mini-workshop fundamental physics eso/garching 18-19 sep, 2014 С.А. Левшаков...

38
mini-workshop Fundamental Physics ESO/Garching 18-19 Sep, 2014 С.А. Левшаков Физико-технический институт им. А.Ф. Иоффе Санкт-Петербург

Upload: blanche-hawkins

Post on 28-Dec-2015

220 views

Category:

Documents


2 download

TRANSCRIPT

mini-workshop

Fundamental Physics

ESO/Garching

18-19 Sep, 2014

С.А. Левшаков

Физико-технический институт им. А.Ф. Иоффе

Санкт-Петербург

Chajnantor, 5000m above sea levelAtacama Large Millimeter Array (ALMA)

0.3-9.6 mm

E-ELT European-Extremely Large Telescope

Cerro Armazones, 3060 m

June 2014

E-ELT

adaptive, automatically correcting the atmospheric disturbances

six sodium (Na) laser guide stars

greater details than the HST by 15 times (!)

THE SCHEDULE OF THE E-ELT

Dome acceptance — March 2017Main structure acceptance — March 2020Technical first light — December 2021Instruments 1 and 2 first light — June 2022Start of observatory operations — October 2022.

OPEN QUESTIONS FOR THE E-ELT

1. EXOPLANETS: first direct images of Earth-like planets

2. FUNDAMENTAL PHYSICS: were the physical constants indeed constant over the history of the Universe?

3. BLACK HOLES:studies of the black hole at the center of the MW to reveal the nature of this object

4. STARS:when did the first stars form?

5. GALAXIES : individual stars in galaxies out to distances of ~ 10 Mpc

6. THE DARK AGES: can we observe the earliest epoch of the Universe?

Ryan Cooke (UCSC)Primordial deuterium in the era of the E-ELT

Velocity Relative to z = 3.0672594 (km/s)

η = baryon-to-photon ratio ~ 6 10-10

D/H = 2.5 10-5

3 10-3 3 10-2

Direct evidence for new physics ...

consistency tests

can only be trusted

once

it is seen through independent probes

Tz /T

0 ~ (1+z)(α

z /α

0 )1/4

~ (1+z)(1 + Δα14 α )

but standard cosmology assumes adiabatic expansion and photon number conservation

a robust prediction of standard cosmology

T(z) = T0 (1+z)

violated in many scenarios, including string theory etc.

T(z) = T0 (1+z)1-β

Constraints on TCMB

(z) using UV absorption linesPasquier Noterdaeme (IAP)

C II* E01

= 63.4 cm-1

C I* E02

= 43.4 cm-1

C I* E01

= 16.4 cm-1

CO E01

~ kTCMB

12CO A-X bands at z=2.41837 (main component) and z=2.41847

CO excitation diagram based on T01

, T02

, and T12

long dashed line – expected TCMB

= 9.315 ± 0.007 K

at z = 2.4185 from the hot BB theory

What's next ?

What's next ?

Michael Murphy (Swinburne University of Technology)

The future of varying α searches at ESO

Long-range distortions!

Distortion correction + triple check

Molaro et al. (MNRAS 2013): ESO Large Program

E-ELT/HIRES: Higher R not important

Sebastien Muller (Onsala Space Observatory)

The z = 0.89 molecular absorber toward the lensed

blazar PKS 1830-211

continuum map at 3 mm HST

PKS 1830-211 viewed with ALMA

Chemistry in PKS 1830-211

Measurement of TCMB

(z)

expected 5.14 K

Measurement of TCMB

(z)

Constraints on Δμ/μ using molecules

20 times stronger constraint on Δμ/μ obtained in the MW disk

S. A. Levshakov

Local tests of spatial variation of me/m

p

Effelsberg 100-m telescope

line width ~ 0.2 km/s

~ 0.001 km/s

~ 0.005 km/s

line position uncertainty

Δμ/μ < 2 10-8 (3σ)

How to improve current Δμ/μ estimates ?

JK

=11- 2

1644.4 GHz, i.e. in B9 ALMA band1215.2

GHz

rotational transition of para-NH3

z = 0.89

para- vs ortho-NH3

!

Persson et al. 2010

Different absorption patterns !

Herschel/HIFI observations of para- and ortho-NH3 rotational transitions

VLSR

robust approach – to use para-NH3 only

Extragalactic NH3 absorption detected

HFLS3dusty star-forming galaxy (DSFG) z = 6.34Riechers et al. 2013

if z > 1then ground-based telescopes can be used to observe 1.2 THz line

for σV ~ 0.1 km/s, S/N ~ 30, and ΔV ~ 20 km/s (like PKS1830-211)

Δμ/μ ~ 10-7 (based on NH3 only)

Hydronium H3O+

frequencies are in GHz

11-2

1 307 GHz

32-2

2 364 GHz

30-2

0 396 GHz o-H

3O+

p-H3O+

p-H3O+

Q

-3.0

-3.5

+6.4

Kozlov & Levshakov 2011Kozlov, Porsev, Reimers 2011

p-H3O+ : ΔQ = Q

307 – Q

364 = 9.9

3 times ΔQammonia

(for ALMA)

H3O+ observations (star-forming regions, MW)

CSO 10.4-m telescope (Phillips et al. 1992)

also detected towards

Orion-KL, W51M, W3 IRS5

linewidth ΔV = 3.5 km/s

G34.3+0.15

JCMT 15-m telescope

H3O+ observations (extragalactic)

364 GHz transition

M82

Arp 220 van der Tak et al. 1992

then Δμ/μ ~ 3 10-7

local starburst

if 364, 307 GHz line position uncertainties ~ 1 km/s

Conclusions

High precision line position measurements

Δμ/μ ~ 3 10-9 (p-H3O+)

~ 0.01 km/s (Galactic molecular clouds)

~ 1 km/s (extragalactic molecular clouds)

provide with ALMA facilities

~ 10-8 (p-NH3 )Galactic

Δμ/μ ~ 3 10-7 (p-H3O+)

~ 10-6 (p-NH3 )extragalactic