(microsoft powerpoint - [mode de compatibilit\351])

44
1 Hall effect, Jack polynomials, CFT….(More to come in the talk by D. Serban) Benoit Estienne, Raoul Santachiara, Didina Serban, Vincent Pasquier

Upload: others

Post on 11-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: (Microsoft PowerPoint -   [Mode de compatibilit\351])

1

Hall effect, Jack polynomials,

CFT….(More to come

in the talk by D. Serban)

Benoit Estienne, Raoul Santachiara, Didina Serban, Vincent Pasquier

Page 2: (Microsoft PowerPoint -   [Mode de compatibilit\351])

2

Most striking occurrence of a

quantum macroscopic effect in the

real word• In presence of of a magnetic field, the

conductivity is quantized to be a simple

fraction up to

• Important experimental fractions for

electrons are:

• Theorists believe for bosons:

• Fraction called filling factor.

1010

12 +p

p

1+p

p

Page 3: (Microsoft PowerPoint -   [Mode de compatibilit\351])

3

Hall effect

• Lowest Landau Level

wave functions

2

!)( l

zzn

n en

zz

−=ψ

nlr =

n=1,2, …, 22 l

A

π

Page 4: (Microsoft PowerPoint -   [Mode de compatibilit\351])

4

022

nl

A=

πNumber of available cells also

the maximal degree in each variable

∆=

=

λλλ

λλλ

SzzAS

mzzS

n

n

n

n

)...(

)...(

1

1

1

1 Is a basis of states for the system

Labeled by partitions

Page 5: (Microsoft PowerPoint -   [Mode de compatibilit\351])

5

particles in the orbital k are

the occupation numbers

equivalently,the number of

times the row of length k

occurs in the partition.

..........

.........

11

1

00

1

210

1000 NNNN

k

zzzz

NNNN

++

Can be represented by a partition with N_0 particles in orbital 0,

N_1 particles in orbital 1…N_k particles in orbital k…..

There exists a partial order on partitions, the squeezing order

kN

Page 6: (Microsoft PowerPoint -   [Mode de compatibilit\351])

6

Interactions translate into repulsion

between particles.

( )m

ji zz −

m universal measures the strength of the interactions.

Competition between interactions which spread electrons apart and high

compression which minimizes the degree n. Ground state is the minimal degreesymmetric polynomial compatible with the repulsive interaction.

Page 7: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Laughlin wave function

occupation numbers:

00010010010

7

Keeping only the dominant weight of the expansion

1 particle at most into m orbitals (m=3 here).

Page 8: (Microsoft PowerPoint -   [Mode de compatibilit\351])

8

Important quantum number

with a topological interpretation

• Filling factor equal to number of particles

per unit cell:

=ν Number of variables

Degree of polynomial

3

1In the preceding case.

Page 9: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Excitation

9

( )∏∏<

−−ji

m

ji

i

i zzzx )(

Imagine you put the excitation at x=0

000001001001

It is pushing the motive to the right, inserting a 1/3 charge

Page 10: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Edge Physics

• We shall make a not very well establishedassumption that electrons at the edge of the sample are relevant.

• Edge state physics described by a 1+1dimentional model.

10

Page 11: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Non commutativity.

• The dynamical degrees of freedom (r,p) are reorganized into two commuting sets,the dynamical momenta and guidingcenters which obey heisenberg algebra:

where l is the magnetic length, p takes N^2 values.

11

qp

qlip

qp e +×= ρρρ

2

Page 12: (Microsoft PowerPoint -   [Mode de compatibilit\351])

algebra realized on edge

states as:

12

∞+1W

qpqp

qlipqlip

qp

cee ++×−× +−

=

δρ

ρρ

)(

],[

22

Page 13: (Microsoft PowerPoint -   [Mode de compatibilit\351])

13

∑∑

≠=

=

∂−

++∂=

∂=

ji

zi

ji

jin

i

zi

g

n

i

zi

ii

i

zzz

zzgzH

zL

2

1

1

0

)(

Jack polynomials are eigenstates of the Calogero-Sutherland Hamiltonian on a circle with 1/r^2

potential interaction.

Jack Polynomials:

Page 14: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Remarks

• By conjugating with a Vandermonde determinant,

• integer Hall effect

• H can be made Hermitian:

• In particular H is noninteracting if g=0,1

• Deformation of Schur functions. 14

g

j

ji

i zz )( −=∆ ∏<

∑∑< −

−+∂−=

ji ji

ggH

i 2

2

)sin(

)1(

4

1

θθθ

mg =

Page 15: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Eigenstates

• C.S Hamiltonian is triangular in the monomial basis. Spectrum:

15

))21((

'

1

0

igE

NgLHH

i

N

i

i

g −+=

−=

∑=

λλλ

Page 16: (Microsoft PowerPoint -   [Mode de compatibilit\351])

16

0/1

' =+ gggEE λλ

)()'()(

2/)1'(')1()(

λλλ

λλλλ

gbbE

ib iii

−=

−=−= ∑∑Duality

Page 17: (Microsoft PowerPoint -   [Mode de compatibilit\351])

17

Jack polynomials at

1

1

+

−−=

k

rg

Feigin-Jimbo-Miwa-Mukhin

Generate ideal of polynomials“vanishing as the r power

of the Distance between particles ( difference

Between coordinates) as k+1 particles come together.

Page 18: (Microsoft PowerPoint -   [Mode de compatibilit\351])

18

Exclusion statistics:

• No more than k particles into r consecutive

orbitals.

For example when

k=r=2, the possible ground states (most dense

packings) are given by:

20202020….

11111111…..

02020202…..

Filling factor is

rkii ≥− +λλ

k

r

Page 19: (Microsoft PowerPoint -   [Mode de compatibilit\351])

CFT

• Parafermionc minimal models :

• Models with symmetry (q=q+k) .

• r=2 (Fateev-Zamolodchikov 85). r=3,4 generealizations. 19

pqpq

k rkkWA

+

++

ψψψ

),1(1

kZ

Page 20: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Clustering properties

• Due to chiral ring properties:

• Is a polynomial vanishing with a degree r when k+1 variables are clustered. This indicates a possible connection between Jack polynomials and parafermionic CFT.

20

rk

j

ji

iN zzzzz/

12111)()()...()( −>< ∏

<

ψψψ

Page 21: (Microsoft PowerPoint -   [Mode de compatibilit\351])

21

Moore Read (k=r=2)

)(1

Pfaff j

ji

i

ji

zzzz

−∏

<

When 3 electrons are put together, the wave function vanishes as:2ε

Page 22: (Microsoft PowerPoint -   [Mode de compatibilit\351])

22

Annulations

.

When 3 electrons are put together, the wave function vanishes as:

2εx x

y

1 2

1

Page 23: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Fractional excitations

23

)1

()(ji

izz

Pfzx−

−∏Can be split into 2 charge ½ excitations:

)))((

(ji

ji

zz

yxzyzxPf

↔+−−

Page 24: (Microsoft PowerPoint -   [Mode de compatibilit\351])

CFT analogous:

• Quasiparticles are represented by Ising field.

• Jastrow factor necessary to insure locality between electrons and quasiparticles.

• Quasiparicles obey braid statistics.

24

2/1

121)()()....()....()( jiN wzwwzz −>< ∏ψψσσ 2/1

121)()()....()....()( jiN wzwwzz −>< ∏ψψσσ

Page 25: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Jack polynomials=CFT

correlators and more?

• q deformed case.

• Bosonic Hamiltonian from CS.

• Duality.

• Another derivation from nullvector.

• More Hamiltonians and representations, some related to AGT conjecture.(DidinaSerban talk)

25

Page 26: (Microsoft PowerPoint -   [Mode de compatibilit\351])

q deformed CS=Macdonald

• Very interesting deformation of the CS model Ruisjenaars Hamiltonian (also Macdonald):

• 2 parameters q,t >g in limt q=t=1.

• Also H’ obtained t,q<>1/t,1/q. 26

ii qzz

i ji ji

jiT

zz

ztzH →

∑∏−

−=

Page 27: (Microsoft PowerPoint -   [Mode de compatibilit\351])

27

Hecke Algebra ( Lascoux

Schutzenberger)

21

1

21

122112 )),(),((zz

tztzzzzzT

−Ψ−Ψ=Ψ

1

21

−− tztz

T projects onto polynomials divisible by:

T obeys Braid group algebra relations

Page 28: (Microsoft PowerPoint -   [Mode de compatibilit\351])

28

With adiabatic time QHE=TQFT

One must consider the space P(x1,x2,x3|zi) of polynomials vanishing when zi-xj goes to 0.

Compute Feynman path integrals

x1 x2 x3

Page 29: (Microsoft PowerPoint -   [Mode de compatibilit\351])

29

Y3

1 23 4

0],[ =ji YY

Shift by q

Hecke generators

Page 30: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Collective variables

• Jevicki Sakita (NPB 165,1980)

• Stanley (Adv. Math. 77, 1989)

• Consider the action of the Hamiltonian on a wave function depending on collective variables:

30∑=

Ψ

k

ik zp

pp ,...),(21

with

Page 31: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Collective Hamiltonian:

• H=K+gV

31

nnl

nlk

k

mn

mn

mnnn

n

npNppg

mnppn

∂−++

∂∂+∂=

∑∑

=+

+

))1((

,

2

Page 32: (Microsoft PowerPoint -   [Mode de compatibilit\351])

In terms of bosons:

32

nn

nn

nga

pga

∂=

=−

2/1

2/1

0

0

2/1

1

3/

)1(

NgLaaag

aagH

lmn

lmn

n

n

n

+

+−=

=++

>−

Page 33: (Microsoft PowerPoint -   [Mode de compatibilit\351])

In terms of Virasoro

• H is hermitian but p depend on g, therefore,

• Macdonald approach Hilbert Schmidt.

• H= (Awata et al.)

33

mnmng

npp ,, δ>=<

n

n

n la∑>

−0

Virasoro Algebra constructed via FF construction

)1

(613g

gc +−=

Page 34: (Microsoft PowerPoint -   [Mode de compatibilit\351])

q-deformed case.

• Hamiltonians become zero mode of vertex operator analogous to e,f generators of SL2(q). Ding Iohara (Shiraishi et al.)

• Can be thougt as (central extension of) algebra generated by: ,

• Analogous of Cartan generators K generated by:

• Also extention of :34

k

iy∑

∑ iz

∞+1W

k

iz∑

Page 35: (Microsoft PowerPoint -   [Mode de compatibilit\351])

SL2(Z) symmetry.

35

Page 36: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Classical limit

• Jevicki (81). Abanov Bettelheim, Wiegmann (08).

• Set

• Then:

36

gvzan

n

n /)1(

0

==∂ +−

>

∑ϕ

dxvhvvH x )(.2

1

3

1 3 += ∫

Page 37: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Duality again:

• Recall the way quasiparticles are constructed in the Hall effect:

• So, we can consider the Kernel:

37

( )∏∏<

−−ji

m

ji

i

i zzzx )(

)(,

∏ −ia

ja zx

Page 38: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Kernel as intertwiner

• This Kernel intertwines electrons and quasiholes with fractional charge 1/g (Laughlin argument and g an integer),

• It is not difficult to show (Macdonald,Gaudin):

38

0/1

=+ g

z

g

x HH

Page 39: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Correlators?

• Derive this Hamiltonian by using Correlation functions in CFT. (Cardy…) Consider degenerate fields (g=-1/3 Moore Read) corresponds to :

• Obeying level 2 degeneracy equation:

39

ϕ2/1)2/(g

g eV−=

)()()(2

xVxgTxV ggx =∂

Page 40: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Another expression:

• Going back to the boson representation for the Virasoro generators (F.F.), we canalso rewrite the conserved quantities as a sum of two BO hamiltonians+ a coupling

(Generalizing a formula of Belavin,Belavin)

40

m

m

mccgcHcHI ')1()'()(0

333 ∑>

−+++ −++=

Page 41: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Duality relation:

• The same can be repeated for the dual operators, absence of interations between the two type of fields implies similar separation as for the abelian case:

• Implying a factorization of the conformal blocs:

41

0/1

=+ g

z

g

x HH

)()(),( ' zPxPzxF λλ

λ∑=

Page 42: (Microsoft PowerPoint -   [Mode de compatibilit\351])

In the Ising case

• Correlator becomes factorized:

• Jastrow factor can be taken into accout by U(1) factor.

42

2/1

121 )()()....()....()( jiN wzwwzz −>< ∏ψψσσ

ϕ2/1)2/(g

g eV−= ϕ2/1

)2/1(

/1

g

g eV−=

Page 43: (Microsoft PowerPoint -   [Mode de compatibilit\351])

Organization of states.

• Didina Serban will show that the Hamiltonian is the sum of 2 independantC.S. Hamiltonians up to a lower triangularinteraction term. So the spectrum ischaracterized by 2 sets of quantum numbers. Agrees with the exclusion statistics selection rules.

43

Page 44: (Microsoft PowerPoint -   [Mode de compatibilit\351])

44

Conclusions extensions

• Can be generalized to W-n theories in particular to parafermionic theories relevant for the Hall effect (Haldane Rezayi serie).

• CS Hamiltonian seems to provide a « good » bases to classify the descendants inside a Virasoro module.

• A lot more need to be understood, non polynomial solutions of C.S. (Didina’s talk) , relevance for the QHE etc…