modeling of protein turns and derivation of nmr parameters related to turn structure megan chawner...

22
Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department of Bioengineering University of California, Riverside

Post on 22-Dec-2015

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Modeling of protein turns and derivation of NMR parameters related to turn structure

Megan ChawnerBRITE REU Program

Advisor: Dr. Dimitrios MorikisDepartment of Bioengineering

University of California, Riverside

Page 2: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Outline

• Background• My Project• Results• Conclusions• Acknowledgements

Page 3: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Protein Structure: All proteins are made up of twenty amino acid building blocks into a sequence = primary structure

Page 4: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Protein structure: sequence folds into -sheet, -helix, random coil loops and various types of turns stabilized by atomic interactions (e.g., H-bonds) = secondary structure

Anti-parallel-sheet

-helix

Primary structure: GPLLNKFLTT

Primary structure: EKQKPDGVFQE

Strand 1

Strand 2Inter-strandH-bonds

C=O(i)…H-N(i+4) H-bonds1 helix turn = 3.6 a.a.

Page 5: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Protein Structure: three-dimensional protein folds are stabilized by long range interactions = tertiary structure

Turns introduce reversibility in the direction of other elements of secondary structure, such as -helices or -sheets• 3 amino acids = -turn • 4 amino acids = -turn

-turn

-turn

Page 6: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

i-1 i i+1

ii i

-sheetRamachandran plot() plotdefines secondary structure

-180

-120

-60

0

60

120

180

-180 -120 -60 0 60 120 180

-

-II

-I’

-II’

-VIII

-direct

-inverse

-180

-120

-60

0

60

120

180

-180 -120 -60 0 60 120 180

-

-II

-I’

-II’

-VIII

-direct

-inverse

Backbone torsion angles:

Turns

-helix

Amino Acid i Amino Acid i+1Amino Acid i Amino Acid i+1

N C C

OR

H

N C C

O

H

R

i ii+1 i+1

H Hi

N C C

OR

H

N C C

O

H

R

i ii+1 i+1

H Hi

Amino Acid i Amino Acid i+1Amino Acid i Amino Acid i+1

N C C

OR

H

N C C

O

H

R

i ii+1 i+1

H Hi

N C C

OR

H

N C C

O

H

R

i ii+1 i+1

H Hi

Page 7: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Protein Structure Determination: uses Nuclear magnetic resonance (NMR) spectroscopy to get NMR observables, which are converted to NMR-derived structural parameters • Nuclear Overhauser effects (NOEs) inter-proton distances• 3J(HN-H)-coupling constants -torsion angles

Karplus Equation (Karplus, 1959, J Chem Phys)

NOE equation (Wuthrich, 1986) ri,j inter-proton distancec rotational correlation time

)(fr

1)HH(NOE c6

j,i

ji

CcosBcosA)HH(J 2N3

o60

A=6.98, B=-1.38, C=1.72 (Wang and Bax, 1996, JACS)

NOE < 5 Å through-space interactions inter-proton distances3J(HN-H) = 3-chemical bond coupling through-bond interactions -torsions

Page 8: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Amino Acid i Amino Acid i+1

N C C

OR

H

N C C

O

H

R

i i

3J(HN-H)

i+1 i+1

H Hi

HN(i)-H(i)

HN(i)-HN(i+1)HN(i)-H(i+1)

3J(HN-H) = 3-bond -torsionNOE < 5 Å distance in space

H(i)-H(i+1)

H(i)-HN(i+1)

Relations of experimental observables and structural parameters

dN (i,i+1)

dNN (i,i+1)

dN (i,i)dN (i,i) d (i,i+1)

Page 9: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

o60

3J(

HN-H

)

(Hz)

(o)

Cis=0o

=60o

=90o

=150o

Newman Projections

N

C=OC=O

HHC

N

C=OC=O

HHC

N

C=OC=O

HHC

N

C=OC=O

HHC

N

C=O

C=O H

H

C

N

C=O

C=O H

H

C

=-90o

=-30o

N

C=O

C=OC

N

C=O

C=OH

H

C

N

C=O

C=OC

N

C=O

C=OH

H

C

Trans=180o

=-120o

Solution of Karplus equation using MatLab

-helix

-sheet

N C

H

H

Cis

N C

H

HTrans

N C

H H

Cis

N C

H

HTrans

C

N C

C

Cis

C

N C

C

Trans

C

N C

C

Cis

C

N C

C

C

N C

C

Cis

C

N C

C

Trans

C

N C

C

C

N C

C

Trans

Chawner & Morikis, in preparation

Page 10: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

My ProjectGoals: To use NMR-derived parameters (inter-proton distances and -torsion angles) to create databases of expected NMR observables (NOEs and 3J(HN-H)-coupling constants) for ideal - and - turns with statistical deviations.

Bottom line: we are back-calculating NMR observables. Remember, during structure determination, NMR-derived parameters are obtained from NMR spectroscopic observables, NOEs and 3J(HN-H)-coupling constants.

Use: Rapid protein turn structure identification by examination of raw NMR observables, without a complete structure calculation.

Page 11: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Color code:

Blue: N

Light blue: H

Gray: C

Red: O

Color code:

Blue: N

Light blue: H

Gray: C

Red: O

VIIIVIII

I I’

II’II

1

32

4

H-bond

C-C

I I’

II’II

1

32

4

H-bond

C-C

-turns

Computational modeling of ideal -and -turns according to torsion angles using DeepView

Classic -turn criteria

Distance: C(1)-C(4) < 7 ÅC=O(1)…H-N(4) H-bondedDistance: O(1)-N(4) < 3.3 Å Distance: O(1)-HN(4) < 2.4 ÅAngle: O(1)-H(4)-N(4) almost linear ± 35o

-180

-120

-60

0

60

120

180

-180 -120 -60 0 60 120 180

-

-II

-I’

-II’

-VIII

-direct

-inverse

-180

-120

-60

0

60

120

180

-180 -120 -60 0 60 120 180

-

-II

-I’

-II’

-VIII

-direct

-inverse

Torsion angles (o)

Type 2 2 3 3

I -60 -30 -90 0

II -60 120 80 0

I' 60 30 90 0

II' 60 -120 -80 0

VIII -60 -30 -120 120

Chawner & Morikis, in preparation

Page 12: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Torsion angles (o)

Type 2 2

Direct 70 -60

70 -70

85 -60

85 -70

Inverse -70 60

-70 70

-85 60

-85 70

direct inverse

-turns

Computational modeling of ideal -and -turns according to torsion angles

Classic -turn criteria

-180

-120

-60

0

60

120

180

-180 -120 -60 0 60 120 180

-

-II

-I’

-II’

-VIII

-direct

-inverse

-180

-120

-60

0

60

120

180

-180 -120 -60 0 60 120 180

-

-II

-I’

-II’

-VIII

-direct

-inverse

Chawner & Morikis, in preparation

Page 13: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Nuclear Overhauser effects (NOEs) inter-proton distances

Characteristic -turn distancesH(2)-HN(4): (i, i+2)H(2)-HN(3): (i, i+1)H(3)-HN(4): (i, i+1)HN(2)-HN(3): (i, i+1)HN(3)-HN(4): (i, i+1)

1

2

3

H

HN

N

C

C

OHN

HN

H

H

(1,2)(2,3)

(1,2) (2,3)

(1,3)

J

1

2

3

H

HN

N

C

C

OHN

HN

H

H

(1,2)(2,3)

(1,2) (2,3)

(1,3)

J

Characteristic -turn distancesH(1)-HN(3): (i, i+2)H(1)-HN(2): (i, i+1)H(2)-HN(3): (i, i+1)HN(1)-HN(2): (i, i+1)HN(2)-HN(3): (i, i+1)

J2

J3

H

HN

NC

OC

1

3

2

HN

H

HN

HN

H

H

(2,3)(3,4)

(2,3)

(3,4)(2,4)

4

J2

J3

H

HN

NC

OC

1

3

2

HN

H

HN

HN

H

H

(2,3)(3,4)

(2,3)

(3,4)(2,4)

4

-turn -turn

Page 14: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Torsion angles (o) D < 7 Å H-bond distance (Å) H-bond angle (°)

Type 2 2 3 3 C(1)-C(4) O(1)-N(4) O(1)-HN(4) O(1)-H(4)-N(4)

I -60 -30 -90 0 4.7 2.6 1.6 153.2

II -60 120 80 0 4.7 2.6 1.7 152.2

I' 60 30 90 0 4.7 3.0 2.1 151.1

II' 60 -120 -80 0 4.7 2.9 2.0 153.4

VIII -60 -30 -120 120 6.2 4.3 4.5 69.5

Torsion angles (o) D < 7 Å H-bond distance (Å) H-bond angle (°)

Type 2 2 C(1)-C(3) O(1)-N(3) O(1)-HN(3) O(1)-H(3)-N(3)

Direct 70 -60 5.4 2.7 1.8 142.2

70 -70 5.5 2.7 1.9 135.5

85 -60 5.5 3.1 2.2 137.4

85 -70 5.6 3.1 2.3 134.6

Inverse -70 60 5.4 2.4 1.5 143.6

-70 70 5.5 2.5 1.7 131.3

-85 60 5.5 2.8 1.9 141.9

-85 70 5.6 2.8 2.0 136.0

Marginal H-bonds presentbecause of larger deviations from linearity

Test of compliance of molecular models with ideal turn criteria

Notpresent

H-bond present

Chawner & Morikis, in preparation

Page 15: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Inter-proton distance (Å)

TypeHN(2)-HN(3)

HN(3)-HN(4)

H(2)-HN(3)

H(3)-HN(4)

H(2)-HN(4)

H(2)-H(3)

H(3)-H(4)

HN(2)-H(3)

HN(3)-H(4)

I 2.6 2.4 3.5 3.3 3.7 4.7 4.8 5.3 4.7

II 4.5 2.5 2.1 3.3 3.3 4.4 4.8 6.4 5.2

I' 2.6 2.4 3.0 3.3 4.2 4.8 4.8 5.0 5.0

II' 4.5 2.5 3.3 3.3 4.2 4.5 4.8 5.7 4.9

VIII 2.6 4.3 3.5 2.1 5.8 4.6 4.4 5.3 4.9

Torsion angles (°)

Inter-proton distance (Å)

Type 2 2HN(1)-HN(2)

HN(2)-HN(3)

H(1)-HN(2)

H(2)-HN(3)

H(1)- HN(3)

H(1)- H(2)

H(2)- H(3)

HN(1)- H(2)

HN(2)- H(3)

Direct 70 -60 2.0 3.7 3.6 3.6 4.0 5.3 4.8 3.9 5.7

70 -70 2.0 3.8 3.6 3.6 4.2 5.3 4.7 3.9 5.7

85 -60 2.0 3.6 3.6 3.6 4.2 5.3 4.8 3.8 5.5

85 -70 2.0 3.8 3.6 3.6 4.4 5.3 4.7 3.8 5.6

Inverse -70 60 2.0 3.7 3.6 2.6 3.8 4.8 4.6 4.5 5.1

-70 70 2.0 3.8 3.6 2.5 4.1 4.8 4.6 4.5 5.1

-85 60 2.0 3.6 3.6 2.6 3.9 4.7 4.6 4.4 4.9

-85 70 2.0 3.8 3.6 2.5 4.2 4.7 4.6 4.4 4.9

Ideal -turns

Ideal-turns

Molecular models: measured distances corresponding to characteristic NOEs

Page 16: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

We classified the inter-proton distances as corresponding to strong, medium, weak and very weak NOE intensities:

1.8-2.6 Å = strong 2.7-3.5 Å = medium 3.6-4.4 Å = weak 4.5-5.0 Å = very weak

Relative NOE intensities

TypeHN(2)-HN(3)

HN(3)-HN(4)

H(2)-HN(3)

H(3)-HN(4)

H(2)-HN(4)

H(2)-H(3)

H(3)-H(4)

HN(2)-H(3)

HN(3)-H(4)

I S S M M W VW VW N/O VW

II VW S S M M W VW N/O N/O

I' S S M M W VW VW VW VW

II' VW S M M W VW VW N/O VW

VIII S W M S N/O VW W N/O VW

-turns

Relative classification of NOE intensities

Chawner & Morikis, in preparation

1.8 Å: sum of van der Waals radii with some overlap

Page 17: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Torsion angles (°)

Relative NOE intensities

Type 2 2HN(1)-HN(2)

HN(2)-HN(3)

H(1)-HN(2)

H(2)-HN(3)

H(1)- HN(3)

H(1)- H(2)

H(2)- H(3)

HN(1)- H(2)

HN(2)- H(3)

Direct 70 -60 S W W W W N/O VW W N/O

70 -70 S W W W W N/O VW W N/O

85 -60 S W W W W N/O VW W N/O

85 -70 S W W W W N/O VW W N/O

Inverse -70 60 S W W S W VW VW VW N/O

-70 70 S W W S W VW VW VW N/O

-85 60 S W W S W VW VW W VW

-85 70 S W W S W VW VW W VW

-turns

We classified the inter-proton distances: 1.8-2.6 Å = strong 2.7-3.5 Å = medium 3.6-4.4 Å = weak 4.5-5.0 Å = very weak

Relative classification of NOE intensities

Page 18: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

2 (°) J2 (Hz) 3 (°) J3 (Hz)

Type I -60 4.2 -90 8.2

Type I’ 60 7.3 90 5.8

Type II -60 4.2 80 6.6

Type II’ 60 7.3 -80 6.9

Type VIII -60 4.2 -120 10.1

Type 2 (°) J2 (Hz)

Direct 70 7.1

Direct 85 6.2

Inverse -70 5.5

Inverse -85 7.5

Solution of Karplus equation:calculations of characteristic 3J(HN-H)-coupling constants

-turns

-turns

Chawner & Morikis, in preparation

Page 19: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

2 (°) J2 (Hz) 3 (°) J3 (Hz)

Type I -60 Weaker -90 Stronger

Type I’ 60 Stronger 90 Weaker

Type II -60 Weaker 80 Stronger

Type II’ 60 Stronger -80 Weaker

Type VIII -60 Weaker -120 Stronger

Type 2 (°) J2 (Hz)

Direct 70 S

Direct 85 W

Inverse -70 W

Inverse -85 S

We classified the turn’s 3J(HN-H)-coupling constants as stronger or weaker relative to itself, so that the different types can be differentiated comparatively

-turns

-turns

Caution: small variations in -torsion angles result to very large variations in j-coupling constants. In general, the use of j-coupling constants is not as helpful as NOE intensity patterns and connectivities.

-helix

-sheet

Chawner & Morikis, in preparation

Page 20: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Conclusions

• NOE intensity patterns and connectivities can be used to distinguish turn type without a complete structure determination. We have created small NOE intensity databases that discriminate Type I, I’, II, II’, and VIII -turns, and direct and inverse -turns.

Caution: Classification of strong, medium, weak, and very weak NOEs is relative.

• Small variations of the characteristic -torsion angles introduce very large variations in the 3J(HN-H)-coupling constant values, sometimes spanning the whole range of possible solutions for the Karplus equation and the whole allowed region of the Ramachandran plot.

Why? the small variations in -torsion angles are owed to the dynamic character of turns in proteins and peptides and to conformational averaging.

• Overall, NOEs are more useful than J-coupling constants.

Page 21: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

Acknowledgements

• Dr. Dimitrios Morikis• Li Zhang• Coordinators of BRITE Program• Fellow BRITE students

Page 22: Modeling of protein turns and derivation of NMR parameters related to turn structure Megan Chawner BRITE REU Program Advisor: Dr. Dimitrios Morikis Department

o60

3J(HN-H)

N C

H

3J(HN-H)

H

Cis

N C

H

HTrans

C

N C

C

Cis

C

N C

C

Trans

N C

H

3J(HN-H)

H

Cis

N C

H

HTrans

C

N C

C

Cis

C

N C

C

C

N C

C

Cis

C

N C

C

Trans

C

N C

C

C

N C

C

Trans

Cis=0o

=60o

=90o

=150o

Newman Projection

N

C=OC=O

HHC

N

C=OC=O

HHC

N

C=OC=O

HHC

N

C=OC=O

HHC

N

C=O

C=O H

H

C

N

C=O

C=O H

H

C

=-90o

=-30oN

C=O

C=OC

N

C=O

C=OH

H

C

N

C=O

C=OC

N

C=O

C=OH

H

C

Trans=180o

=-120o