magnetic phase competition in off-stoichiometric heusler...

55
Magnetic Phase Competition in Off-Stoichiometric Heusler Alloys: The Case of Ni 50-x Co x Mn 25+y Sn 25-y K. P. Bhatti, D.P. Phelan, C. Leighton Chemical Engineering and Materials Science, University of Minnesota V. Srivastava, R.D. James Aerospace Engineering and Mechanics, University of Minnesota S. El-Khatib Physics, American University of Sharjah NIST Center for Neutron Research S. Yuan, P.L. Kuhns, A.P. Reyes, J.S. Brooks, M.J.R. Hoch National High Magnetic Field Laboratory

Upload: others

Post on 27-Jan-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Magnetic Phase Competition in Off-Stoichiometric HeuslerAlloys: The Case of Ni50-xCoxMn25+ySn25-y

    K. P. Bhatti, D.P. Phelan, C. LeightonChemical Engineering and Materials Science, University of Minnesota

    V. Srivastava, R.D. JamesAerospace Engineering and Mechanics, University of Minnesota

    S. El-KhatibPhysics, American University of Sharjah

    NIST Center for Neutron Research

    S. Yuan, P.L. Kuhns, A.P. Reyes, J.S. Brooks, M.J.R. HochNational High Magnetic Field Laboratory

  • Multiferroic alloys (ferroelastic + magnetic)

    > Magnetoelasticity, magnetic shape memory,field-induced phase transformations, magnetocaloric and barocaloric effects

    > Actuators/sensors, magnetic refrigeration, energy conversion, heat-assisted recording?

    Thermal hysteresis: Vital for applications, but fundamentals elusive….

    Introduction: Martensitic (Magnetic) Alloys

    T

    TM(first-order

    MPT)

    AusteniteMartensite

    T (K)

    Krenke et al.Nat. Mater. (2005)

  • Introduction: Minimization of Thermal Hysteresis

    Recent theoretical work by James et al.: Geometrical compatibility between austenite and martensite unit cells vital for T.

    An invariant plane occurs at their interface if, 2 = 1, where 1,2,3 are the ordered eigenvalues of the transformation stretch matrix, U.

    Cui et al. Nat. Mater. (2006)Zhang et al. Acta. Mat. (2009)

    Experiment: Remarkable correlations between T and2. Direct observation of “ideal” interface by HRTEM

    T

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    [ ]

    [ ]

    [ ]

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    Step II Ni50Mn25+yZ25-y:Tunable magnetic interactions (F vs. AF)*MPT for y > 52 1. [ ]

    [ ]

    [ ]

    (001) plane

    excess Mn*Krenke, Acet, Wasserman, Moya, Manosa, Planes, PRB (2005, 2006)

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    Step II Ni50Mn25+yZ25-y:Tunable magnetic interactions (F vs. AF)*MPT for y > 52 1.

    *Krenke, Acet, Wasserman, Moya, Manosa, Planes, PRB (2005, 2006)

    ?

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    Step II Ni50Mn25+yZ25-y:Tunable magnetic interactions (F vs. AF)*MPT for y > 52 1.

    Step III Ni50-xCoxMn40Sn10: Enhanced TC, MSConvenient TM2 1 (1.0051 @ x = 6)

    *Krenke, Acet, Wasserman, Moya, Manosa, Planes, PRB (2005, 2006)

    ?

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    Step II Ni50Mn25+yZ25-y:Tunable magnetic interactions (F vs. AF)*MPT for y > 52 1.

    Step III Ni50-xCoxMn40Sn10: Enhanced TC, MSConvenient TM2 1 (1.0051 @ x = 6)

    Ni46Co6Mn40Sn10: TC 440 K TM 380 K M 1000 emu/cm3

    T < 10 K

    *Krenke, Acet, Wasserman, Moya, Manosa, Planes, PRB (2005, 2006)

    ?

  • Magnetism in Ni50-xCoxMn40Sn10 (and Related Systems)

    High TC, high M, convenient TM, low T

    F austenite, non-F martensite (AF or P?)

    Nominally non-F martensite reveals some significant surprises:

    > Superparamagnetic-like behavior at low T (in a bulk solid!)> Exchange bias in blocked low T state (in a single phase)> Collective freezing. Super-spin-glass?> ZFC exchange bias

    Acute sensitivity of magnetism to composition

    Nanoscale MagneticInhomogeneity?

  • Experimental Details

    0

    100

    200

    300

    400

    Data

    Model

    Residual

    (a) T = 410K

    cubic, Fm-3m

    Inte

    nsity [

    arb

    . u

    nits]

    Ni44Co6Mn40Sn10

    20 30 40 50 60 70 80 90 100

    0

    200

    400

    (b) T = 300K

    5M monoclinic, P21

    2[deg]

    Arc-melted polycrystalline bulk ingots [Srivastava et al APL (2010);Bhatti et al PRB (2012)]

    Characterized by:

    > DSC

    > T-dependent XRD

    > T-dependent Neutron PowderDiffraction (NPD)

    > Magnetometry

    > Small-Angle Neutron Scattering (SANS)

    > 55Mn zero-field NMR

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • 0 100 200 300 400 5000

    10

    20

    30

    0 100 200 300 400 5000.00

    0.02

    0.04

    0.06

    0.08

    M

    [e

    mu

    /cm

    3]

    T [K]

    Ni48

    Co2Mn

    40Sn

    10

    H = 5000 Oe

    M [em

    u/c

    m3]

    FCW

    FCC

    ZFCW

    T [K]

    H = 10 Oe

    M vs. T (x = 2)

  • 0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    M vs. T (x = 6)

    ?

  • 0 100 200 300 400 500 6000

    2

    4

    6

    8

    10

    0 100 200 3000.00

    0.05

    0.10

    0.15

    0.20

    FCC

    ZFCW

    M [

    em

    u/c

    m3]

    T [K]

    H = 10 Oe

    Ni44

    Co6Mn

    40Sn

    10

    M [

    em

    u/c

    m3]

    T [K]

    M vs. T (x = 6)

  • 0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    M vs. T (x = 14)

    ?

  • -75 -50 -25 0 25 50 75

    -900

    -600

    -300

    0

    300

    600

    900

    0 100 200 300 400 500 6000

    2

    4

    6

    8

    10

    5 K

    300 K

    550 K

    H [kOe]

    M [

    em

    u/c

    m3]

    FCC

    FCW

    ZFCW

    T [K]

    Ni36

    Co14

    Mn40

    Sn10

    M [

    em

    u/c

    m3] H = 10 Oe

    M vs. T (x = 14)

  • 0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    M vs. H (x = 2)

    ?

  • M vs. H (x = 2)

    -30 -15 0 15 30-80

    -40

    0

    40

    80-60 -40 -20 0 20 40 60

    -50

    0

    50

    -30

    0

    30

    (c)

    5 K

    50 K

    H [kOe]

    Langevin fit

    M [

    em

    u/c

    m3]

    (b)

    200 K

    175 K

    150 K

    125 K

    M [

    em

    u/c

    m3]

    500 K

    400 K

    Ni48

    Co2Mn

    40Sn

    10

    (a)

  • M vs. H (x = 2)

    -30 -15 0 15 30-80

    -40

    0

    40

    80-60 -40 -20 0 20 40 60

    -50

    0

    50

    -30

    0

    30

    (c)

    5 K

    50 K

    H [kOe]

    Langevin fit

    M [

    em

    u/c

    m3]

    (b)

    200 K

    175 K

    150 K

    125 K

    M [

    em

    u/c

    m3]

    500 K

    400 K

    Ni48

    Co2Mn

    40Sn

    10

    (a)

    T > TM: P

    T < TM: AF/P

  • M vs. H (x = 2)

    -30 -15 0 15 30-80

    -40

    0

    40

    80-60 -40 -20 0 20 40 60

    -50

    0

    50

    -30

    0

    30

    (c)

    5 K

    50 K

    H [kOe]

    Langevin fit

    M [

    em

    u/c

    m3]

    (b)

    200 K

    175 K

    150 K

    125 K

    M [

    em

    u/c

    m3]

    500 K

    400 K

    Ni48

    Co2Mn

    40Sn

    10

    (a)

    T > TM: P

    T < TM: AF/P

    300 - 100 K: Langevin-like M(H)

    HTHT

    Tk

    Tk

    HTTTnTHM BG

    C

    B

    B

    C

    CC )()(

    )(coth)()(),(

  • M vs. H (x = 2)

    -30 -15 0 15 30-80

    -40

    0

    40

    80-60 -40 -20 0 20 40 60

    -50

    0

    50

    -30

    0

    30

    (c)

    5 K

    50 K

    H [kOe]

    Langevin fit

    M [

    em

    u/c

    m3]

    (b)

    200 K

    175 K

    150 K

    125 K

    M [

    em

    u/c

    m3]

    500 K

    400 K

    Ni48

    Co2Mn

    40Sn

    10

    (a)

    T > TM: P

    T < TM: AF/P

    300 - 100 K: Langevin-like M(H)

    T < 100 K: M(H) gradually opens“Static” FZFC exchange bias*

    HTHT

    Tk

    Tk

    HTTTnTHM BG

    C

    B

    B

    C

    CC )()(

    )(coth)()(),(

    *Wang et al PRL (2011)

  • 0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    M vs. H (x = 6)

    ?

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

    T > TC: P

    T < TC: Soft F

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

    T > TC: P

    T < TC: Soft F

    400 - 380 K: Hysteresis region(H-induced MPT)

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

    T > TC: P

    T < TC: Soft F

    400 - 380 K: Hysteresis region(H-induced MPT)

    380 - 60 K: Langevin-like M(H)

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

    T > TC: P

    T < TC: Soft F

    400 - 380 K: Hysteresis region(H-induced MPT)

    380 - 60 K: Langevin-like M(H)

    T < 60 K: M(H) gradually opens“Static” F

  • Superparamagnetic-like Behavior

    102

    103

    104

    50 100 150 200 250 300

    1017

    1018

    1019

    x = 2

    x = 3

    x = 4

    x = 6

    c [

    B]

    (a)

    Ni50-x

    CoxMn

    40Sn

    10

    (b)

    nc [

    cm

    -3]

    T [K]

    c 200-250 B

    nc 2-3 x 1019 cm-3

    dc 2-6 nm

    Implication: Dense ensemble ofnm-scale spin clusters

    HTHT

    Tk

    Tk

    HTTTnTHM BG

    C

    B

    B

    CCC )(

    )(

    )(coth)()(),(

  • Exchange Bias

    0

    1000

    2000

    0 50 100 150 2000

    200

    400

    600

    800 Ni48

    Co2Mn

    40Sn

    10

    Ni44

    Co6Mn

    40Sn

    10

    Hc

    [Oe]

    HFC

    = 70 kOe

    (a)

    (b)

    HE [O

    e]

    T [K]

    x = 2:

    > SP blocking at 100-150 K> EB blocking at 60 K> Large HC peak

    x = 6:

    > SP blocking at 60 K> EB blocking at 60 K> No HC peak

  • Phase Diagram

  • SANS (NIST)

    Detectorchamber

    ReactorNeutronguide

    Cryostat/magnet

  • 0.01 0.1

    0.1

    1

    10

    100

    q [Å-1]

    (a) 500 K

    d/d

    [cm

    -1]

    n

    P

    q

    Td

    d

    Tqd

    d)(

    ,

    2

    2

    )(

    1

    )(

    ,

    Tq

    Td

    d

    Tqd

    d L

    Low q (large length-scale)Porod Scattering

    High q (short length-scale)Lorentzian Scattering

    SANS (x = 6)

  • 0.01 0.10.01

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    (e) 30 K

    q [Å-1]

    (d) 380 K

    Ni44

    Co6Mn

    40Sn

    10

    (c) 390 K

    (b) 425 K

    (a) 500 K

    d/d

    [cm

    -1]

    SANS: q Dependence

  • 0.01 0.10.01

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    (e) 30 K

    q [Å-1]

    (d) 380 K

    Ni44

    Co6Mn

    40Sn

    10

    (c) 390 K

    (b) 425 K

    (a) 500 K

    d/d

    [cm

    -1]

    SANS: q Dependence

    Low q Porod scattering:

    > Increases below TC> Magnetic domain scattering > Proof of long-range F order (>> 100 nm)

    High q Lorentzian scattering:

    > Peaks at TC> F spin correlations

    Intermediate q scattering:

    > A peak develops! 2/q 120-200 Å> Structure factor peak. Liquid-like spatial

    distribution of magnetic clusters.

    2

    2

    )(2

    ))((exp)(

    )(

    ),(T

    TqqT

    d

    d

    q

    Td

    d

    Tqd

    d G

    G

    n

    P

    Tot

    2

    2

    )(

    1

    )(

    Tq

    Td

    d

    L

  • SANS: T Dependence

    100 200 300

    0.02

    0.03

    0.03

    0 100 200 300 400 500

    0.0

    0.1

    0.2

    0.3

    0

    50

    100

    150

    d/d

    [cm

    -1]

    T [K]

    (b) q = 0.1 Å-1

    d/d

    [cm

    -1]

    T [K]

    Ni44

    Co6Mn

    40Sn

    10

    d/d

    [cm

    -1]

    Heating

    Cooling

    (a) q = 0.005 Å-1 q = 0.005 Å

    -1 (1200 Å):

    > Sharp onset of domainscattering at TC

    > Hysteretic loss at TM

    q = 0.1 Å-1 (60 Å):

    > Critical scattering peak at TC

  • SANS: T Dependence

    100 200 300

    0.02

    0.03

    0.03

    0 100 200 300 400 500

    0.0

    0.1

    0.2

    0.3

    0

    50

    100

    150

    d/d

    [cm

    -1]

    T [K]

    (b) q = 0.1 Å-1

    d/d

    [cm

    -1]

    T [K]

    Ni44

    Co6Mn

    40Sn

    10

    d/d

    [cm

    -1]

    Heating

    Cooling

    (a) q = 0.005 Å-1 q = 0.005 Å

    -1 (1200 Å):

    > Sharp onset of domainscattering at TC

    > Hysteretic loss at TM

    q = 0.1 Å-1 (60 Å):

    > Critical scattering peak at TC

    > 130 K transition (!), clearly associated with clusters

    > Blocking at 10-12 s time-scales!

  • SANS T Dependence: Porod

    0 100 200 300 400 500

    2

    3

    410

    -9

    10-6

    10-3

    T [K]

    n (d/d

    ) P

    [cm

    -1]

    Scattering in martensite strong, T-dependent

    Paramagnetic, n = 4 (grains); Ferromagnetic, n = 2 (pinned domains); Martensitic, n = 3 (AF domains?)

    Additional (indirect) evidence for AF order in the martensite

  • 0

    1

    0 100 200 300 400 500

    0.03

    0.04

    0.05

    (d/d

    ) G

    [cm

    -1]

    [cm

    -1]

    qG[c

    m-1]

    T [K]

    0.02

    0.04

    SANS T Dependence: Gaussian

    Gaussian peak intensity actually emerges at high T (even above TC?)

    Peak position weakly T-dependent. Peak width decreases on cooling

    Correlation length > 5 inter-particle spacings! Collective response*?

    *Cong et al APL (2010); APL (2010) and Wang et al PRL (2011)

    Å Å

  • 0

    1

    2

    3

    0 100 200 300 400 5000

    20

    40

    (d

    /d

    ) L

    [cm

    -1]

    T [K]

    -1]

    SANS T Dependence: Lorentzian

    Only present in significant intensities in paramagnetic phase

    Magnetic correlation length diverges as T TC+

  • Qualitative Model

  • Qualitative Model

    P

  • Qualitative Model

    P

    F

  • Qualitative Model

    P

    F

    AF?

  • Qualitative Model

    P

    F

    AF?

    AF?

  • AF in the Martensite: Neutron Diffraction Problems

    AF known at Ni50Mn50, suspected in someform in Ni50Mn25+ySn25-y

    Indirect evidence:

    > (T)> Exchange bias> SANS (Porod scattering)

    Why not just do neutron diffraction?

    > Texture an issue> Looking for the onset of AF order

    simultaneous with MPT to lowsymmetry state (very challenging refinement)

  • AF in the Martensite: Neutron Diffraction Problems

    AF known at Ni50Mn50, suspected in someform in Ni50Mn25+ySn25-y

    Indirect evidence:

    > (T)> Exchange bias> SANS (Porod scattering)

    Why not just do neutron diffraction?

    > Texture an issue> Looking for the onset of AF order

    simultaneous with MPT to lowsymmetry state (very challenging refinement)

  • AF in the Martensite: Neutron Diffraction Problems

    AF known at Ni50Mn50, suspected in someform in Ni50Mn25+ySn25-y

    Indirect evidence:

    > (T)> Exchange bias> SANS (Porod scattering)

    Why not just do neutron diffraction?

    > Texture an issue> Looking for the onset of AF order

    simultaneous with MPT to lowsymmetry state (very challenging refinement)

    Weak evidence for an AF order parameter?

    Polarized neutrons…….

  • AF in the Martensite: 55Mn Zero Field NMR (/2 = 10.5 MHz/T)

    150 200 250 300 350 400 450 500

    Frequency f (MHz)

    Ni50-xCoxMn40Sn10

    x=14

    x=7

    x=0

    AF F

    AF x 0.1 F

    F

    T = 1.6 K

    48 T14 T

    NMR signal enhancement factor, , measured by calibration to 19F

    Typically: High in Fs, low in AFs

    225 10

  • AF in the Martensite: 55Mn Zero Field NMR (/2 = 10.5 MHz/T)

    Unambiguous F/AF assignment

    The martensite indeed has ordered AF, decreasing with Co substitution

    -10.5 MHz / TNi50Mn40Sn10 (x = 0)

  • AF in the Martensite: 55Mn Zero Field NMR

    AF/F phase coexistence at low T

    Volume fractions

  • Conclusions

    Bhatti, El-Khatib, Srivastava, James, Leighton, Phys. Rev. B. 85, 134450 (2012)

    Bhatti, Srivastava, Phelan, James, Leighton, Heusler Alloys, Eds. Hirohata and Felser, Springer (2015)

    Yuan, Kuhns, Reyes, Brooks, Hoch, Srivastava, James, El-Khatib, Leighton, Phys. Rev. B. 91, 214421 (2015)

    Yuan, Kuhns, Reyes, Brooks, Hoch, Srivastava, James and Leighton, Phys. Rev. B., submitted (2015)

    Ni50-xCoxMn25+ySn25-y: Physically very interesting, potentially useful set of alloys

    High TC, convenient TM, exceptionally low T, high M

    Nanoscale magneto-electronic inhomogeneity:

    > SP-like freezing of nm-scale spin clusters> Exchange bias in a nominally single-phase system> First direct observation by SANS

    (liquid-like distribution, dc 2-6 nm, dc-c = 12 nm, strong interactions)> First observation by zero-field 55Mn NMR

    (proof of short-range AF order, dc 8.5 4.0 nm)

    New magnetic phase diagram

    Qualitative model based on (unavoidable) compositional fluctuations