mcs cases null cases - colorado state universitysaddleback.atmos.colostate.edu/esmei/interns/... ·...

1
Factors that Influence the Growth of Supercells into MCS a8er Sunset Keenan Eure 1 , John M. Peters 2 , Russ Shumacher 2 1. University of Maryland, College Park, College Park, MD 2. Colorado State University, Fort Collins, CO Discrete, tornado producing supercells o8en occur in a8ernoon (storms with rotaKng updra8s) Cold air ouNlows from individual cells merge and help form Mesoscale ConvecKve System (MCS) O8en produces flash flooding ConvecKon transiKons from surface based to elevated Lowest 1-2km of atmosphere cools & stabilizes as sun sets and warm air advects or move horizontally over cool air (below le8) Southerly fast moving winds, or low level jet (LLJ) has a maximum at night (below right) Low level wind shear & ascent increase 25 cases of supercell to MCS transiKon (MCS events) 25 cases of supercells with no MCS a8erwards (Null events) Analyzed hourly Rapid Refresh (RAP) model data for each case to analyze the following from 18Z to 9Z: Meridional wind component – verKcal or southerly wind component, to see the change in the LLJ PotenKal temperature advecKon – allows us to see warm air advecKon; indicaKve of low level ascent or rising moKon Divergence – similar to potenKal temperature advecKon, negaKve divergence shows rising moKon/ascent Bulk wind shear – The change of the x and y wind components with height ConvecKve Available PotenKal Energy (CAPE) – measure of instability for storm growth and development Delta Z Level of Free ConvecKon (LFC) – height an air parcel needs to reach to the LFC, where a parcel becomes buoyant and contributes to storm growth & development Took coordinates for each case to make a grid of area in focus Averaged variables over the x and y coordinates over each level of atmosphere (37 values, 1 for each height, 37 total for each hour) Produced Kme vs. height plots for each parameter listed above Created plots showing difference between specified hour and 21Z, since 21Z was typically the most unstable & generally the mean Kme of tornadoes Time vs height made for each case, then created composites or averages of the MCS and null cases, respecKvely PosiKve changes in potenKal temperature advecKon in the 0Z to 5Z window (in the lowest 1-2km) for the MCS cases versus minimal or almost negaKve change indicates more low level ascent for the MCS cases Sharp negaKve changes in divergence between 0Z to 6-7Z in MCS cases equates to convergence; as air convergences it leads to rising moKon as well Meridional wind component change is indicaKve of a stronger LLJ nocturnal maximum for MCS cases, compared to an absence of this for null cases CAPE values fairly similar between MCS cases and null cases Delta Z LFC values, or heights parKcularly higher for null cases, meaning that these parcels needed to reach a higher height to reach their instability level (LFC), whether the parcel was from the ground or elevated Corfidi, Stephen F., Sarah J. Corfidi, and David M. Schultz. "Elevated Convection and Castellanus: Ambiguities, Significance, and Questions." Weather and Forecasting 23 (n.d.): 1280-303. 26 Apr. 2008. Web. 21 July 2016. Du, Yu, and Richard Rotunno. "A Simple Analytical Model of the Nocturnal Low-Level Jet over the Great Plains of the United States." American Meteorological Society 71 (2014): 3673-684. 22 Sept. 2014. Web. 21 July 2016. Markowski, Paul, and Yvette Richardson. Mesoscale Meteorology in Midlatitudes. N.p.: n.p., n.d. 17 Mar. 2010. Web. 21 July 2016. Moore, James T., Fred H. Glass, Charles E. Graves, Scott M. Rochette, and Marc J. Singer. "The Environment of Warm-Season Elevated Thunderstorms Associated with Heavy Rainfall over the Central United States." American Meteorological Society 18 (2003): 861-78. 1 Oct. 2003. Web. 21 July 2016. Nielsen, Erik R., and Gregory R. Herman. "Double Impact: When Both Tornadoes and Flash Floods Threaten the Same Place at the Same Time." American Meteorological Society 30 (2015): 1673-693. 17 Sept. 2015. Web. 21 July 2016. Parker, Matthew D. "Response of Simulated Squall Lines to Low-Level Cooling." American Meteorological Society 65 (2008): 1323-341. 1 Apr. 2008. Web. 21 July 2016. Peters, John M., and Russ S. Schumacher. "Dynamics Governing a Simulated Mesoscale Convective System with a Training Convective Line." American Meteorological Society 73 (2015): 2643-664. American Meteorological Society. American Meteorological Society, 24 June 2016. Web. 21 July 2016. Schumacher, Russ S., and Richard H. Johnson. "Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems." American Meteorological Society 133 (2005): 961-76. Web. This work has been supported by the NaKonal Science FoundaKon Research Experiences for Undergraduates Site in Climate Science at Colorado State University under the cooperaKve agreement No. AGS-1461270 and AGS-PRF 1524435. For more informaKon, contact [email protected] IntroducKon Methodology Conclusions Acknowledgements References Results Discrete supercells on the le8, organized MCS on the right MCS cases Null cases 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 2500 3000 3500 4000 Time (Z) Height above ground level (m) Potential Temp Advection Change from 21Z (K hr 1 ) 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 2500 3000 3500 4000 Time (Z) Height above ground level (m) Potential Temp Advection Change from 21Z (K hr 1 ) 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 2500 3000 3500 4000 Time (Z) Height above ground level (m) Divergence Change from 21Z (hr 1 ) 0.1 0.05 0 0.05 0.1 0.15 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 2500 3000 3500 4000 Time (Z) Height above ground level (m) Divergence Change from 21Z (hr 1 ) 0.1 0.05 0 0.05 0.1 0.15 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 2500 3000 3500 4000 Time (Z) Height above ground level (m) Meridional Wind Component Change from 21Z (m/s) 10 8 6 4 2 0 2 4 6 8 10 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 2500 3000 3500 4000 Time (Z) Height above ground level (m) Meridional Wind Component Change from 21Z (m/s) 10 8 6 4 2 0 2 4 6 8 10 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 2500 3000 3500 4000 Time (Z) Height above ground level (m) CAPE (J Kg 1 ) and Delta Z LFC (m) 1750 2000 2000 2250 2250 2250 2500 2500 500 2750 2750 3000 3000 3000 3250 32 3250 3500 3750 4000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 0 500 1000 1500 2000 2500 3000 3500 4000 Time (Z) Height above ground level (m) CAPE (J Kg 1 ) and Delta Z LFC (m) 3000 3250 3500 3750 3750 3750 4000 4000 4000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Case analyzed that saw several flash floods and tornadoes in close proximity

Upload: others

Post on 25-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MCS cases Null cases - Colorado State Universitysaddleback.atmos.colostate.edu/esmei/interns/... · Extreme-Rain-Producing Mesoscale Convective Systems." American Meteorological Society

FactorsthatInfluencetheGrowthofSupercellsintoMCSa8erSunsetKeenanEure1,JohnM.Peters2,RussShumacher2

1.UniversityofMaryland,CollegePark,CollegePark,MD2.ColoradoStateUniversity,FortCollins,CO

IntroducKon•  Discrete,tornadoproducingsupercellso8enoccurina8ernoon

(stormswithrotaKngupdra8s)•  ColdairouNlowsfromindividualcellsmergeandhelpform

MesoscaleConvecKveSystem(MCS)•  O8enproducesflashflooding

•  ConvecKontransiKonsfromsurfacebasedtoelevated•  Lowest1-2kmofatmospherecools&stabilizesassunsetsand

warmairadvectsormovehorizontallyovercoolair(belowle8)•  Southerlyfastmovingwinds,orlowleveljet(LLJ)hasa

maximumatnight(belowright)•  Lowlevelwindshear&ascentincrease

Methods•  25casesofsupercelltoMCStransiKon(MCSevents)•  25casesofsupercellswithnoMCSa8erwards(Nullevents)•  AnalyzedhourlyRapidRefresh(RAP)modeldataforeachcase

toanalyzethefollowingfrom18Zto9Z:•  Meridionalwindcomponent–verKcalorsoutherlywind

component,toseethechangeintheLLJ•  PotenKaltemperatureadvecKon–allowsustoseewarmair

advecKon;indicaKveoflowlevelascentorrisingmoKon•  Divergence–similartopotenKaltemperatureadvecKon,

negaKvedivergenceshowsrisingmoKon/ascent•  Bulkwindshear–Thechangeofthexandywindcomponents

withheight•  ConvecKveAvailablePotenKalEnergy(CAPE)–measureof

instabilityforstormgrowthanddevelopment•  DeltaZLevelofFreeConvecKon(LFC)–heightanairparcel

needstoreachtotheLFC,whereaparcelbecomesbuoyantandcontributestostormgrowth&development

•  Tookcoordinatesforeachcasetomakeagridofareainfocus•  Averagedvariablesoverthexandycoordinatesovereachlevel

ofatmosphere(37values,1foreachheight,37totalforeachhour)

•  ProducedKmevs.heightplotsforeachparameterlistedabove•  Createdplotsshowingdifferencebetweenspecifiedhourand

21Z,since21Zwastypicallythemostunstable&generallythemeanKmeoftornadoes

•  Timevsheightmadeforeachcase,thencreatedcompositesoraveragesoftheMCSandnullcases,respecKvely

•  PosiKvechangesinpotenKaltemperatureadvecKoninthe0Zto

5Zwindow(inthelowest1-2km)fortheMCScasesversusminimaloralmostnegaKvechangeindicatesmorelowlevelascentfortheMCScases

•  SharpnegaKvechangesindivergencebetween0Zto6-7ZinMCScasesequatestoconvergence;asairconvergencesitleadstorisingmoKonaswell

•  MeridionalwindcomponentchangeisindicaKveofastrongerLLJnocturnalmaximumforMCScases,comparedtoanabsenceofthisfornullcases

•  CAPEvaluesfairlysimilarbetweenMCScasesandnullcases•  DeltaZLFCvalues,orheightsparKcularlyhigherfornullcases,

meaningthattheseparcelsneededtoreachahigherheighttoreachtheirinstabilitylevel(LFC),whethertheparcelwasfromthegroundorelevated

Corfidi, Stephen F., Sarah J. Corfidi, and David M. Schultz. "Elevated Convection and Castellanus: Ambiguities, Significance, and Questions." Weather and Forecasting 23 (n.d.): 1280-303. 26 Apr. 2008. Web. 21 July 2016. Du, Yu, and Richard Rotunno. "A Simple Analytical Model of the Nocturnal Low-Level Jet over the Great Plains of the United States." American Meteorological Society 71 (2014): 3673-684. 22 Sept. 2014. Web. 21 July 2016. Markowski, Paul, and Yvette Richardson. Mesoscale Meteorology in Midlatitudes. N.p.: n.p., n.d. 17 Mar. 2010. Web. 21 July 2016. Moore, James T., Fred H. Glass, Charles E. Graves, Scott M. Rochette, and Marc J. Singer. "The Environment of Warm-Season Elevated Thunderstorms Associated with Heavy Rainfall over the Central United States." American Meteorological Society 18 (2003): 861-78. 1 Oct. 2003. Web. 21 July 2016. Nielsen, Erik R., and Gregory R. Herman. "Double Impact: When Both Tornadoes and Flash Floods Threaten the Same Place at the Same Time." American Meteorological Society 30 (2015): 1673-693. 17 Sept. 2015. Web. 21 July 2016. Parker, Matthew D. "Response of Simulated Squall Lines to Low-Level Cooling." American Meteorological Society 65 (2008): 1323-341. 1 Apr. 2008. Web. 21 July 2016. Peters, John M., and Russ S. Schumacher. "Dynamics Governing a Simulated Mesoscale Convective System with a Training Convective Line." American Meteorological Society 73 (2015): 2643-664. American Meteorological Society. American Meteorological Society, 24 June 2016. Web. 21 July 2016. Schumacher, Russ S., and Richard H. Johnson. "Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems." American Meteorological Society 133 (2005): 961-76. Web.

ReferencesThisworkhasbeensupportedbytheNaKonalScienceFoundaKonResearchExperiencesforUndergraduatesSiteinClimateScienceatColoradoStateUniversityunderthecooperaKveagreementNo.AGS-1461270andAGS-PRF1524435.

FormoreinformaKon,[email protected]

IntroducKon

Methodology

Conclusions

Acknowledgements

References

Results

Discretesupercellsonthele8,organizedMCSontheright

MCScases Nullcases

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 90

500

1000

1500

2000

2500

3000

3500

4000

Time (Z)

Heig

ht a

bove

gro

und

leve

l (m

)

Potential Temp Advection Change from 21Z (K hr−1)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 90

500

1000

1500

2000

2500

3000

3500

4000

Time (Z)

Heigh

t abo

ve g

roun

d lev

el (m

)

Potential Temp Advection Change from 21Z (K hr−1)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 90

500

1000

1500

2000

2500

3000

3500

4000

Time (Z)

Heigh

t abo

ve g

roun

d lev

el (m

)

Divergence Change from 21Z (hr−1)

−0.1

−0.05

0

0.05

0.1

0.15

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 90

500

1000

1500

2000

2500

3000

3500

4000

Time (Z)

Heigh

t abo

ve g

roun

d lev

el (m

)

Divergence Change from 21Z (hr−1)

−0.1

−0.05

0

0.05

0.1

0.15

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 90

500

1000

1500

2000

2500

3000

3500

4000

Time (Z)

Heigh

t abo

ve g

roun

d lev

el (m

)

Meridional Wind Component Change from 21Z (m/s)

−10

−8

−6

−4

−2

0

2

4

6

8

10

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 90

500

1000

1500

2000

2500

3000

3500

4000

Time (Z)

Heigh

t abo

ve g

roun

d lev

el (m

)

Meridional Wind Component Change from 21Z (m/s)

−10

−8

−6

−4

−2

0

2

4

6

8

10

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 90

500

1000

1500

2000

2500

3000

3500

4000

Time (Z)

Heigh

t abo

ve g

roun

d lev

el (m

)

CAPE (J Kg−1) and Delta Z LFC (m)

1750

20002000

2250

2250

2250

2500

2500

500

2750

2750

3000

3000

3000

325032

3250350037504000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 90

500

1000

1500

2000

2500

3000

3500

4000

Time (Z)

Heigh

t abo

ve g

roun

d lev

el (m

)

CAPE (J Kg−1) and Delta Z LFC (m)

30003250

3500

3750

3750

3750

4000

4000

4000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Caseanalyzedthatsawseveralflashfloodsandtornadoesincloseproximity