michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_lipson.pdf · cornell...

30
Cornell Nanophotonics Group Cornell Nanophotonics Group http:// http:// nanophotonics.ece.cornell.edu nanophotonics.ece.cornell.edu Photonics on-chip Michal Lipson School of Electrical and Computer Engineering Cornell University nanophotonics.ece.cornell.edu

Upload: others

Post on 20-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Photonics on-chip Michal Lipson

School of Electrical and Computer Engineering

Cornell University

nanophotonics.ece.cornell.edu

Page 2: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Outline

• Motivation and wave guiding theory

(quantum optics on chip)

• Resonators and applications of waveguides

on-chip

• Changing properties of light using

resonators (analogous to quantum optics on-

chip)

Page 3: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Photonics Drives Telecom

10-2

100

102

104

106

108

1010

1012

1014

1880 1900 1920 1940 1960 1980 2000 2020 2040

Rel

ativ

e In

form

atio

n C

apac

ity (

bit/s

)

Year

Telephone lines first constructed

Carrier Telephony first used 12 voicechannels on one wire pair

Early coaxial cable links

Advanced coaxial and

microwave systems

CommunicationSatellites

Single channel (ETDM)

Multi-channel(WDM)

OPTICAL FIBER SYSTEMS

~10Mbps.Km

We are experiencing this drive on-chip!

Page 4: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Page 5: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Luxtera CMOS Photonics Technology

Page 6: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Kimerling, 1997

Silicon photonics on-chip

Page 7: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Silicon photonics for multi-core

interconnect

Photonic Network Interconnect Plane (includes optical devices, electronic drivers & amplifiers and electronic control network)

Optical Off-chipInterconnects

Memory Plane

Memory Plane

Memory Plane

BEOL verticalelectrical interconnects

Processor Plane w/ local memory cache

Photonic Network Interconnect Plane (includes optical devices, electronic drivers & amplifiers and electronic control network)

Optical Off-chipInterconnects

Memory Plane

Memory Plane

Memory Plane

BEOL verticalelectrical interconnects

Processor Plane w/ local memory cache

Bergman-Columbia, J. Kash, IBM

Opt

ical

I/O

Opt

ical

I/O

Page 8: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Why light is guided?How light is guided?

Total internal reflection!

θθθθ> θθθθcrit=sin-1(nL/nH)

The larger is the index-the easier it is to guide

θθθθ

Page 9: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Is it a ray or is it a wave?

Ray picture

Wave picture

E~e-γx

Page 10: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Wavector of propagation

• Light propagating in a medium with index

n:

• vp=c/n

• λ=λo/n

kon kf

β

β2 =(kon+ kf)2

β ≡koneff

Page 11: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Different modes in a waveguide

kon

β

β2 =(ko2n2- kf

2)

E ~ cos kfx e-γx

γ =sqrt(β2-ko2nclad

2)

kf

Lower order

Higher order

β= koneff> koncladd and < konslab

Page 12: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Bending light on-chip

Work only with high confinement,

single mode waveguides!

Page 13: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

“Slot-Waveguide” for High Confinement in sub-

wavelength regions!

nH nH

ws wh

h nS

wh

nC

x

y z

nH = 3.48

nC = nS = 1.46

wS = 50 nm

wh = 180 nm wh = 180 nm

nH = 3.48

0

1.0

Col

or s

cale

nH = 3.48

nC = nS = 1.46

wS = 50 nm

wh = 180 nm wh = 180 nm

nH = 3.48

0

1.0

Col

or s

cale

� True eigenmode

TE-like mode

Page 14: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Si Si

E-Field Distribution

BBAA

rr

BA

EnEn

nED

DDSdD

,

2

,

2

2

0

,,

,

0

⊥⊥

⊥⊥

=⇒

==

=⇒=⋅∫εεε

rr

rr

(nA > nB) � E⊥,B > E⊥,A

x

Si Si

x

nH = 3.48

nC = nS = 1.46

wS = 50 nm

wh = 180 nm wh = 180 nm

nH = 3.48

0

1.0

Col

or s

cale

nH = 3.48

nC = nS = 1.46

wS = 50 nm

wh = 180 nm wh = 180 nm

nH = 3.48

0

1.0

Col

or s

cale

V.Almeida, and M. Lipson et al,, Optics Letters 29, 2387(2004).

Page 15: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Fabrication of Slot-Waveguide and

Measurement of Effective Index

slot

nH nH

ws wh

h nS

wh

nC

x

y z

2

0

22

knn xCeff

γ+≅

Page 16: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

1 .5 0 1 .5 2 1 .5 4 1 .5 6 1 .5 8 1 .6 0 1 .6 2 1 .6 40 .0

0 .2

0 .4

0 .6

0 .8

1 .0

Qua

si-T

M T

rans

mis

sion

(a.u

.)

W a v e le n g th ( µµµµ m )

1 .5 0 1 .5 2 1 .5 4 1 .5 6 1 .5 8 1 .6 0 1 .6 2 1 .6 40 .0

0 .2

0 .4

0 .6

0 .8

1 .0

Qua

si-T

E T

rans

mis

sio

n (a

.u.)

W a ve le n g th (µµµµ m )

TE

1.54 1.56 1.58 1.60

2.2

2.4

2.6

2.8

Wavelength (µµµµm)

Gro

up

Ind

ex

TE (calculated)TM (calculated)TM (experimental)TE (experimental)

Slot-Waveguides for

Highly Integrated Photonics

TM

20 µµ µµ

m

A. Scherer, SPIE, Denver, Aug 2004

Page 17: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Slots for sensing

optical input

optical output

gas input gas output

slot

Page 18: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

High index contrast leads to high

confinement kon

kf

β

γ =sqrt(β2-ko2ncladd

2)

High confienmentLow confienment

Page 19: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

High confinement waveguides for functional

devices

Light

� Intensity in the waveguides can be orders of magnitude higher than the

intensity in the core of single mode optical fiber.

� Nonlinear optical effect can be excited with moderate optical power in

short distances.

Si

SiO2

450 nm ×××× 250 nm

Silicon waveguides:

•High index contrast (very small waveguides: 3 orders of magnitude light

enhancement when compared to fibers)

•Compatible with CMOS microelectronics.

•Ability of large-scale integration.

Page 20: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

BOx: 3µm

Si: 250nm

Si Substrate

BOx: 3µm

Si Substrate

BOx: 3µm

Width = 450nm

Ebeam Lithography EBeam Resist

Oxide Deposition

Etching using RIE

Fabrication

Page 21: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Orientation of the waveguides

Highly polarization dependent

Page 22: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Why not every angle (wavector) can

propagate?

k on

2konhcos θθθθ+Ødown+ Øup=q2ππππ q=1,2,3…..

or cos θθθθ~q ππππ/nkoh

θθθθ

Page 23: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

A Very small waveguide

cos θθθθ~q ππππ/nkoh

If q=1 and h small

cos θθθθ~ ππππ/nkoh is large (small angle)

k onθθθθ

Small angle means very large evanescent field!

Page 24: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Silicon waveguide

Fiber

Light

~3% transmission

Page 25: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Naive Solution

0.5 µ µ µ µm

10 µ µ µ µm

cm

Page 26: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Inverse Taper

0.5 µ µ µ µm

10 µ µ µ µm20µm

NTT, IBM

Page 27: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

0.5 µ µ µ µm

10 µ µ µ µm20µm

Inverse Taper

Page 28: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Substrate

x

z

y

Substrate (Si)

Optical Fiber

MFD = 4.9 µm ws = 120 nm

h = 250 nm

Cladding (SiO2)

Simulations

95% efficiency

Page 29: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Fabrication

<1dB losses

200 nm

CouplerWaveguide

Almeida, V. R., Panepucci, R. R., and M. Lipson, Optics Letters, 28, 1302 (2003).

Page 30: Michal tutorial 1 - fep.if.usp.brfep.if.usp.br/~mmartine/transparencias/18_2_Lipson.pdf · Cornell Nanophotonics Group http:// nanophotonics.ece.cornell.edu Luxtera CMOS Photonics

Cornell Nanophotonics Group Cornell Nanophotonics Group �������� http://http://nanophotonics.ece.cornell.edunanophotonics.ece.cornell.edu

Summary

Motivation

Wave guiding theory

Slot waveguide

Fiber to waveguide coupler

High confinement waveguides/fabrication