mechanics of materials solutions chapter10 probs29 46

44
 Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that  permitted by Sections 107 or 108 of the 1976 United States C opyright Act without the permission of the cop yright owner is unlaw ful. 10.29a For the beams and loadings shown  below, determine the beam deflection at  point  H . Assume that  EI = 8 × 10 4  kN-m 2 is constant for each beam. Fig. P10.29a Solution Determine beam slope at A. [Appendix C, SS beam with concentrated moment.]   Relevant equation from Appendix C: 6  A  L  EI θ  =  (slope magnitude) Values:  M  = 150 kN-m,  L = 8 m, EI = 8 × 10 4  kN-m 2  Computation: 4 2 (150 kN-m)(8 m) 0.00250 rad 6 6(8 10 kN-m )  A  ML  EI θ  = = = ×  Determine beam deflection at  H . [Skill 1] (3 m)(0.00250 rad) 0.00750 m 7.50 mm  H v  = = =  Ans. 

Upload: arishchoy

Post on 26-Feb-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 1/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.29a For the beams and loadings shown below, determine the beam deflection at

 point H . Assume that EI = 8 × 104 kN-m

2is

constant for each beam.

Fig. P10.29a 

Solution

Determine beam slope at A.

[Appendix C, SS beam with concentrated moment.]  Relevant equation from Appendix C:

6 A

 L

 EI θ    =   (slope magnitude)

Values:  M  = 150 kN-m, L = 8 m, EI = 8 × 10

4 kN-m

Computation:

4 2

(150 kN-m)(8 m) 0.00250 rad6 6(8 10 kN-m )

 A

 ML

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 1] 

(3 m)(0.00250 rad) 0.00750 m 7.50 mm H v   = = = ↑   Ans. 

Page 2: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 2/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.29b For the beams and loadings shown below, determine the beam deflection at point

 H . Assume that EI = 8 × 104 kN-m

2 is constant

for each beam.

Fig. P10.29b 

Solution

Determine beam deflection at  A. [Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:4

8 A

wLv

 EI = −  

Values: w = 6 kN/m, L = 4 m, EI = 8 × 10

4 kN-m

Computation:4 4

4 2

(6 kN/m)(4 m)0.00240 m

8 8(8 10 kN-m ) A

wLv

 EI = − = − = −

× 

Determine beam slope at  A.  [Appendix C, Cantilever beam with uniformly distributed load.]

 Relevant equation from Appendix C:3

6 A

wL

 EI θ    =   (slope magnitude)

Values: w = 6 kN/m, L = 4 m, EI = 8 × 10

4 kN-m

Computation:3 3

4 2

(6 kN/m)(4 m)0.00080 rad

6 6(8 10 kN-m ) A

wL

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 2] 

0.00240 m (2 m)(0.00080 rad) 0.00400 m 4.00 mm H v   = − − = − = ↓   Ans. 

Page 3: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 3/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.29c For the beams and loadings shown below, determine the beam deflection at

 point H . Assume that EI = 8 × 104 kN-m

2is

constant for each beam.

Fig. P10.29c 

Solution

Determine beam deflection at  H .  [Skill 3] [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

  2 2 2( )6

 H 

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 30 kN-m, L = 12 m, b = 4 m, x = 4 m, EI = 8 × 10

4 kN-m

Computation:

2 2 2

2 2 2

4 2

( )6

(30 kN)(4 m)(4 m)(12 m) (4 m) (4 m)

6(12 m)(8 10 kN-m )

0.00933 m 9.33 mm

 H 

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − −⎣ ⎦×

= = ↓   Ans. 

Page 4: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 4/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.29c For the beams and loadings shown below, determine the beam deflection at

 point H . Assume that EI = 8 × 104 kN-m

2is

constant for each beam.

Fig. P10.29d  

Solution

Determine deflection of cantilever overhang. [Appendix C, Cantilever beam with concentrated load.] 

 Relevant equation from Appendix C:3

,cant3

 H 

 PLv

 EI = −   (assuming fixed support at B)

Values:  P  = 15 kN, L = 4 m, EI = 8 × 10

4 kN-m

Computation: 3 3

,cant 4 2

(15 kN)(4 m)0.004000 m

3 3(8 10 kN-m ) H 

 PLv

 EI = − = − = −

× 

Determine beam slope at  B. [Appendix C, SS beam with concentrated moment.]  Relevant equation from Appendix C:

3 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = (15 kN)(4 m) = 60 kN-m, L = 8 m,

 EI = 8 × 104 kN-m2 

Computation:

4 2

(60 kN-m)(8 m)0.002000 rad

3 3(8 10 kN-m ) B

 ML

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 4] 

0.00400 m (4 m)(0.00200 rad) 0.01200 m 12.00 mm H v   = − − = − = ↓   Ans.

Page 5: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 5/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.30a For the beams and loadings shown below, determine the beam deflection at

 point H . Assume that EI = 1.2 × 107 kip-in.

2

is constant for each beam.

Fig. P10.30a 

Solution

Determine beam deflection at  B. [Appendix C, Cantilever beam with concentrated moment.] 

 Relevant equation from Appendix C:2

2 B

 Lv

 EI = −  

Values:  M  = 40 kip-ft, L = 9 ft, EI = 1.2 × 10

7 kip-in.

Computation:2 2 3

7 2

(40 kip-ft)(9 ft) (12 in./ft)0.23328 in.

2 2(1.2 10 kip-in. ) B

 MLv

 EI = − = − = −

× 

Determine beam slope at  B.  [Appendix C, Cantilever beam with concentrated moment.]

 Relevant equation from Appendix C:

 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = 40 kip-ft, L = 9 ft, EI = 1.2 × 10

7 kip-in.

Computation:2

7 2

(40 kip-ft)(9 ft)(12 in./ft)0.004320 rad

(1.2 10 kip-in. ) B

 ML

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 2] 

0.23328 in. (6 ft)(12 in./ft)(0.004320 rad) 0.54432 in. 0.544 in. H v   = − − = − = ↓   Ans. 

Page 6: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 6/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.30b For the beams and loadings shown below, determine the beam deflection at

 point  H . Assume that  EI =  1.2 × 107  kip-

in.2 is constant for each beam.

Fig. P10.30b 

Solution

Determine beam slope at C . [Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

 2 2( )

6C 

 Pa L a

 LEI θ 

  −=   (slope magnitude)

Values:  P  = 25 kips, L = 18 ft, a = 12 ft, EI = 1.2 × 10

7 kip-in.

Computation:2 2

2 2 2

7 2

( )

6

(25 kips)(12 ft)(18 ft) (12 ft) (12 in./ft) 0.00600 rad

6(18 ft)(1.2 10 kip-in. )

 Pa L a

 LEI θ 

  −=

⎡ ⎤= − =⎣ ⎦× 

Determine beam deflection at  H .  [Skill 1] 

(7 ft)(12 in./ft)(0.00600 rad) 0.5040 in. 0.504 in. H v   = = = ↑   Ans. 

Page 7: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 7/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.30c For the beams and loadings shown below, determine the beam deflection at point

 H . Assume that  EI =  1.2 × 107  kip-in.

2is

constant for each beam.

Fig. P10.30c 

Solution

Determine beam deflection at  H .  [Skill 3] 

[Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:2

2 2(6 4 )24

 H 

wxv L Lx x

 EI = − − +   (elastic curve)

Values: w = 2.5 kips/ft, L = 15 ft, x = 9 ft, EI = 1.2 × 10

7 kip-in.

Computation:2

2 2

22 2 3

7 2

(6 4 )24

(2.5 kips/ft)(9 ft)6(15 ft) 4(15 ft)(9 ft) (9 ft) (12 in./ft)

24(1.2 10 kip-in. )

1.082565 in. 1.083 in.

 H 

wxv L Lx x

 EI = − − +

⎡ ⎤= − − +⎣ ⎦×

= − = ↓   Ans. 

Page 8: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 8/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.30d For the beams and loadings shown below, determine the beam deflection at point

 H . Assume that  EI =  1.2 × 107  kip-in.

2  is

constant for each beam.

Fig. P10.30d  

Solution

Determine deflection of cantilever overhang. [Appendix C, Cantilever beam with uniform load.] 

 Relevant equation from Appendix C:4

,cant8

 H 

wLv

 EI = −   (assuming fixed support at A)

Values: w = 5 kips/ft, L = 8 ft, EI = 1.2 × 10

7 kip-in.

Computation: 4 4 3

,cant 7 2

(5 kips/ft)(8 ft) (12 in./ft)0.36864 in.

8 8(1.2 10 kip-in. ) H 

wLv

 EI = − = − = −

× 

Determine beam slope at  A. [Appendix C, SS beam with concentrated moment.]  Relevant equation from Appendix C:

3 A

 L

 EI θ    =   (slope magnitude)

Values:  M  = (5 kips/ft)(8 ft)(4 ft) = 160 kip-ft,  L = 22 ft, EI = 1.2 × 10

7 kip-in.

Computation:2

7 2

(160 kip-ft)(22 ft)(12 in./ft)0.014080 rad

3 3(1.2 10 kip-in. ) A

 ML

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 4] 

0.36864 in. (8 ft)(12 in./ft)(0.014080 rad) 1.72032 in. 1.720 in. H v   = − − = − = ↓   Ans. 

Page 9: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 9/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.31a For the beams and loadings shown below, determine the beam deflection at

 point H . Assume that EI = 6 × 104 kN-m

2

is constant for each beam.

Fig. P10.31a 

Solution

Determine beam deflection at  H .  [Skill 3] 

[Appendix C, SS beam with concentrated moment.]

 Relevant equation from Appendix C:

  2 2(2 3 )6

 H 

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −60 kN-m, L = 12 m, x = 6 m, EI = 6 × 10

4 kN-m

Computation:

2 2

2 2

4 2

(2 3 )6

( 60 kN-m)(6 m)2(12 m) 3(12 m)(6 m) (6 m)

6(12 m)(6 10 kN-m )

0.009000 m 9.00 mm

 H 

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − +⎣ ⎦×

= = ↑   Ans. 

Page 10: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 10/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.31b For the beams and loadings shown below, determine the beam deflection at point

 H . Assume that EI = 6 × 104 kN-m

2 is constant

for each beam.

Fig. P10.31b 

Solution

Determine deflection of cantilever overhang. [Appendix C, Cantilever beam with uniform load.]

 Relevant equation from Appendix C:4

,cant8

 H 

wLv

 EI = −   (assuming fixed support at A)

Values: w = 7.5 kN/m, L = 3 m, EI = 6 × 10

4 kN-m

Computation:4 4

,cant 4 2

(7.5 kN/m)(3 m)0.00126563 m

8 8(6 10 kN-m ) H 

wLv

 EI = − = − = −

× 

Determine beam slope at  A. [Appendix C, SS beam with concentrated moment.]

 Relevant equation from Appendix C:

3 A

 L

 EI θ    =   (slope magnitude)

Values:  M  = (7.5 kN/m)(3 m)(1.5 m) = 33.75 kN-m,

 L = 6 m, EI = 6 × 104

 kN-m2

 

Computation:

4 2

(33.75 kN-m)(6 m)0.001125 rad

3 3(6 10 kN-m ) A

 ML

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 4] 

0.00126563 m (3 m)(0.001125 rad) 0.00464063 m 4.64 mm H v   = − − = − = ↓   Ans. 

Page 11: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 11/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.31c For the beams and loadings shown below, determine the beam deflection at point

 H . Assume that  EI =  6 × 104  kN-m

2is

constant for each beam.

Fig. P10.31c 

Solution

Determine beam deflection at  B. [Appendix C, Cantilever beam with concentrated load.]

 Relevant equation from Appendix C:3

3 B

 PLv

 EI = −  

Values:  P  = 30 kN, L = 3 m, EI = 6 × 10

4 kN-m

Computation:3 3

4 2

(30 kN)(3 m)0.004500 m

3 3(6 10 kN-m ) B

 PLv

 EI = − = − = −

× 

Determine beam slope at  B. [Appendix C, Cantilever beam with concentrated load.]

 Relevant equation from Appendix C:2

2 B

 PL

 EI θ    =   (slope magnitude)

Values:  P  = 30 kN, L = 3 m, EI = 6 × 10

4 kN-m

Computation:2 2

4 2

(30 kN)(3 m)0.002250 rad

2 2(6 10 kN-m ) B

 PL

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 2] 

0.004500 m (3 m)(0.002250 rad) 0.01125 m 11.25 mm H v   = − − = − = ↓   Ans. 

Alternative solution for beam deflection at  B. 

[Appendix C, Cantilever beam with concentrated load at midspan.]

 Relevant equation from Appendix C:35

48 H 

 PLv

 EI = −  

Values:  P  = 30 kN, L = 6 m, EI = 6 × 104 kN-m

Computation:3 3

4 2

5 5(30 kN)(6 m)0.011250 m 11.25 mm

48 48(6 10 kN-m ) H 

 PLv

 EI = − = − = − = ↓

× 

Page 12: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 12/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.31d For the beams and loadings shown below, determine the beam deflection at

 point H . Assume that EI = 6 × 104 kN-m

2is

constant for each beam.

Fig. P10.31d  

Solution

Determine beam slope at C . [Appendix C, SS beam with uniformly distributed load over a portion of the span.]

 Relevant equation from Appendix C:2

2(2 )24

wa L a

 LEI θ    = −   (slope magnitude)

Values: w = 5 kN/m, L = 9 m, a = 6 m, EI = 6 × 10

4 kN-m

Computation:

[ ]2 2

22

4 2

(5 kN/m)(6 m)(2 ) 2(9 m) (6 m) 0.00200 rad

24 24(9 m)(6 10 kN-m )C 

wa L a

 LEI θ    = − = − =

× 

Determine beam deflection at  H .  [Skill 1] 

(3 m)(0.00200 rad) 0.00600 m 6.00 mm H v   = = = ↑   Ans. 

Page 13: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 13/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.32a For the beams and loadings shown below, determine the beam deflection at

 point  H . Assume that  EI = 3.0 × 106 kip-

in.2 is constant for each beam.

Fig. P10.32a 

Solution 

Determine deflection of cantilever overhang. [Appendix C, Cantilever beam with concentrated moment.]

 Relevant equation from Appendix C:2

,cant2

 H 

 Lv

 EI = −   (assuming fixed support at A)

Values:  M  = 50 kip-ft, L = 6 ft, EI = 3.0 × 10

6 kip-in.

Computation:2 2 3

,cant 6 2

(50 kip-ft)(6 ft) (12 in./ft)0.51840 in.

2 2(3.0 10 kip-in. ) H 

 MLv

 EI = − = − = −

× 

Determine beam slope at  A. [Appendix C, SS beam with concentrated moment.]

 Relevant equation from Appendix C:

3 A

 L

 EI θ    =   (slope magnitude)

Values:  M  = 50 kip-ft, L = 18 ft, EI = 3.0 × 10

6 kip-in.

Computation:2

6 2

(50 kip-ft)(18 ft)(12 in./ft)0.01440 rad

3 3(3.0 10 kip-in. ) A

 ML

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 4] 

0.51840 in. (6 ft)(12 in./ft)(0.01440 rad) 1.5552 in. 1.555 in. H v   = − − = − = ↓   Ans. 

Page 14: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 14/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.32b For the beams and loadings shown below, determine the beam deflection at point

 H . Assume that  EI =  3.0 × 106  kip-in.

2is

constant for each beam.

Fig. P10.32b 

Solution

Determine beam deflection at  H .  [Skill 3] 

[Appendix C, Cantilever beam with concentrated load.]

 Relevant equation from Appendix C:2

(3 )6

 H 

 Pxv L x

 EI = − −   (elastic curve)

Values:  P  = 10 kips, L = 10 ft, x = 7 ft,

 EI = 3.0 × 106 kip-in.

Computation:2

2 3

6 2

(3 )6

(10 kips)(7 ft) (12 in./ft)[3(10 ft) (7 ft)] 1.081920 in. 1.082 in.

6(3.0 10 kip-in. )

 H 

 Pxv L x

 EI = − −

= − − = − = ↓×

  Ans. 

Page 15: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 15/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.32c For the beams and loadings shown below, determine the beam deflection at point

 H . Assume that  EI =  3.0 × 106  kip-in.

2is

constant for each beam.

Fig. P10.32c 

Solution

Determine beam slope at  A. [Appendix C, SS beam with concentrated moment.]

 Relevant equation from Appendix C:

6 A

 L

 EI θ    =   (slope magnitude)

Values:  M  = (2 kips/ft)(8 ft)(4 ft) = 64 kip-ft, L = 18 ft, EI = 3.0 × 10

6 kip-in.

Computation:2

6 2

(64 kip-ft)(18 ft)(12 in./ft)0.009216 rad

6 6(3.0 10 kip-in. ) A

 ML

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 1] 

(6 ft)(12 in./ft)(0.009216 rad) 0.663552 in. 0.664 in. H v   = = = ↑   Ans. 

Page 16: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 16/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.32d For the beams and loadings shown below, determine the beam deflection at point

 H . Assume that  EI =  3.0 × 106  kip-in.

2is

constant for each beam.

Fig. P10.32d  

Solution

Determine beam deflection at  B. [Appendix C, Cantilever beam with uniformly distributed load.]

 Relevant equation from Appendix C:4

8 B

wLv

 EI = −  

Values: w = 1.5 kips/ft, L = 10 ft, EI = 3.0 × 10

6 kip-in.

Computation:4 4 3

6 2

(1.5 kips/ft)(10 ft) (12 in./ft)1.0800 in.

8 8(3.0 10 kip-in. ) B

wLv

 EI = − = − = −

× 

Determine beam slope at  B.  [Appendix C, Cantilever beam with uniformly distributed load.]

 Relevant equation from Appendix C:3

6 B

wL

 EI θ    =   (slope magnitude)

Values: w = 1.5 kips/ft, L = 10 ft, EI = 3.0 × 10

6 kip-in.

Computation:3 3 2

6 2

(1.5 kips/ft)(10 ft) (12 in./ft)0.01200 rad

6 6(3.0 10 kip-in. ) B

wL

 EI θ    = = =

× 

Determine beam deflection at  H .  [Skill 2] 

1.0800 in. (4 ft)(12 in./ft)(0.0120 rad) 1.6560 in. 1.656 in. H v   = − − = − = ↓   Ans. 

Page 17: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 17/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.33 The simply supported beam shownin Fig. P10.33 consists of a W24 × 94

structural steel wide-flange shape [ E  =

29,000 ksi; I  = 2,700 in.4]. For the loading

shown, determine the beam deflection at point C .

Fig. P10.33

Solution

Consider distributed load. [Appendix C, SS beam with uniformly distributed load over portion of span.]

 Relevant equation from Appendix C:3

2 2(4 7 3 )24

wav L aL a

 LEI = − − +  

Values: w = 3.2 kips/ft, L = 28 ft, a = 21 ft,

 EI = 7.830 × 107 kip-in.

Computation:3

2 2

3 32 2

7 2

(4 7 3 )24

(3.2 kips/ft)(21 ft) (12 in./ft)4(28 ft) 7(21 ft)(28 ft) 3(21 ft) 0.333822 in.

24(28 ft)(7.830 10 kip-in. )

wav L aL a

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Consider concentrated load.  [Appendix C, SS beam with concentrated load at midspan.]

 Relevant equation from Appendix C:

2 2

(3 4 )48C 

 Pxv L x EI = − −   (elastic curve)

Values:  P  = 36 kips, L = 28 ft, x = 7 ft, EI = 7.830 × 10

7 kip-in.

Computation:

2 2

32 2

7 2

(3 4 )48

(36 kips)(7 ft)(12 in./ft)3(28 ft) 4(7 ft) 0.249799 in.

48(7.830 10 kip-in. )

 Pxv L x

 EI = − −

⎡ ⎤= − − = −⎣ ⎦×

 

Beam deflection at C  

0.333822 in. 0.249799 in. 0.583620 in. 0.584 in.C v   = − − = − = ↓   Ans. 

Page 18: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 18/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.34 The simply supported beam shownin Fig. P10.34 consists of a W460 × 82

structural steel wide-flange shape [ E  = 200

GPa; I  = 370 × 106 mm

4]. For the loading

shown, determine the beam deflection at point C .

Fig. P10.34

Solution

Consider distributed load. [Appendix C, SS beam with uniformly distributed load over portion of span.]

 Relevant equation from Appendix C:3

2 2(4 7 3 )24

wav L aL a

 LEI = − − +  

Values: w = 26 kN/m, L = 8 m, a = 6 m,

 EI = 7.4 × 104 kN-m

Computation:3

2 2

32 2

4 2

(4 7 3 )24

(26 kN/m)(6 m)4(8 m) 7(6 m)(8 m) 3(6 m) 0.011068 m

24(8 m)(7.40 10 kN-m )

wav L aL a

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Consider concentrated load.  [Appendix C, SS beam with concentrated load not at midspan.]

 Relevant equation from Appendix C:

2 2 2

( )6C 

 Pbxv L b x LEI = − − −   (elastic curve)

Values:  P  = 60 kN, L = 8 m, b = 3 m, x = 2 m, EI = 7.4 × 10

4 kN-m

Computation:

2 2 2

2 2 2

4 2

( )6

(60 kN)(3 m)(2 m)(8 m) (3 m) (2 m) 0.005169 m

6(8 m)(7.40 10 kN-m )

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦×

 

Beam deflection at C  

0.011068 m 0.005169 m 0.016237 m 16.24 mmC v   = − − = − = ↓   Ans. 

Page 19: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 19/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.35 The simply supported beam shownin Fig. P10.35 consists of a W410 × 60

structural steel wide-flange shape [ E  = 200

GPa; I  = 216 × 106 mm

4]. For the loading

shown, determine the beam deflection at

 point B.

Fig. P10.35

Solution

Consider concentrated load. [Appendix C, SS beam with concentrated load not at midspan.]

 Relevant equation from Appendix C:

2 2 2( )6

 B

 Pabv L a b

 LEI = − − −  

Values:  P  = 60 kN, L = 9 m, a = 3 m, b = 6 m, EI = 4.32 × 10

4 kN-m

Computation:

2 2 2

2 2 2

4 2

( )6

(60 kN)(3 m)(6 m)(9 m) (3 m) (6 m) 0.016667 m

6(9 m)(4.32 10 kN-m )

 B

 Pabv L a b

 LEI = − − −

⎡ ⎤= − − − = −⎣ ⎦× 

Consider concentrated moment.  [Appendix C, SS beam with concentrated moment at one end.]

 Relevant equation from Appendix C:

2 2(2 3 )6

 B

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = −45 kN-m, L = 9 m, x = 6 m,

 EI = 4.32 × 104 kN-m

Computation:

2 2

2 2

4 2

(2 3 )6

( 45 kN-m)(6 m)2(9 m) 3(9 m)(6 m) (6 m) 0.004167 m

6(9 m)(4.32 10 kN-m )

 B

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Beam deflection at  B 

0.016667 m 0.004167 m 0.012500 m 12.50 mm Bv   = − + = − = ↓   Ans. 

Page 20: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 20/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.36 The simply supported beam shownin Fig. P10.36 consists of a W21 × 44

structural steel wide-flange shape [ E   =

29,000 ksi;  I  = 843 in.4]. For the loading

shown, determine the beam deflection at

 point B.

Fig. P10.36

Solution

Consider uniformly distributed load.

[Appendix C, SS beam with uniformly distributed load over a portion of the span.]

 Relevant equation from Appendix C:3

2 2(4 7 3 )24

 B

wav L aL a

 LEI = − − +  

Values: w = 5 kips/ft, L = 24 ft, a = 16 ft,

 EI = 2.4447 × 107 kip-in.

Computation:3

2 2

3 32 2

7 2

(4 7 3 )24

(5 kips/ft)(16 ft) (12 in./ft)4(24 ft) 7(16 ft)(24 ft) 3(16 ft) 0.965066 in.

24(24 ft)(2.4447 10 kip-in. )

 B

wav L aL a

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Consider concentrated moment.  [Appendix C, SS beam with concentrated moment at one end.]

 Relevant equation from Appendix C:

2 2

(2 3 )6 B

 M x

v L Lx x LEI = − − +

  (elastic curve)

Values:  M  = −200 kip-ft, L = 24 ft, x = 8 ft,

 EI = 2.4447 × 107 kip-in.

Computation:

2 2

32 2

7 2

(2 3 )6

( 200 kip-ft)(8 ft)(12 in./ft)2(24 ft) 3(24 ft)(8 ft) (8 ft) 0.502638 in.

6(24 ft)(2.4447 10 kip-in. )

 B

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Beam deflection at  B 

0.965066 in. 0.502638 in. 0.462428 in. 0.462 in. Bv   = − + = − = ↓   Ans. 

Page 21: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 21/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.37 The cantilever beam shown in Fig.P10.37 consists of a rectangular structural

steel tube shape [ E   = 29,000 ksi;  I   = 476

in.4]. For the loading shown, determine:

(a) the beam deflection at point B.

(b) the beam deflection at point C .

Fig. P10.37

Solution

(a) Beam deflection at point  B 

Consider uniformly distributed load.

[Appendix C, Cantilever beam with uniformly distributed load.]

 Relevant equation from Appendix C:4

8 B

wLv

 EI = −  

Values: w = 2 kips/ft, L = 6 ft, EI = 1.3804 × 10

7 kip-in.

Computation:4 4 3

7 2

(2 kips/ft)(6 ft) (12 in./ft)0.040559 in.

8 8(1.3804 10 kip-in. ) B

wLv

 EI = − = − = −

× 

Consider concentrated load.  [Appendix C, Cantilever beam with concentrated load at tip.]

 Relevant equation from Appendix C:2

(3 )6

 B

 Pxv L x

 EI = − −   (elastic curve)

Values: 

 P  = 12 kips, L = 10 ft, x = 6 ft, EI = 1.3804 × 107 kip-in.

Computation:

[ ]2 2 3

7 2

(12 kips)(6 ft) (12 in./ft)(3 ) 3(10 ft) (6 ft) 0.216313 in.

6 6(1.3804 10 kip-in. ) B

 Pxv L x

 EI = − − = − − = −

× 

Beam deflection at  B 

0.040559 in. 0.216313 in. 0.256872 in. 0.257 in. Bv   = − − = − = ↓   Ans. 

Page 22: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 22/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Beam deflection at point C  

Consider uniformly distributed load.

[Appendix C, Cantilever beam with uniformly distributed load.]

 Relevant equation from Appendix C:3

6 B

wL

 EI θ    = −  

Values: w = 2 kips/ft, L = 6 ft, EI = 1.3804 × 10

7 kip-in.

Computation:3 3 3

7 2

(2 kips/ft)(6 ft) (12 in./ft)0.0090130 rad

6 6(1.3804 10 kip-in. )

0.040559 in. (4 ft)(0.0090130 rad) 0.076611 in.

 B

wL

 EI 

v

θ    = − = − = −×

= − − = −

 

Consider concentrated load.  [Appendix C, Cantilever beam with concentrated load at tip.]

 Relevant equation from Appendix C:3

3C 

 PLv

 EI = −  

Values:  P  = 12 kips, L = 10 ft, EI = 1.3804 × 10

7 kip-in.

Computation:3 3 3

7 2

(12 kips)(10 ft) (12 in./ft)0.500724 in.

3 3(1.3804 10 kip-in. )C 

 PLv

 EI = − = − = −

× 

Beam deflection at C  

0.076611 in. 0.500724 in. 0.577336 in. 0.577 in.C v   = − − = − = ↓   Ans. 

Page 23: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 23/44

Page 24: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 24/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Beam deflection at point  B 

Consider uniformly distributed load. [Appendix C, Cantilever beam with uniformly distributed load.]

 Relevant equation from Appendix C:2

2 2(6 4 )24

 B

wxv L Lx x

 EI = − − +   (elastic curve)

Values: w = 25 kN/m, L = 4 m, x = 2.5 m, EI = 8.0 × 10

4 kN-m

Computation:2

2 2

22 2

4 2

(6 4 )24

(25 kN/m)(2.5 m)6(4.0 m) 4(4.0 m)(2.5 m) (2.5 m) 0.005066 m

24(8.0 10 kN-m )

 B

wxv L Lx x

 EI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Consider concentrated load.  [Appendix C, Cantilever beam with concentrated load at tip.]

 Relevant equations from Appendix C:3

3 B  PLv

 EI = −  

Values:  P  = 55 kN, L = 2.5 m, EI = 8.0 × 10

4 kN-m

Computation:3 3

4 2

(55 kN)(2.5 m)0.003581 m

3 3(8.0 10 kN-m ) B

 PLv

 EI = − = − = −

× 

Beam deflection at  B 

0.005066 m 0.003581 m 0.008647 m 8.65 mm Bv   = − − = − = ↓   Ans. 

Page 25: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 25/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.39 The solid 1.25-in.-diameter steel [ E =29,000 ksi] shaft shown in Fig. P10.39

supports two pulleys. For the loading

shown, determine:(a) the shaft deflection at point B.

(b) the shaft deflection at point C .

Fig. P10.39

Solution

Section properties:

4 4(1.25 in.) 0.119842 in.64

 I   π 

= =  

(a) Shaft deflection at point  B 

Consider concentrated load at pulley  B. [Appendix C, Cantilever beam with concentrated load at tip.] Relevant equation from Appendix C:

3

3 B

 PLv

 EI = −  

Values:  P  = 200 lb, L = 10 in., EI = 3.47543 × 10

6 lb-in.

Computation:3 3

6 2

(200 lb)(10 in.)0.019182 in.

3 3(3.47543 10 lb-in. ) B

 PLv

 EI = − = − = −

× 

Consider concentrated load at pulley C .  [Appendix C, Cantilever beam with concentrated load at tip.]

 Relevant equation from Appendix C:2

(3 )6

 B

 Pxv L x

 EI = − −   (elastic curve)

Values:  P  = 120 lb, L = 25 in., x = 10 in., EI = 3.47543 × 10

6 lb-in.

Computation:

[ ]2 2

6 2

(120 lb)(10 in.)(3 ) 3(25 in.) (10 in.) 0.037405 in.

6 6(3.47543 10 lb-in. ) B

 Pxv L x

 EI = − − = − − = −

× 

Shaft deflection at  B 

0.019182 in. 0.037405 in. 0.056588 in. 0.0566 in. Bv   = − − = − = ↓   Ans. 

Page 26: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 26/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Shaft deflection at point C  

Consider concentrated load at pulley  B. [Appendix C, Cantilever beam with concentrated load at tip.]

 Relevant equations from Appendix C:3 2

and3 2

 B B

 PL PLv

 EI EI θ = − =   (magnitude)

Values:  P  = 200 lb, L = 10 in., EI = 3.47543 × 10

6 lb-in.

Computation:3 3

6 2

(200 lb)(10 in.)0.019182 in.

3 3(3.47543 10 lb-in. ) B

 PLv

 EI = − = − = −

× 

2 2

6 2

(200 lb)(10 in.)0.0028773 rad

2 2(3.47543 10 lb-in. )

0.019182 in. (15 in.)(0.0028773 rad) 0.062342 in.

 B

 PL

 EI 

v

θ    = = =×

= − − = −

 

Consider concentrated load at pulley C .  [Appendix C, Cantilever beam with concentrated load at tip.]

 Relevant equation from Appendix C:3

3C 

 PLv EI 

= −  

Values:  P  = 120 lb, L = 25 in.,

 EI = 3.47543 × 106 lb-in.

Computation:3 3

6 2

(120 lb)(25 in.)0.179834 in.

3 3(3.47543 10 lb-in. )C 

 PLv

 EI = − = − = −

× 

Shaft deflection atC 

 0.062342 in. 0.179834 in. 0.242176 in. 0.242 in.C v   = − − = − = ↓   Ans. 

Page 27: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 27/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.40 The cantilever beam shown in Fig.P10.40 consists of a rectangular structural

steel tube shape [ E  = 29,000 ksi; I  = 1,710

in.4]. For the loading shown, determine:

(a) the beam deflection at point A.

(b) the beam deflection at point B.

Fig. P10.40

Solution

(a) Beam deflection at point  A 

Consider concentrated moment. [Appendix C, Cantilever beam with concentrated moment.]

 Relevant equation from Appendix C:2

2 A

 Lv

 EI = −  

Values:  M  = −200 kip-ft, L = 15 ft,

 EI = 4.959 × 107 kip-in.

Computation:2 2 3

7 2

( 200 kip-ft)(15 ft) (12 in./ft)0.784029 in.

2 2(4.959 10 kip-in. ) A

 MLv

 EI 

−= − = − =

× 

Consider concentrated load.  [Appendix C, Cantilever beam with concentrated load at tip.]

 Relevant equations from Appendix C:3 2

and3 2

 B B

 PL PLv

 EI EI θ = − =   (slope magnitude)

Values:  P  = −18 kips, L = 9 ft, EI = 4.959 × 10

7 kip-in.

Computation:3 3 3

7 2

2 2 2

7 2

( 18 kips)(9 ft) (12 in./ft)0.152415 in.

3 3(4.959 10 kip-in. )

(18 kips)(9 ft) (12 in./ft)0.0021169 rad

2 2(4.959 10 kip-in. )

0.152415 in. (6 ft)(12 in./ft)(0.0021169 rad) 0.3

 B

 B

 A

 PLv

 EI 

 PL

 EI 

v

θ 

−= − = − =

×

= = =×

= + = 04830 in.

 

Beam deflection at  A 

0.784029 in. 0.304830 in. 1.088860 in. 1.089 in. Av   = + = = ↑   Ans. 

Page 28: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 28/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Beam deflection at point  B 

Consider concentrated moment. [Appendix C, Cantilever beam with concentrated moment.]

 Relevant equation from Appendix C:2

2 B

 xv

 EI = −   (elastic curve)

Values:  M  = −200 kip-ft, L = 15 ft, x = 9 ft, EI = 4.959 × 10

7 kip-in.

Computation:2 2 3

7 2

( 200 kip-ft)(9 ft) (12 in./ft)0.282250 in.

2 2(4.959 10 kip-in. ) B

 Mxv

 EI 

−= − = − =

× 

Consider concentrated load.  [Appendix C, Cantilever beam with concentrated load at tip.]

 Relevant equation from Appendix C:3

3 B

 PLv

 EI = −  

Values:  P  = −18 kips, L = 9 ft,

 EI = 4.959 × 107 kip-in.

Computation:3 3 3

7 2

( 18 kips)(9 ft) (12 in./ft)0.152415 in.

3 3(4.959 10 kip-in. ) B

 PLv

 EI 

−= − = − =

× 

Beam deflection at  B 

0.282250 in. 0.152415 in. 0.434665 in. 0.435 in. Bv   = + = = ↑   Ans. 

Page 29: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 29/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.41 The simply supported beam shown inFig. P10.41 consists of a W21 × 44

structural steel wide-flange shape [ E  =

29,000 ksi;  I   = 843 in.4]. For the loading

shown, determine:

(a) the beam deflection at point A.

(b) the beam deflection at point C .

Fig. P10.41

Solution

(a) Beam deflection at point  A 

Determine cantilever deflection due to uniformly distributed load on overhang. [Appendix C, Cantilever beam with uniform load.]

 Relevant equation from Appendix C:4

8 A

wLv

 EI = −   (assuming fixed support at B)

Values: w = 4 kips/ft, L = 8 ft, EI = 2.4447 × 10

7 kip-in.

Computation:4 4 3

7 2

(4 kips/ft)(8 ft) (12 in./ft)0.144760 in.

8 8(2.4447 10 kip-in. ) A

wLv

 EI = − = − = −

× 

Consider deflection at  A resulting from rotation at  B caused by distributed load on overhang.

[Appendix C, SS beam with concentrated moment.]

 Relevant equation from Appendix C:

3 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = (4 kips/ft)(8 ft)(4 ft) = 128 kip-ft,

 L = 22 ft, EI = 2.4447 × 107 kip-in.

Computation:2

7 2

(128 kip-ft)(22 ft)(12 in./ft)0.0055290 rad

3 3(2.4447 10 kip-in. )

(8 ft)(12 in./ft)(0.0055290 rad) 0.530786 in.

 B

 A

 ML

 EI 

v

θ    = = =×

= = −

 

Page 30: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 30/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider concentrated load.  [Appendix C, SS beam with concentrated load at midspan.]

 Relevant equation from Appendix C:2

16 B

 PL

 EI θ    =   (slope magnitude)

Values:  P  = 45 kips, L = 22 ft, EI = 2.4447 × 10

7 kip-in.

2

Computation:

2 2 2

7 2

(45 kips)(22 ft) (12 in./ft)0.0080182 rad

16 16(2.4447 10 kip-in. )

(8 ft)(12 in./ft)(0.0080182 rad) 0.769744 in.

 B

 A

 PL

 EI 

v

θ    = = =×

= =

 

Beam deflection at  A 

0.144760 in. 0.530786 in. 0.769744 in. 0.094198 in. 0.0942 in. Av   = − − + = = ↑   Ans. 

(b) Beam deflection at point C  

Consider distributed load on overhang.

[Appendix C, SS beam with concentrated moment.] Relevant equation from Appendix C:

2 2(2 3 )6

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = (4 kips/ft)(8 ft)(4 ft) = −128 kip-ft,

 L = 22 ft, x = 11 ft, EI = 2.4447 × 107 kip-in.

Computation:

2 2

32 2

7 2

(2 3 )6

( 128 kip-ft)(11 ft)(12 in./ft)2(22 ft) 3(22 ft)(11 ft) (11 ft) 0.273687 in.

6(22 ft)(2.4447 10 kip-in. )

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider concentrated load.  [Appendix C, SS beam with concentrated load at midspan.]

 Relevant equation from Appendix C:3

48C 

 PLv

 EI = −  

Values:  P  = 45 kips, L = 22 ft, EI = 2.4447 × 10

7 kip-in.

2

Computation:3 3 3

7 2

(45 kips)(22 ft) (12 in./ft)0.705598 in.

48 48(2.4447 10 kip-in. )C 

 PLv

 EI = − = − = −

× 

Beam deflection at C  

0.273687 in. 0.705598 in. 0.431912 in. 0.432 in.C v   = − = − = ↓   Ans. 

Page 31: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 31/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.42 The simply supported beam shownin Fig. P10.42 consists of a W530 × 66

structural steel wide-flange shape [ E   =

200 GPa;  I   = 351 × 106  mm

4]. For the

loading shown, determine:

(a) the beam deflection at point B.

(b) the beam deflection at point D.

Fig. P10.42

Solution

(a) Beam deflection at point  B 

Consider distributed load between supports.  [Appendix C, SS beam with uniformly distributed load.]

 Relevant equation from Appendix C:45

384 B

wLv

 EI = −  

Values: w = 55 kN/m, L = 7.2 m, EI = 7.02 × 10

4 kN-m

Computation:4 4

4 2

5 5(55 kN/m)(7.2 m)0.027415 m

384 384(7.02 10 kN-m ) B

wLv

 EI = − = − = −

× 

Consider distributed load on overhang. [Appendix C, SS beam with concentrated moment.]

 Relevant equation from Appendix C:

2 2(2 3 )6

 B

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = (55 kN/m)(2.8 m)(1.4 m) = −215.6 kN-m,

 L = 7.2 m, x = 3.6 m, EI = 7.02 × 104

 kN-m2

 

Computation:

2 2

2 2

7 2

(2 3 )6

( 215.6 kN-m)(3.6 m)2(7.2 m) 3(7.2 m)(3.6 m) (3.6 m) 0.009951 m

6(7.2 m)(7.02 10 kN-m )

 B

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Beam deflection at  B 

0.027415 m 0.009951 m 0.017464 m 17.46 mm Bv   = − + = − = ↓   Ans. 

Page 32: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 32/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Beam deflection at point  D 

Consider distributed load between supports.  [Appendix C, SS beam with uniformly distributed load.]

 Relevant equation from Appendix C:3

24C 

wL

 EI θ    =   (slope magnitude)

Values: w = 55 kN/m, L = 7.2 m, EI = 7.02 × 10

4 kN-m

Computation:3 3

4 2

(55 kN/m)(7.2 m)0.0121846 rad

24 24(7.02 10 kN-m )

(2.8 m)(0.0121846 rad) 0.034117 m

 D

wL

 EI 

v

θ    = = =×

= =

 

Consider deflection at  D resulting from rotation at C  caused by distributed load on overhang.

[Appendix C, SS beam with concentrated moment.]

 Relevant equation from Appendix C:

3C 

 L

 EI θ    =   (slope magnitude)

Values:  M  = (55 kN/m)(2.8 m)(1.4 m) = 215.6 kN-m,

 L = 7.2 m, EI = 7.02 × 104 kN-m

Computation:

7 2

(215.6 kN-m)(7.2 m)0.0073709 rad

3 3(7.02 10 kN-m )

(2.8 m)(0.0073709 rad) 0.020639 m

 D

 ML

 EI 

v

θ    = = =×

= − = −

 

Determine cantilever deflection due to uniformly distributed load on overhang. [Appendix C, Cantilever beam with uniform load.]

 Relevant equation from Appendix C:4

8 D

wLv

 EI = −   (assuming fixed support at C )

Values: w = 55 kN/m, L = 2.8 m, EI = 7.02 × 10

4 kN-m

Computation:4 4

4 2

(55 kN/m)(2.8 m)0.006020 m

8 8(7.02 10 kN-m ) D

wLv

 EI 

= − = − = −

×

 

Beam deflection at  D 

0.034117 m 0.020639 m 0.006020 m 0.007459 m 7.46 mm Dv   = − − = = ↑   Ans. 

Page 33: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 33/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.43 The simply supported beam shown inFig. P10.43 consists of a W21 × 44 structural

steel wide-flange shape [ E   = 29,000 ksi;  I  =

843 in.4]. For the loading shown, determine:

(a) the beam deflection at point A.

(b) the beam deflection at point C .

(c) the beam deflection at point E .Fig. P10.43

Solution

(a) Beam deflection at point  A 

Determine cantilever deflection due to linearly distributed load on overhang. [Appendix C, Cantilever beam with linear load.]  Relevant equation from Appendix C:

4

0

30 A

w Lv

 EI = −   (assuming fixed support at B)

Values: w0 = −6 kips/ft, L = 12 ft,

 EI = 2.4447 × 10

7

 kip-in.

2

 

Computation:4 4 3

0

7 2

( 6 kips/ft)(12 ft) (12 in./ft)0.293139 in.

30 30(2.4447 10 kip-in. ) A

w Lv

 EI 

−= − = − =

× 

Consider deflection at  A resulting from rotation at  B caused by linear load on overhang.

[Appendix C, SS beam with concentrated moment.]  Relevant equation from Appendix C:

3 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = ½(6 kips/ft)(12 ft)(4 ft) = 144 kip-ft,

 L = 18 ft, EI = 2.4447 × 107 kip-in.

Computation:2

7 2

(144 kip-ft)(18 ft)(12 in./ft)0.0050892 rad

3 3(2.4447 10 kip-in. )

(12 ft)(12 in./ft)(0.0050892 rad) 0.732847 in.

 B

 A

 ML

 EI 

v

θ    = = =×

= =

 

Page 34: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 34/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Consider uniformly distributed loads between supports. [Appendix C, SS beam with uniformly distributed load.] 

 Relevant equation from Appendix C:3

24 B

wL

 EI θ    =   (slope magnitude)

Values: w = 6 kips/ft, L = 18 ft, EI = 2.4447 × 10

7 kip-in.

Computation:3 3 2

7 2

(6 kips/ft)(18 ft) (12 in./ft)0.0085880 rad

24 24(2.4447 10 kip-in. )

(12 ft)(12 in./ft)(0.0085880 rad) 1.236679 in.

 B

 A

wL

 EI 

v

θ    = = =×

= − = −

 

Consider deflection at  A resulting from rotation at  B caused by uniform load on overhang  DE .

[Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

6 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = (6 kips/ft)(6 ft)(3 ft) = 108 kip-ft,

 L = 18 ft, EI = 2.4447 × 107 kip-in.

Computation:2

7 2

(108 kip-ft)(18 ft)(12 in./ft)0.0019085 rad

6 6(2.4447 10 kip-in. )

(12 ft)(12 in./ft)(0.0019085 rad) 0.274818 in.

 B

 A

 ML

 EI 

v

θ    = = =×

= =

 

Beam deflection at  A 

0.293139 in. 0.732847 in. 1.236679 in. 0.274818 in. 0.064124 in. 0.0641 in. Av   = + − + = = ↑   Ans. 

Page 35: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 35/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Beam deflection at point C  

Consider deflection at C  from moment caused by linear load on overhang.

[Appendix C, SS beam with concentrated moment.]  Relevant equation from Appendix C:

2 2(2 3 )6

 M xv L Lx x

 LEI = − − +   (elastic curve)

Values:  M  = ½(6 kips/ft)(12 ft)(4 ft) = 144 kip-ft,

 L = 18 ft, x = 9 ft, EI = 2.4447 × 107 kip-in.2 

Computation:

2 2

32 2

7 2

(2 3 )6

(144 kip-ft)(9 ft)(12 in./ft)2(18 ft) 3(18 ft)(9 ft) (9 ft) 0.206112 in.

6(18 ft)(2.4447 10 kip-in. )

 M xv L Lx x

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Consider uniformly distributed loads between supports. [Appendix C, SS beam with uniformly distributed load.] 

 Relevant equation from Appendix C:45

384C 

wLv

 EI = −  

Values: w = −6 kips/ft, L = 18 ft, EI = 2.4447 × 10

7 kip-in.

Computation:4 4 2

7 2

5 5( 6 kips/ft)(18 ft) (12 in./ft)0.579693 in.

384 384(2.4447 10 kip-in. )C 

wLv

 EI 

−= − = − =

× 

Consider deflection at C  resulting from moment caused by uniform load on overhang  DE .

[Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

2 2(2 3 )6

 M xv L Lx x

 LEI = − − +  (elastic curve)

Values:  M  = (6 kips/ft)(6 ft)(3 ft) = 108 kip-ft,

 L = 18 ft, x = 9 ft, EI = 2.4447 × 107 kip-in.

Computation:

2 2

32 2

7 2

(2 3 )6

(108 kip-ft)(9 ft)(12 in./ft)2(18 ft) 3(18 ft)(9 ft) (9 ft) 0.154585 in.

6(18 ft)(2.4447 10 kip-in. )

 M xv L Lx x

 LEI = − − +

⎡ ⎤= − − + = −⎣ ⎦× 

Beam deflection at C  

0.206112 in. 0.579693 in. 0.154585 in. 0.218995 in. 0.219 in.C v   = − + − = = ↑   Ans. 

Page 36: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 36/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(c) Beam deflection at point  E  

Consider deflection at  E  resulting from rotation at  D caused by linear load on overhang.

[Appendix C, SS beam with concentrated moment.]  Relevant equation from Appendix C:

6 D

 L

 EI θ    =   (slope magnitude)

Values:  M  = ½(6 kips/ft)(12 ft)(4 ft) = 144 kip-ft,

 L = 18 ft, EI = 2.4447 × 107 kip-in.2 

Computation:2

7 2

(144 kip-ft)(18 ft)(12 in./ft)0.0025446 rad

6 6(2.4447 10 kip-in. )

(6 ft)(12 in./ft)(0.0025446 rad) 0.183212 in.

 D

 E 

 ML

 EI 

v

θ    = = =×

= =

 

Consider uniformly distributed loads between supports. [Appendix C, SS beam with uniformly distributed load.] 

 Relevant equation from Appendix C:3

24 D

wL

 EI θ    =   (slope magnitude)

Values: w = 6 kips/ft, L = 18 ft, EI = 2.4447 × 10

7 kip-in.

Computation:3 3 2

7 2

(6 kips/ft)(18 ft) (12 in./ft)0.0085880 rad

24 24(2.4447 10 kip-in. )

(6 ft)(12 in./ft)(0.0085880 rad) 0.618336 in.

 D

 E 

wL

 EI 

v

θ    = = =×

= − = −

 

Consider deflection at  E  resulting from rotation at  D caused by uniform load on overhang  DE .

[Appendix C, SS beam with concentrated moment.]  Relevant equation from Appendix C:

3 D

 L

 EI θ    =   (slope magnitude)

Values:  M  = (6 kips/ft)(6 ft)(3 ft) = 108 kip-ft,

 L = 18 ft, EI = 2.4447 × 107 kip-in.

Computation:2

7 2

(108 kip-ft)(18 ft)(12 in./ft)0.0038169 rad

3 3(2.4447 10 kip-in. )

(6 ft)(12 in./ft)(0.0038169 rad) 0.274818 in.

 D

 E 

 ML

 EI 

v

θ    = = =×

= =

 

Page 37: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 37/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Determine cantilever deflection due to uniformly distributed load on overhang  DE . [Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:4

8 E 

wLv

 EI = −   (assuming fixed support at D)

Values: w = −6 kips/ft, L = 6 ft, EI = 2.4447 × 10

7 kip-in.

Computation:4 4 3

7 2

( 6 kips/ft)(6 ft) (12 in./ft)0.068704 in.

8 8(2.4447 10 kip-in. ) E 

wLv

 EI 

−= − = − =

× 

Beam deflection at  E  

0.183212 in. 0.618336 in. 0.274818 in. 0.068704 in.

0.091602 in. 0.0916 in.

 E v   = − + +

= − = ↓   Ans. 

Page 38: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 38/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.44 The solid 30-mm-diameter steel [ E = 200GPa] shaft shown in Fig. P10.44 supports two

 belt pulleys. Assume that the bearing at  B can

 be idealized as a roller support and that the bearing at  D  can be idealized as a pin support.

For the loading shown, determine:

(a) the shaft deflection at pulley A.(b) the shaft deflection at pulley C .

Fig. P10.44

Solution

Section properties:

4 4(30 mm) 39,760.78 mm64

 I   π 

= =  

(a) Shaft deflection at pulley  A 

Determine cantilever deflection due to pulley  A load. [Appendix C, Cantilever beam with concentrated load.] 

 Relevant equation from Appendix C:3

3 A

 PLv

 EI = −   (assuming fixed support at B)

Values:  P  = 700 N, L = 500 mm, EI = 7.95216 × 10

9 N-mm

Computation:3 3

9 2

(700 N)(500 mm)3.6678 mm

3 3(7.95216 10 N-mm ) A

 PLv

 EI = − = − = −

× 

Consider deflection at  A resulting from rotation at  B caused by pulley  A load.

[Appendix C, SS beam with concentrated moment.]  Relevant equation from Appendix C:

3 B

 L

 EI θ    =   (slope magnitude)

Values:  M  = (700 N)(500 mm) = 350,000 N-mm,

 L = 1,800 mm, EI = 7.95216 × 109 N-mm

Computation:

9 2

(350,000 N-mm)(1,800 mm)0.0264079 rad

3 3(7.95216 10 N-mm )

(500 mm)(0.0264079 rad) 13.2040 mm

 B

 A

 ML

 EI 

v

θ    = = =×

= − = −

 

Consider deflection at  A resulting from rotation at  B caused by pulley C  load.

[Appendix C, SS beam with concentrated load.] 

Page 39: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 39/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

 Relevant equation from Appendix C:2

16 B

 PL

 EI θ    =   (slope magnitude)

Values:  P  = 1,000 N, L = 1,800 mm,

 EI = 7.95216 × 109 N-mm

Computation:2 2

9 2(1,000 N)(1,800 mm) 0.0254648 rad16 16(7.95216 10 N-mm )

(500 mm)(0.0254648 rad) 12.7324 mm

 B

 A

 PL EI 

v

θ    = = =×

= =

 

Shaft deflection at  A 

3.6678 mm 13.2040 mm 12.7324 mm 4.1393 mm 4.14 mm Av   = − − + = − = ↓   Ans. 

(b) Shaft deflection at pulley C  

Consider pulley  A load. [Appendix C, SS beam with concentrated moment.] 

 Relevant equation from Appendix C:

2 2(2 3 )6

C  M xv L Lx x LEI 

= − − +   (elastic curve)

Values:  M  = (700 N)(500 mm) = −350,000 N-mm,

 L = 1,800 mm, x = 900 mm,

 EI = 7.95216 × 109 N-mm

Computation:

2 2

2 2

9 2

(2 3 )6

( 350,000 N-mm)(900 mm)2(1,800 mm) 3(1,800 mm)(900 mm) (900 mm)

6(1,800 mm)(7.95216 10 N-mm )

8.9127 mm

 M xv L Lx x

 LEI = − − +

−⎡ ⎤= − − +⎣ ⎦×

=  

Consider pulley C  load. [Appendix C, SS beam with concentrated load.] 

 Relevant equation from Appendix C:3

48C 

 PLv

 EI = −  

Values:  P  = 1,000 N, L = 1,800 mm,

 EI = 7.95216 × 109 N-mm

Computation:3 3

9 2

(1,000 N)(1,800 mm)15.2789 mm

48 48(7.95216 10 N-mm )C 

 PLv

 EI = − = − = −

× 

Shaft deflection at C  

8.9127 mm 15.2789 mm 6.3662 mm 6.37 mmC v   = − = − = ↓   Ans. 

Page 40: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 40/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.45 The cantilever beam shown in Fig.P10.45 consists of a W530 × 92 structural steel

wide-flange shape [ E  = 200 GPa; I  = 552 × 106

mm4]. For the loading shown, determine:

(a)  the beam deflection at point A.(b) the beam deflection at point B.

Fig. P10.45

Solution

(a) Beam deflection at point  A 

Consider an upward 85 kN/m uniformly distributed load acting over entire 4-m span.

[Appendix C, Cantilever beam with uniformly distributed load.] 

 Relevant equation from Appendix C:4

8 A

wLv

 EI = −  

Values: w = −85 kN/m, L = 4 m, EI = 1.104 × 10

5 kN-m

Computation:4 4

5 2

( 85 kN/m)(4 m)0.024638 m

8 8(1.104 10 kN-m ) A

wLv

 EI 

−= − = − =

× 

Consider a downward 85 kN/m uniformly distributed load acting over span  BC .

[Appendix C, Cantilever beam with uniformly distributed load.]  Relevant equation from Appendix C:

4 3

and8 6

 B B

wL wLv

 EI EI θ = − =   (magnitude)

Values: w = 85 kN/m, L = 2.5 m, EI = 1.104 × 10

5 kN-m

Computation:4 4

5 2

3 3

5 2

(85 kN)(2.5 m)0.003759 m

8 8(1.104 10 kN-m )

(85 kN)(2.5 m)0.0020050 rad

6 6(1.104 10 kN-m )

0.003759 m (1.5 m)(0.0020050 rad) 0.006767 m

 B

 B

 A

wLv

 EI 

wL

 EI 

v

θ 

= − = − = −×

= = =×

= − − = −

 

Beam deflection at  A 

0.024638 m 0.006767 m 0.017871 m 17.87 mm Av   = − = = ↑   Ans. 

Page 41: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 41/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

(b) Beam deflection at point  B 

Consider an upward 85 kN/m uniformly distributed load acting over entire 4-m span.

[Appendix C, Cantilever beam with uniformly distributed load.]  Relevant equation from Appendix C:

22 2(6 4 )

24 B

wxv L Lx x

 EI = − − +   (elastic curve)

Values: w = −85 kN/m, L = 4 m, x = 2.5 m,

 EI = 1.104 × 105 kN-m2 

Computation:2

2 2

22 2

5 2

(6 4 )24

( 85 kN/m)(2.5 m)6(4 m) 4(4 m)(2.5 m) (2.5 m) 0.012481 m

24(1.104 10 kN-m )

 B

wxv L Lx x

 EI = − − +

−⎡ ⎤= − − + =⎣ ⎦×

 

Consider a downward 85 kN/m uniformly distributed load acting over span  BC .

[Appendix C, Cantilever beam with uniformly distributed load.]  Relevant equation from Appendix C:

4

8 B

wLv

 EI = −  

Values: w = 85 kN/m, L = 2.5 m, EI = 1.104 × 10

5 kN-m

Computation:4 4

5 2

(85 kN)(2.5 m)0.003759 m

8 8(1.104 10 kN-m ) B

wLv

 EI = − = − = −

× 

Beam deflection at  B 

0.012481 m 0.003759 m 0.008722 m 8.72 mm Bv   = − = = ↑   Ans. 

Page 42: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 42/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

10.46 The solid 30-mm-diameter steel [ E = 200 GPa] shaft shown in Fig. P10.46

supports two belt pulleys. Assume that

the bearing at  A can be idealized as a pin

support and that the bearing at  E   can beidealized as a roller support. For the

loading shown, determine:

(a) the shaft deflection at pulley B.

(b) the shaft deflection at point C .(c)  the shaft deflection at pulley D.

Fig. P10.46

Solution

Section properties:

4 4(30 mm) 39,760.78 mm64

 I   π 

= =  

(a) Shaft deflection at pulley  B 

Consider pulley  B load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 B

 Pabv L a b

 LEI = − − −  

Values:  P  = 750 N, L = 1,000 mm, a = 300 mm,

b = 700 mm, EI = 7.95216 × 109 N-mm

Computation:

2 2 2

2 2 2

9 2

( )6

(750 N)(300 mm)(700 mm)(1,000 mm) (300 mm) (700 mm)

6(1,000 mm)(7.95216 10 N-mm )1.38642 mm

 B

 Pabv L a b

 LEI = − − −

⎡ ⎤= − − −⎣ ⎦×

= −  

Consider pulley  D load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 B

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 500 N, L = 1,000 mm, x = 300 mm,b = 200 mm, EI = 7.95216 × 10

9 N-mm

Computation:2 2 2

2 2 2

9 2

( )6

(500 N)(200 mm)(300 mm)(1,000 mm) (200 mm) (300 mm)

6(1,000 mm)(7.95216 10 N-mm )

0.54702 mm

 B

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − −⎣ ⎦×

= −  

Page 43: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 43/44

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes onlyto students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that

 permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

Shaft deflection at  B 

1.38642 mm 0.54702 mm 1.93344 mm 1.933 mm Bv   = − − = − = ↓   Ans. 

(b) Shaft deflection at point C  

Consider pulley  B load.  [Appendix C, SS beam with concentrated load not at midspan.]  Relevant equation from Appendix C:

2 2 2( )

6C 

 Pbxv L b x

 LEI 

= − − −   (elastic curve)

Values:  P  = 750 N, L = 1,000 mm, x = 500 mm,

b = 300 mm, EI = 7.95216 × 109 N-mm

Computation:

2 2 2

2 2 2

9 2

( )6

(750 N)(300 mm)(500 mm)(1,000 mm) (300 mm) (500 mm)

6(1,000 mm)(7.95216 10 N-mm )

1.55618 mm

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − −⎣ ⎦×

= −  

Consider pulley  D load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 500 N, L = 1,000 mm, x = 500 mm,

b = 200 mm, EI = 7.95216 × 109 N-mm

Computation:2 2 2

2 2 2

9 2

( )6

(500 N)(200 mm)(500 mm)(1,000 mm) (200 mm) (500 mm)

6(1,000 mm)(7.95216 10 N-mm )

0.74403 mm

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − −⎣ ⎦×

= −  

Shaft deflection at C  

1.55618 mm 0.74403 mm 2.30021 mm 2.30 mmC v   = − − = − = ↓   Ans. 

Page 44: Mechanics of Materials Solutions Chapter10 Probs29 46

7/25/2019 Mechanics of Materials Solutions Chapter10 Probs29 46

http://slidepdf.com/reader/full/mechanics-of-materials-solutions-chapter10-probs29-46 44/44

 

(c) Shaft deflection at pulley  D 

Consider pulley  B load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:

2 2 2( )6

 D

 Pbxv L b x

 LEI = − − −   (elastic curve)

Values:  P  = 750 N, L = 1,000 mm, x = 200 mm,

b = 300 mm, EI = 7.95216 × 109 N-mm

Computation:

2 2 2

2 2 2

9 2

( )6

(750 N)(300 mm)(200 mm)(1,000 mm) (300 mm) (200 mm)

6(1,000 mm)(7.95216 10 N-mm )

0.82053 mm

 D

 Pbxv L b x

 LEI = − − −

⎡ ⎤= − − −⎣ ⎦×

= −  

Consider pulley  D load.  [Appendix C, SS beam with concentrated load not at midspan.] 

 Relevant equation from Appendix C:2 2 2( )

6 D

 Pabv L a b

 LEI = − − −  

Values:  P  = 500 N, L = 1,000 mm, a = 800 mm,b = 200 mm, EI = 7.95216 × 10

9 N-mm

Computation:

2 2 2

2 2 2

9 2

( )6

(500 N)(800 mm)(200 mm) (1,000 mm) (800 mm) (200 mm)6(1,000 mm)(7.95216 10 N-mm )

0.53654 mm

 D

 Pabv L a b

 LEI = − − −

⎡ ⎤= − − −⎣ ⎦×

= −  

Shaft deflection at  D 

0.82053 mm 0.53654 mm 1.35707 mm 1.357 mm Dv   = − − = − = ↓   Ans.