meshless animation of fracturing solids mark pauly leonidas j. guibas richard keiser markus gross...

37
Meshless Animation of Meshless Animation of Fracturing Solids Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Upload: dorothy-haynes

Post on 15-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Meshless Animation of Meshless Animation of Fracturing SolidsFracturing Solids

Mark PaulyLeonidas J. Guibas

Richard KeiserMarkus Gross

Bart AdamsPhilip Dutré

Page 2: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

MotivationMotivation

Simulation of fracturing materials in many different applications.

Page 3: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

MotivationMotivation

Simulation of fracturing materials in many different applications.

Requirements on fracturing algorithm:

Page 4: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

MotivationMotivation

Simulation of fracturing materials in many different applications.

Requirements on fracturing algorithm:brittle or ductile fracture

Page 5: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

MotivationMotivation

Simulation of fracturing materials in many different applications.

Requirements on fracturing algorithm:brittle or ductile fracture

arbitrary cracks

Page 6: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

MotivationMotivation

Simulation of fracturing materials in many different applications.

Requirements on fracturing algorithm:brittle or ductile fracture

arbitrary cracks

control of fracture paths

Page 7: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

MotivationMotivation

Simulation of fracturing materials in many different applications.

Requirements on fracturing algorithm:brittle or ductile fracture

arbitrary cracks

control of fracture paths

highly detailed surfaces

Page 8: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Related WorkRelated Work

O’Brien & Hodgins [99, 02]dynamic remeshing

element cutting difficult to avoid ill-

shaped elements

Page 9: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Related WorkRelated Work

O’Brien & Hodgins [99, 02]dynamic remeshing

element cutting difficult to avoid ill-

shaped elements

Molino, Bao & Fedkiw [04]virtual node algorithm

embedded surface in copied tetrahedra

restricted decomposition of tetrahedras

Page 10: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Meshless MethodsMeshless Methods

Advantagessampling of the volume

handling of large deformation

(re-)sampling of the domain

handling of discontinuities

Drawbacksboundary conditions

overhead for computing interpolation functions

Page 11: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

ContributionsContributions

A meshless animation framework for stiff-elastic and plasto-elastic materials that fracture

handling of brittle and ductile fracture

allows arbitrary crack initiation and propagation

allows for easy control

highly detailed surfaces due to decoupling of physics and surface representation

Page 12: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

OverviewOverview

Part 1: Physics AnimationMeshless Continuum Mechanics

Modeling Discontinuities

Spatial Re-sampling

Part 2: Surface HandlingSurface Model

Crack Initiation & Propagation

Topological Events

Page 13: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Elasticity ModelElasticity Model

Meshless elasticity model derived from continuum mechanics.1

x x+u

displacementfield u

Müller et al.: Point Based Animation of Elastic, Plastic and Melting Objects, SCA 2004

1

t tu t tu

t tεt tσt tU

Simulation loop:

extf tf

Time integrationGradient of displacement fieldStrainStressBody forceAdd external forcesStrain energy

Page 14: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

DiscretizationDiscretizationDiscrete set of nodes {xi}

Approximation of displacement field u:

x

ui

xi

u(x) i i(x) ui

evaluation point

summation overneighboring nodes i

displacement vectorof node i

shape functionof node i

Derivation of shape functions

using Moving Least Squares (MLS)

Page 15: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

DiscretizationDiscretization

Shape functions i:

i(x) = i(x,xi) pT(x) [M(x)]-1 p(xi)

weight function

linear basis p(x) = [1 x]T

moment matrixM(x) = ii(x,xi) p(xi) pT(xi)

Weight function i(x,y):

i(x,y) = i(r) = 1-6r2+8r3-3r4 r10 r>1

r = ||x-y||/hi

with hi the support radius of node i0 1

1

0 r

i(r)

by construction they build a first order partition of unity (PU)

Page 16: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

DiscontinuitiesDiscontinuities

Only visible nodes should interact

collect nearest neighbors

perform visibility test crack

Page 17: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

DiscontinuitiesDiscontinuities

Only visible nodes should interact

collect nearest neighbors

perform visibility test crack

Page 18: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

DiscontinuitiesDiscontinuities

Problem: undesirable discontinuities of the shape functions

not only along the crack

but also within the domain

crack

Page 19: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

DiscontinuitiesDiscontinuities

Weight function Shape function

Visibility Criterion

Page 20: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

DiscontinuitiesDiscontinuities

Solution: transparency method1

nodes in vicinity of crack partially interact

by modifying the weight function:

i’(xi,xj) = i(||xi-xj||/hi + (2ds/κ)2)

crack ds

crack becomes transparent near the crack tip

Organ et al.: Continuous Meshless Approximations for Nonconvex Bodies by Diffraction and Transparency, Comp. Mechanics, 1996

1

Page 21: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

DiscontinuitiesDiscontinuities

Weight function

Shape function

Visibility Criterion Transparency Method

Page 22: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Re-samplingRe-sampling

xi

crack

Add simulation nodes when number of neighbors too small

Shape functions adapt automatically!

Local resampling of the domain of a node

distribute mass

adapt support radius

interpolate attributes

Page 23: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Re-sampling: ExampleRe-sampling: Example

Page 24: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Part 2Part 2Surface HandlingSurface Handling

Page 25: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Surface AnimationSurface Animation

All surfaces are represented using oriented point samples {si} wrapped around the simulation nodes {pj}

Deformation of surfels is computed from neighboring simulation nodes:

surfels {si}

simulationnodes {pj}

xi xi + ji’(xi,xj)(uj+ujT(xj-xi))

same transparency weight

Page 26: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Crack PropagationCrack Propagation

Crack initiationwhere stress above threshold

crack created by inserting 3 crack nodes each carrying 2 opposing surfels connection is crack front

external force

external force

one fracturesurface

crack front

Page 27: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Crack PropagationCrack Propagation

Crack propagationpropagate crack nodes along propagation direction

re-project first and last node

up-sample if necessary

external force

external force

one fracturesurface

Page 28: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Crack Propagation: ExampleCrack Propagation: Example

Page 29: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Crack EventsCrack Events

Splittingwhen crack propagates through the material

split front in two new fronts

each one propagates independently

block of material

Page 30: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Crack EventsCrack Events

Mergingwhen two fronts propagate close to each other

merge fronts and associated fracture surfaces

block of material

Page 31: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Crack Events: ExampleCrack Events: Example

Page 32: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Brittle FractureBrittle Fracture

Initial statistics:4.3k nodes

249k surfels

Final statistics:6.5k nodes

310k surfels

Simulation time:22 sec/frame

Page 33: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Controlled FractureControlled Fracture

Initial statistics:4.6k nodes

49k surfels

Final statistics:5.8k nodes

72k surfels

Simulation time:6 sec/frame

Page 34: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Ductile FractureDuctile Fracture

Initial statistics:2.2k nodes

134k surfels

Final statistics:3.3k nodes

144k surfels

Simulation time:23 sec/frame

Page 35: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

ConclusionConclusion

Advantagesdecoupling of physics and surface representationdynamic adaptation of shape functions

during crack propagation when re-sampling of spatial domain

Drawbacksexcessive fracturing simulation nodes visibility testing is still costly

each test = ray-surface intersection test

Page 36: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Future WorkFuture Work

Real-time simulationsimplification of algorithms

efficient data structures

efficient caching schemes

Solve excessive up-sampling issuevariant of the virtual node algorithm

Page 37: Meshless Animation of Fracturing Solids Mark Pauly Leonidas J. Guibas Richard Keiser Markus Gross Bart Adams Philip Dutré

Thank you!Thank you!

Contact informationMark Pauly [email protected]

Richard Keiser [email protected]

Bart Adams [email protected]

Phil Dutré [email protected]

Markus Gross [email protected]

Leonidas J. Guibas [email protected]