minerals the background of materials science

29
KJM3100 V2008 Minerals; The background of materials science Formation, structure, properties and applications of minerals are in many ways the starting points of materials science. Learning from Nature (stealing “ideas” matured over millions of years) is a good way to make some progress. KJM3100 V2008 Minerals naturally occurring inorganic solid fixed composition or within fixed range

Upload: victor-rivasplata

Post on 08-Dec-2015

227 views

Category:

Documents


0 download

DESCRIPTION

tex

TRANSCRIPT

Page 1: Minerals the Background of Materials Science

KJM3100 V2008

Minerals; The background of materials science

Formation, structure, properties and applications of minerals are in many ways the starting points of materials science.

Learning from Nature (stealing “ideas” matured over millions of years) is a good way to make some progress.

KJM3100 V2008

Minerals

•naturally occurring

•inorganic

•solid

•fixed composition or within fixed range

Page 2: Minerals the Background of Materials Science

KJM3100 V2008

Hardness scale (Mohs)

1 Talc (Mg3Si4O10(OH)2)

2 Gypsum (CaSO4·2H2O)

3 Calcite (CaCO3)

4 Fluorite (CaF2)

5 Apatite (Ca5(PO4)3(OH-,Cl-,F-))

6 Orthoclase Feldspar (KAlSi3O8)

7 Quartz (SiO2)

8 Topaz (Al2SiO4(OH-,F-)2)

9 Corundum (Al2O3)

10 Diamond (C)

Hardness Substance or Mineral1 Liquid 2 Gypsum 2.5 to 3 Gold, Silver 3 Calcite, Copper penny 4 Fluorite 4 to 4.5 Platinum 4 to 5 Iron 5 Apatite 6 Orthoclase 6.5 Iron pyrite 6 to 7 Glass, Vitreous pure silica7 Quartz 7 and up Hardened steel 8 Topaz 9 Corundum 10 Garnet 11 Fused zirconia 12 Fused alumina 13 Silicon carbide 14 Boron carbide 15 Diamond

KJM3100 V2008

Page 3: Minerals the Background of Materials Science

KJM3100 V2008

Formation of minerals

•Formation from melts

•Solid state reactions

•Hydrothermal conditions

•Sedimentation/precipitation

•Vapor phase deposition

•Exsolution

KJM3100 V2008

A few important mineral types/structures

Perovskite CaTiO3

Spinel MgAl2O4

Rutile TiO2

Rock Salt NaCl, MgOCorundum Al2O3

GarnetOlivine……

Page 4: Minerals the Background of Materials Science

KJM3100 V2008

Class Arrangement oftetrahredra

Shared corners Repeat unit Si:O Example

Nesosilicates Independenttetrahedra

0 SiO44- 1:4 Olivine

Sorosilicates Pair oftetrahedrasharing corner

1 Si2O76- 1:3.5 Hemimorphite

Cyclosilicates Closed rings oftetrahedra

2 SiO32- 1:3 Tourmaline

Inosilicates Infinite singlechain oftetrahedra

2 SiO32- 1:3 Pyroxenes

Infinite doublechains oftetrahedra

2.5 Si4O116- 1:2.75 Amphiboles

Phyllosilicates Infinite sheetsof tetrahedra

3 Si2O52- 1:2.5 Micas

Tektosilicates Unboundedframework oftetrahedra

4 SiO2 1:2 Quartz,feldspars

SILICATE CLASSIFICATION

KJM3100 V2008

Isomorphous replacement in silicates

Some cations and anions are readily replacable:(Not always carrying the same charge!)

Na+, Mg2+, Ca2+, Mn2+, Fe3+

O2-, F-, OH-

And typically:

Si4+, Al3+

E.g. Hornblende,

(Ca, Na)(Ca, Na)22--3 3 (Mg, Fe, Al)(Mg, Fe, Al)55 [(Si,Al)[(Si,Al)88OO2222] (OH)] (OH)22

Page 5: Minerals the Background of Materials Science

KJM3100 V2008

KJM3100 V2008

Mineral Structures

Silicates are classified on the basis of Si-O polymerism

The building unit: [SiO4]4- tetrahedron

Page 6: Minerals the Background of Materials Science

KJM3100 V2008

Mineral Structures

Silicates are classified on the basis of Si-O polymerism

[SiO4]4- Independent tetrahedra Nesosilicates

Examples: olivine garnet

[Si2O7]6- Double tetrahedra Sorosilicates

Examples: lawsonite

n[SiO3]2- n = 3, 4, 6 Cyclosilicates

Examples: benitoite BaTi[Si3O9]

axinite Ca3Al2BO3[Si4O12]OH

beryl Be3Al2[Si6O18] (aquamarine, emerald)

KJM3100 V2008

Mineral Structures

Silicates are classified on the basis of Si-O polymerism

[SiO3]2- single chains Inosilicates [Si4O11]4- Double tetrahedra

pryoxenes pyroxenoids amphiboles

Page 7: Minerals the Background of Materials Science

KJM3100 V2008

Mineral Structures

Silicates are classified on the basis of Si-O polymerism

[Si2O5]2- Sheets of tetrahedra Phyllosilicatesmicas talc clay minerals serpentine

KJM3100 V2008

Mineral Structures

Silicates are classified on the basis of Si-O polymerism

[SiO2] 3-D frameworks of tetrahedra: fully polymerized Tectosilicatesquartz and the silica minerals feldspars feldspathoids zeolites

lowlow--quartzquartz

Page 8: Minerals the Background of Materials Science

KJM3100 V2008

KJM3100 V2008

Mineral Structures

Nesosilicates: independent SiO4 tetrahedra

Page 9: Minerals the Background of Materials Science

KJM3100 V2008

Examples:

Forsterite Mg2SiO4

Fayalite Fe(II)2SiO4

Tephroite Mn(II)2SiO4

Liebenbergite (Ni,Mg)2SiO4

Monticellite CaMgSiO4

Kirschsteinite CaFe(II)SiO4

Glaucochroite CaMnSiO4

Olivine group

KJM3100 V2008

Nesosilicates: independent SiO4 tetrahedra

Olivine (100) view blue = M1 yellow = M2Olivine (100) view blue = M1 yellow = M2

bb

cc

projectionprojection

Page 10: Minerals the Background of Materials Science

KJM3100 V2008Olivine (100) view blue = M1 yellow = M2Olivine (100) view blue = M1 yellow = M2

bb

cc

perspectiveperspective

Nesosilicates: independent SiO4 tetrahedra

KJM3100 V2008Olivine (001) view blue = M1 yellow = M2Olivine (001) view blue = M1 yellow = M2

M1 in rows M1 in rows and share and share edgesedges

M2 form M2 form layers in alayers in a--c c that share that share corners corners

Some M2 Some M2 and M1 share and M1 share edgesedges

bb

aa

Nesosilicates: independent SiO4 tetrahedra

Page 11: Minerals the Background of Materials Science

KJM3100 V2008

Nesosilicates: independent SiO4 tetrahedra

Olivine (100) view blue = M1 yellow = M2Olivine (100) view blue = M1 yellow = M2

bb

cc

M1 and M2 as polyhedraM1 and M2 as polyhedra

KJM3100 V2008

Green sand beach, Papakolea, Hawaii

Page 12: Minerals the Background of Materials Science

KJM3100 V2008

Nesosilicates: independent SiO4 tetrahedra

Garnet (001) view blue = Si purple = B turquoise = AGarnet (001) view blue = Si purple = B turquoise = A

Garnet: AGarnet: A2+2+33 BB3+3+

22 [SiO[SiO44]]3 3

““PyralspitesPyralspites”” -- B = AlB = AlPyPyrope: Mgrope: Mg33 AlAl22 [SiO[SiO44]]3 3

AlAlmandine: Femandine: Fe33 AlAl22 [SiO[SiO44]]33

SpSpessartine: Mnessartine: Mn33 AlAl22 [SiO[SiO44]]33

““UgranditesUgrandites”” -- A = CaA = CaUUvarovite: Cavarovite: Ca33 CrCr22 [SiO[SiO44]]33

GrGrossularite: ossularite: CaCa33 AlAl22 [SiO[SiO44]]33

AndAndradite: Caradite: Ca33 FeFe22 [SiO[SiO44]]33

KJM3100 V2008

Nesosilicates: independent SiO4 tetrahedra

Garnet (111) view blue = Si purple = B turquoise = AGarnet (111) view blue = Si purple = B turquoise = A

Garnet: AGarnet: A2+2+33 BB3+3+

22 [SiO[SiO44]]3 3

““PyralspitesPyralspites”” -- B = AlB = AlPyPyrope: Mgrope: Mg33 AlAl22 [SiO[SiO44]]3 3

AlAlmandine: Femandine: Fe33 AlAl22 [SiO[SiO44]]33

SpSpessartine: Mnessartine: Mn33 AlAl22 [SiO[SiO44]]33

““UgranditesUgrandites”” -- A = CaA = CaUUvarovite: Cavarovite: Ca33 CrCr22 [SiO[SiO44]]33

GrGrossularite: ossularite: CaCa33 AlAl22 [SiO[SiO44]]33

AndAndradite: Caradite: Ca33 FeFe22 [SiO[SiO44]]33

aa11

aa22

aa33

Page 13: Minerals the Background of Materials Science

KJM3100 V2008

LED White light is currently achieved by using two different methods. One is by combining a blue 450nm – 470nm GaN (gallium nitride) LED with YAG (Yttrium Aluminum Garnet) phosphor. The blue wavelength excites the phosphor causing it to glow white.

YIG-YAGY3Fe5O12 , Y3Al5O12

YIG: Magnetic domains

Garnet: A(II)Garnet: A(II)33B(III)B(III)22 [SiO[SiO44]]33

YIG: YYIG: Y33Fe(III)Fe(III)22 [Fe(III)O[Fe(III)O44]]33

YAG: YYAG: Y33AlAl22 [AlO[AlO44]]33

KJM3100 V2008

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)(Ca)

Diopside: CaMg [SiDiopside: CaMg [Si22OO66]]bb

a si

na

sin ββ

Where are the SiWhere are the Si--OO--SiSi--O chains??O chains??

Ruby w. diopside

Page 14: Minerals the Background of Materials Science

KJM3100 V2008

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)(Ca)

bb

a si

na

sin ββ

KJM3100 V2008

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)(Ca)

bb

a si

na

sin ββ

Page 15: Minerals the Background of Materials Science

KJM3100 V2008

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)(Ca)

bb

a si

na

sin ββ

KJM3100 V2008

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)(Ca)

bb

a si

na

sin ββ

Page 16: Minerals the Background of Materials Science

KJM3100 V2008

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)(Ca)

bb

a si

na

sin ββ

KJM3100 V2008

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)(Ca)

Perspective viewPerspective view

Page 17: Minerals the Background of Materials Science

KJM3100 V2008

Inosilicates: single chains- pyroxenes

Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)(Ca)

IV slabIV slab

IV slabIV slab

IV slabIV slab

IV slabIV slab

VI slabVI slab

VI slabVI slab

VI slabVI slab

bb

a si

na

sin ββ

KJM3100 V2008

Pyroxene Chemistry

The general pyroxene formula:

W1-P (X,Y)1+P Z2O6

Where

– W = Ca Na

– X = Mg Fe2+ Mn Ni Li

– Y = Al Fe3+ Cr Ti

– Z = Si Al

Anhydrous so high-temperature or dry conditions favor pyroxenes over amphiboles

Page 18: Minerals the Background of Materials Science

KJM3100 V2008

Pyroxenoids“Ideal” pyroxene chains with

5.2 A repeat (2 tetrahedra) become distorted as other cations occupy VI sites

WollastoniteWollastonite(Ca (Ca →→ M1) M1)

→→ 33--tet repeattet repeat

RhodoniteRhodoniteMnSiOMnSiO33

→→ 55--tet repeattet repeat

PyroxmangitePyroxmangite(Mn, Fe)SiO(Mn, Fe)SiO33

→→ 77--tet repeattet repeat

PyroxenePyroxene22--tet repeattet repeat

7.1 A12.5 A

17.4 A

5.2 A

KJM3100 V2008

Inosilicates: double chains- amphiboles

Hornblende:Hornblende:(Ca, Na)(Ca, Na)22--3 3 (Mg, Fe, Al)(Mg, Fe, Al)55

[(Si,Al)[(Si,Al)88OO2222] (OH)] (OH)22

bb

a si

na

sin ββ

Hornblende (001) view dark blue = Si, Al purple = M1 rose = Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purpllight blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)e ball = A (Na)

little turquoise ball = Hlittle turquoise ball = H

Page 19: Minerals the Background of Materials Science

KJM3100 V2008

SiO4 tetrahedra polymerized into 2-D sheets: [Si2O5]

Apical O’s are unpolymerized and are bonded to other constituents

Phyllosilicates

KJM3100 V2008

Tetrahedral layers are bonded to octahedral layers

(OH) pairs are located in center of T rings where no apical O

Phyllosilicates

Page 20: Minerals the Background of Materials Science

KJM3100 V2008

Octahedral layers can be understood by analogy with hydroxides

Phyllosilicates

Brucite: Mg(OH)Brucite: Mg(OH)22

Layers of octahedral Mg in Layers of octahedral Mg in coordination with (OH)coordination with (OH)

Large spacing along Large spacing along cc due due to weak van der Waals to weak van der Waals bondsbonds

cc

Hydrotalcite

KJM3100 V2008

Phyllosilicates

Gibbsite: Al(OH)Gibbsite: Al(OH)33

Layers of octahedral Al in coordination with (OH)Layers of octahedral Al in coordination with (OH)

AlAl3+3+ means that means that only 2/3 of the VI sites may be occupiedonly 2/3 of the VI sites may be occupied for chargefor charge--balance reasonsbalance reasons

BruciteBrucite--type layers may be called type layers may be called trioctahedraltrioctahedral and gibbsiteand gibbsite--type type dioctahedraldioctahedral

aa11

aa22

Page 21: Minerals the Background of Materials Science

KJM3100 V2008

Phyllosilicates

Kaolinite:Kaolinite: AlAl22 [Si[Si22OO55] (OH)] (OH)44

TT--layers and layers and didiocathedral (Alocathedral (Al3+3+) layers ) layers

(OH) at center of T(OH) at center of T--rings and fill base of VI layer rings and fill base of VI layer →→

Yellow = (OH)Yellow = (OH)

T T O O --T T O O --T T OO

vdwvdw

vdwvdw

weak van der Waals bonds between Tweak van der Waals bonds between T--O groups O groups

KJM3100 V2008

Phyllosilicates

Serpentine:Serpentine: MgMg33 [Si[Si22OO55] (OH)] (OH)44

TT--layers and layers and tritriocathedral (Mgocathedral (Mg2+2+) layers ) layers

(OH) at center of T(OH) at center of T--rings and fill base of VI layer rings and fill base of VI layer →→

Yellow = (OH)Yellow = (OH)

T T O O --T T O O --T T OO

vdwvdw

vdwvdw

weak van der Waals bonds between Tweak van der Waals bonds between T--O groups O groups

Page 22: Minerals the Background of Materials Science

KJM3100 V2008

Serpentine

Octahedra are a bit larger than tetrahedral Octahedra are a bit larger than tetrahedral match, so they cause bending of the Tmatch, so they cause bending of the T--O O layers (after Klein and Hurlbut, 1999).layers (after Klein and Hurlbut, 1999).

Antigorite maintains a Antigorite maintains a sheetsheet--like form by like form by

alternating segments of alternating segments of opposite curvatureopposite curvature

Chrysotile does not do this Chrysotile does not do this and tends to roll into tubesand tends to roll into tubes

KJM3100 V2008

Chrysotile, asbestosChrysotile, asbestos

Page 23: Minerals the Background of Materials Science

KJM3100 V2008

Serpentine

The rolled tubes in chrysotile resolves the apparent The rolled tubes in chrysotile resolves the apparent paradox of asbestosform sheet silicatesparadox of asbestosform sheet silicates

S = serpentine T = talcS = serpentine T = talcNagby and Faust (1956) Am. Mineralogist 41, 817-836.

Veblen and Busek, 1979, Science 206, 1398-1400.

KJM3100 V2008

Phyllosilicates

Pyrophyllite:Pyrophyllite: AlAl22 [Si[Si44OO1010] (OH)] (OH)22

TT--layer layer -- didiocathedral (Alocathedral (Al3+3+) layer ) layer -- TT--layer layer

T T O O T T --T T O O T T --T T O O TT

vdwvdw

vdwvdw

weak van der Waals bonds between T weak van der Waals bonds between T -- O O -- T groups T groups

Yellow = (OH)Yellow = (OH)

Page 24: Minerals the Background of Materials Science

KJM3100 V2008

Phyllosilicates

Talc:Talc: MgMg33 [Si[Si44OO1010] (OH)] (OH)22

TT--layer layer -- tritriocathedral (Mgocathedral (Mg2+2+) layer ) layer -- TT--layer layer

T T O O T T --T T O O T T --T T O O TT

vdwvdw

vdwvdw

weak van der Waals bonds between T weak van der Waals bonds between T -- O O -- T groups T groups

Yellow = (OH)Yellow = (OH)

KJM3100 V2008

Phyllosilicates

Muscovite:Muscovite: KK AlAl22 [Si[Si33AlAlOO1010] (OH)] (OH)2 2 (coupled K (coupled K -- AlAlIVIV))

TT--layer layer -- didiocathedral (Alocathedral (Al3+3+) layer ) layer -- TT--layer layer -- KK

T T O O T T KKT T O O T T KKT T O O TT

K between T K between T -- O O -- T groups is stronger than vdwT groups is stronger than vdw

Page 25: Minerals the Background of Materials Science

KJM3100 V2008

Phyllosilicates

Phlogopite:Phlogopite: K MgK Mg33 [Si[Si33AlOAlO1010] (OH)] (OH)22

TT--layer layer -- tritriocathedral (Mgocathedral (Mg2+2+) layer ) layer -- TT--layer layer -- KK

T T O O T T KKT T O O T T KKT T O O TT

K between T K between T -- O O -- T groups is stronger than vdwT groups is stronger than vdw

KJM3100 V2008

SOLID SOLUTION

• Occurs when, in a crystalline solid, one element substitutes for another.

• For example, a garnet may have the composition: (Mg1.7Fe0.9Mn0.2Ca0.2)Al2Si3O12.

• The garnet is a solid solution of the following end member components:

Pyrope - Mg3Al2Si3O12; Spessartine - Mn3Al2Si3O12;

Almandine - Fe3Al2Si3O12; and Grossular -Ca3Al2Si3O12.

Page 26: Minerals the Background of Materials Science

KJM3100 V2008

GOLDSCHMIDT’S RULES

1. The ions of one element can extensively replace those of another in ionic crystals if their radii differ by less than approximately 15%.

2. Ions whose charges differ by one unit substitute readily for one another provided electrical neutrality of the crystal is maintained. If the charges differ by more than one unit, substitution is generally slight.

3. When two different ions can occupy a particular position in a crystal lattice, the ion with the higher ionic potential forms a stronger bond with the anions surrounding the site.

KJM3100 V2008

RINGWOOD’S MODIFICATION OFGOLDSCHMIDT’S RULES

4. Substitutions may be limited, even when the size and charge criteria are satisfied, when the competing ions have different electronegativities and form bonds of different ionic character.

This rule was proposed in 1955 to explain discrepancies with respect to the first three Goldschmidt rules.

For example, Na+ and Cu+ have the same radius and charge, but do not substitute for one another.

Page 27: Minerals the Background of Materials Science

KJM3100 V2008

COUPLED SUBSTITUTIONS

Can Th4+ substitute for Ce3+ in monazite (CePO4)?

Rule 1: When CN = 9, rTh4+ = 1.17 Å, rCe3+ = 1.23Å. OK

Rule 2: Only 1 charge unit difference. OK

Rule 3: Ionic potential (Th4+) = 4/1.17 = 3.42; ionic potential (Ce3+) = 3/1.23 = 2.44, so Th4+ is preferred!

Rule 4: χTh = 1.3; χCe = 1.1. OK

But we must have a coupled substitution to maintain neutrality:

Th4+ + Si4+ ↔ Ce3+ + P5+

KJM3100 V2008

But can Si4+ substitute for P5+ according to Goldschmidt’s rules?

Rule 1: When CN = 4, rSi4+ = 0.34 Å, rP5+ = 0.25 Å. Hmm

Rule 2: Only 1 charge unit difference. OK

Rule 3: Ionic potential (Si4+) = 4/0.34 = 11.76; ionic potential (P5+) = 5/0.25 = 20, so P5+ is preferred.

Rule 4: χSi = 1.8; χP = 2.1. OK

Small amounts of Si will be present in monazite.

Composition: (Ce, La, Pr, Nd, Th, Y)PO4

Page 28: Minerals the Background of Materials Science

KJM3100 V2008

Roald Hoffmann: An Unusual State of Matter, in "Bound" ed. W. Carleton, C. Bond, Cornell Univ. (1986)

KJM3100 V2008

OTHER EXAMPLES OF COUPLED SUBSTITUTION

Plagioclase: NaAlSi3O8 - CaAl2Si2O8

Na+ + Si4+ ↔ Ca2+ + Al3+

Gold and arsenic in pyrite (FeS2):

Au+ + As3+ ↔ 2Fe2+

REE and Na in apatite (Ca5(PO4)3F):

REE3+ + Na+ ↔ 2Ca2+

Page 29: Minerals the Background of Materials Science

KJM3100 V2008

INCOMPATIBLE VS. COMPATIBLE TRACE ELEMENTS

Incompatible elements: Elements that are too large and/or too highly charged to fit easily into common rock-forming minerals that crystallize from melts. These elements become concentrated in melts.

Large-ion lithophile elements (LIL’s): Incompatible owing to large size, e.g., Rb+, Cs+, Sr2+, Ba2+, (K+).

High-field strength elements (HFSE’s): Incompatible owing to high charge, e.g., Zr4+, Hf 4+, Ta4+, Nb5+, Th4+, U4+, Mo6+, W6+, etc.

Compatible elements: Elements that fit easily into rock-forming minerals, and may in fact be preferred, e.g., Cr, V, Ni, Co, Ti, etc.