lobes intersect forming a cusp.

7ANCW 2003 – p.20/43

Page 21: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Large Prandtl number: σ = 1000

0

1

2

3

4

0 5000 10000 15000 20000 25000 30000

WA

VE

NU

MB

ER

, α

GRASHOF NUMBER, Gr

STABLE

UNSTABLE

Pr→0

7ANCW 2003 – p.21/43

Page 22: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Critical Gr: low σ

2000

3000

4000

5000

6000

7000

8000

9000

10000

10-5 10-4 10-3 10-2 10-1 100 101 102

CR

ITIC

AL

GR

AS

HO

F N

UM

BE

R, G

r

PRANDTL NUMBER, Pr

7ANCW 2003 – p.22/43

Page 23: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Critical Gr: high σ

103

104

105

100 101 102 103 104 105 106

CR

ITIC

AL

PA

RA

ME

TE

R, S

= G

r Pr

1/2

PRANDTL NUMBER, Pr

Gr ~ 7930.0598

(Birikh et al. 1972) Gr Pr1/2 ~ 7520

(present) Gr Pr1/2 ~ 9435.3767

7ANCW 2003 – p.23/43

Page 24: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Slot conclusions

numerics

Chebyshev interior collocation method providesaccurate solutions to natural convection linearstability problem.

physicsfeatures of stability margin as σ increases:

Grcrit ∼ 7930.0598, (σ → 0)σ → 0 limit approximates monotonic lobe ∀σ; .σ < 11.57: oscillatory lobe appearsσ.= 12.454: monotonic–oscillatory transition

σ ≈ 80: lobes cross, form cuspσ → ∞ limit approximates oscillatory lobe ∀σGrcrit ∼ 9435.3767/

√σ, (σ → ∞).

7ANCW 2003 – p.24/43

Page 25: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Stratification

‘. . . an initial stratification is usual, and is in fact generallyunavoidable’ (J. C. Patterson, this workshop)

It’s a natural consequence ofhorizontal heating.

Consider a horizontally heatedsphere (McBain & Stephens 2000,7AHMTC)

σ = 0.7,Ra = 5000

T ∼ −x− Grσ

44800(1 − 4r2)(9 − 20r2)y + . . .

7ANCW 2003 – p.25/43

Page 26: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Stratified base solutions

Rewrite Oberbeck equations in terms of temperatureexcess over linear stratification: T− = 2m4y/σR

(

D

Dt− 1

R∇2

)

u = −∇P +2

RT ̂

(

σD

Dt− 1

R∇2

)

T = −2m4

Ru · ̂

∇ · u = 0

And separate vertical-means: T (x, y) = Θ(x) + θ(x, y).

Then vertical-means satisfy

V ′′(x) = −2Θ(x)

Θ′′(x) = 2m4V (x)

7ANCW 2003 – p.26/43

Page 27: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Stratified slot (Ostroumov 1952)

m = 1 m = 2 m = 5V = {sinhm(1−x) sinm(1+x)−sinhm(1+x) sinm(1−x)}/m2dΘ = {coshm(1−x) cosm(1+x)− coshm(1+x) cosm(1−x)}/dd = cosh 2m− cos 2m

7ANCW 2003 – p.27/43

Page 28: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Stratified half-space (Prandtl 1952)

‘Mountain and valleywinds in stratified air’

a.k.a. ‘anabatic/katabatic’winds

V (x) = e−x sin x

Θ(x) = e−x cosx

T (x, y) = Θ(x) + 2y/σR

7ANCW 2003 – p.28/43

Page 29: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Linear stability of anabatic wind

comprehensive study by Gill & Davey (1969, JFM)

repeated here using interior Laguerre collocation

The Chebyshev polynomials are orthogonal on[−1, 1] with respect to weight function

1√1 − x2

=1

(1 − x)(1 + x).

The generalized Laguerre functions are orthogonalon [0,∞) with respect to weight function xαe−x.The Chebyshev weight improves performance forboundary value problems.

α = −12 gives a similar effect on [0,∞)

7ANCW 2003 – p.29/43

Page 30: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Linear stability margins

0.4

0.8

100 200 300 400

WA

VE

NU

MB

ER

, α

REYNOLDS NUMBER, R

σ=0.77.0

0

1

2

3

4

5000 10000 15000 20000 25000 30000

WA

VE

NU

MB

ER

, α

GRASHOF NUMBER, Gr

STABLE

Grc = 7868.4264, αc= 2.7671

UNSTABLE

0

1

2

3

4

0 5000 10000 15000 20000 25000 30000

WA

VE

NU

MB

ER

, α

GRASHOF NUMBER, Gr

STABLE

UNSTABLE

Pr→0

‘Thermal’ modes much more important than inunstratified slot at same low Prandtl numbers.

cf. σ = 7 (top-left) and σ = 1000 (top-right) for slot.7ANCW 2003 – p.30/43

Page 31: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Thermal boundary conditions

A problem with these stratified slot and half-spacesolutions is the boundary conditions on the temperatureat the wall:

Θ = 1

T = Θ + 2m4y/σR

= 1 + 2m4y/σR

. . . linearly increasing with height

Unlikely to occur in nature or industry

Difficult to impose in an experiment

7ANCW 2003 – p.31/43

Page 32: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Thermal boundary conditions II

HOWEVER: Since the (excess) temperature Θ isindependent of height y, the normal temperaturegradient at the wall is too:

T (x, y) = Θ(x) + 2m4y/σR

∂xT (x, y) = Θ′(x) + 0 .

Thus, solutions also match a uniform heat flux b.c.

useful idealization of many boundary conditions innature (e.g. sunshine) and industry (e.g. electricheating)

relatively easy to impose experimentally

7ANCW 2003 – p.32/43

Page 33: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Thermal boundary conditions III

steady–vertical base solutions unchanged

stability ODEs unchanged

[(αR)−1(α2 −D2)2 − {V (α2 −D2) + V ′′}]ψ+ 2i(αR)−1Dθ = −c(α2 −D2)ψ

[iσΘ′+2m4(αR)−1D]ψ

+ [iσV + (αR)−1(α2 −D2)]θ = iσcθ

disturbance stream-function b.c.s unchanged ψ = ψ′ = 0

but disturbance temperature b.c. changes from Dirichletθ = 0 to Neumann θ′ = 0

7ANCW 2003 – p.33/43

Page 34: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Stratified half-space, flux b.c.

0.4

0.8

100 200 300 400

WA

VE

NU

MB

ER

, α

REYNOLDS NUMBER, R

σ=0.77.0

Thermal modes more important again: critical even for low

Prandtl numbers (0.7: air).

7ANCW 2003 – p.34/43

Page 35: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Fastest growing mode at R = 10, σ = 7

+ =

cf. critical R.= 8.58 at α = 0.462

α = 0.454 (wavelength ≈ 10 boundary layer thicknesses)

phase speed: cr = ωr/alpha ≈ 1.18Vmax

7ANCW 2003 – p.35/43

Page 36: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Transient amplification

1000 2000 3000

0.827

0.828

0.829

DNS (Armfield)

0

x(t)

TIME, t

3 d.o.f. model system

1. initial approach to steady state solution

2. transient amplification

3. transient decay back to steady state solution

4. asymptotic instability (as predicted by linear theory)7ANCW 2003 – p.36/43

Page 37: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Nonnormal evolution

Consider the general dynamical system:

d

dty = Ay.

If the system is autonomous (i.e. ddtA = 0)

and A admits the spectral decomposition

A = ZΛZ−1,Λ = diagλ

columns of Z are A’s eigenvectorsdiagonal elements of Λ are A’s eigenvalues

Then the solution to the initial value problem is

y(t) = ZeΛtZ−1y(0)

7ANCW 2003 – p.37/43

Page 38: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Classification of matrices

Normal matricescommute with adjoint: AA

∗ = A∗A

⇒ eigenvectors are orthogonal: Z−1 = Z

includes Hermitian matrices A∗ = A

Nonnormal matrices

don’t commute with adjoint AA∗ 6= A

∗A

don’t have orthogonal eigenvectors: Z−1 6= Z

eigenvalues ill-conditionedpeculiar evolutionary propertiesOrr–Sommerfeld matrix is nonnormal!

ref.: L. N. Trefethen (1997) ‘Pseudospectra of linearoperators’, SIAM Review 39:383–406.

7ANCW 2003 – p.38/43

Page 39: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Nonnormal v. normal evolution

Consider a simple example (3 degrees of freedom)

d

dt

x

y

z

=

−1 1 1

0 −λ 0

0 0 −µ

x

y

z

Spectral decomposition A = ZΛZ−1 =

1 1 1

1 − λ 0 0

0 1 − µ 0

−λ 0 0

0 −µ 0

0 0 −1

0 11−λ

0

0 0 11−µ

1 1λ−1

1µ−1

And form B = UΛU∗, where U = orth Z; e.g.

[

0 0 11 0 00 1 0

]

.

B is normal, but has identical spectrum to A.7ANCW 2003 – p.39/43

Page 40: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Nonnormal v. normal evolution

0

x(t)

TIME, t

Normal:

y(t) = UeΛtU∗y(0)

0

x(t)

TIME, t

Nonnormal:

y(t) = ZeΛtZ−1y(0)

same long-time behaviour

transient growth of ‘stable’ modes in nonnormal case

7ANCW 2003 – p.40/43

Page 41: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Conclusions on nonnormality

Eigenvalues control long-time evolution and stability.

Nonnormality can cause large transient growth, even inasymptotically stable systems.

Linear stability analysis only applies to infinitesimalperturbations.

Can nonnormal transient growth generate amplitudeslarge enough to excite nonlinear effects?

Is this an alternative scenario for the breakdown ofsteady laminar flow to the classical one of Landau?

ref.: P. J. Schmid & D. S. Henningson (2001) Stabilityand Transition in Shear Flows, Springer.

7ANCW 2003 – p.41/43

Page 42: Linear Stability of Vertical Natural Convectiongdmcbain.freeshell.org/papers/ANCW2003/linear_slides.pdf · Linear Stability of Vertical Natural Convection G. D. McBain geordie.mcbain@aeromech.usyd.edu.au

Conclusions

Collocation excels for linear stability analysis.extensively tested against published resultsagrees and typically extends accuracyvery fast results on a typical desktop PC

heat flux b.c. more realistic for stratified cases

heat flux b.c. anabatic wind is a good configuration

Thermal modes increasingly important for higherPrandtl numbers, stratified fluids, and heat flux b.c.

Unusual transient growth and decay in DNS resultsexplained by theory of nonnormal evolution.

7ANCW 2003 – p.42/43