models and behaviors - homes.esat.kuleuven.be · models and behaviors jan c. willems k.u. leuven,...

157
Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/9

Upload: others

Post on 03-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Models and Behaviors

Jan C. WillemsK.U. Leuven, Flanders, Belgium

Aveiro, Portugal September 24, 2008

– p. 1/98

Page 2: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Where do I come from?

– p. 2/98

Page 3: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

– p. 3/98

Page 4: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

– p. 3/98

Page 5: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Adrianus VI Erasmus de la Vallee Poussin Lemaıtre1459–1523 1469–1536 1866–1962 1894–1966

– p. 3/98

Page 6: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Lecture

– p. 4/98

Page 7: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Outline

◮ Mathematical models

◮ The behavior

◮ Dynamical systems

◮ A bit of history

◮ Linear time-invariant systems

◮ Kernel representations

◮ Latent variables

◮ The elimination theorem

– p. 5/98

Page 8: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematical models

A bit of mathematics & philosophy

– p. 6/98

Page 9: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematical models

Assume that we have a ‘real’ phenomenon that produces‘events’, ‘outcomes’.

Phenomenon

event, outcome

– p. 7/98

Page 10: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematical models

Assume that we have a ‘real’ phenomenon that produces‘events’, ‘outcomes’.

Phenomenon

event, outcome

We view a deterministic mathematical model for aphenomenon as a prescription of which eventscanoccur,and which eventscannotoccur.

– p. 7/98

Page 11: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Aim of this lecture

◮ In the first part of this lecture, we develop this point ofview into a mathematical formalism.

– p. 8/98

Page 12: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Aim of this lecture

◮ In the first part of this lecture, we develop this point ofview into a mathematical formalism.

◮ In the second part, we apply this formalism to dynamicalsystems, and zoom in on linear time-invariantdifferential systems.

– p. 8/98

Page 13: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The universum

– p. 9/98

Page 14: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematization

The outcomes can be described in the language ofmathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

– p. 10/98

Page 15: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematization

The outcomes can be described in the language ofmathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

◮ Do the events belong to a discrete set?; discrete event phenomena.

◮ Are the events real numbers, or vectors of real numbers?; continuous phenomena.

◮ Are the events functions of time?; dynamical phenomena.

◮ Are the events functions of space, or time & space?; distributed phenomena.

– p. 10/98

Page 16: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematization

The outcomes can be described in the language ofmathematics, as mathematical objects, by answering:

To which universum do the events (before modeling) belong?

The set where the events belong to is called theuniversum ,denoted byU .

– p. 10/98

Page 17: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Discrete event phenomena

Examples:

◮ Words in a natural languageU ∼= {a,b,c, . . . ,x,y,z}n

with n = the number of letters in the longest word

– p. 11/98

Page 18: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Continuous phenomena

Examples:

◮ The pressure, volume, quantity, and temperature of a gasin a vessel

Gas

(pressure, volume, quantity, temperature)

; U = (0,∞)× (0,∞)× (0,∞)× (0,∞)

– p. 12/98

Page 19: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Dynamical phenomena

Examples:

◮ Planetary motion

SUN

PLANET

The events are maps fromR to R3

; U = {w : R → R3}

– p. 13/98

Page 20: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Dynamical phenomena

Examples:

◮ Planetary motion

SUN

PLANET

The events are maps fromR to R3

; U = {w : R → R3} =

(

R3)R

– p. 13/98

Page 21: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Notation

AB := the set of maps from B to A i.e. AB := { f : B → A}

– p. 14/98

Page 22: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Dynamical phenomena

◮ The voltage across and the current into an electrical portwith ‘dynamics’

V

I

+����

RL

C

C

LR ��

��

The events are maps fromR to R2

; U = {(V, I) : R → R2} =

(

R2)R

– p. 15/98

Page 23: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Distributed phenomena

◮ Temperature profile of, and heat absorbed by, a rod

�������������������������������������������������������������

���

q(x,t)

T(x,t)x

Events: maps from R×R to [0,∞)×R

; U = {(T,q) : R2 → [0,∞)×R} =

(

R2)R

2

– p. 16/98

Page 24: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

A model is a subset: the ‘behavior’

– p. 17/98

Page 25: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The behavior

Given is a phenomenon with universumU .Without further scrutiny, every event in U can occur.

After studying the situation, the conclusion is reached that theevents are constrained, that some laws are in force.

– p. 18/98

Page 26: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The behavior

Given is a phenomenon with universumU .Without further scrutiny, every event in U can occur.

After studying the situation, the conclusion is reached that theevents are constrained, that some laws are in force.

Modeling means that certain events are declared to beimpossible, that they cannot occur.

The possibilities that remain constitute what we call the‘behavior’ of the model.

– p. 18/98

Page 27: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The behavior

Given is a phenomenon with universumU .Without further scrutiny, every event in U can occur.

After studying the situation, the conclusion is reached that theevents are constrained, that some laws are in force.

A model is a subsetB of U

B is called the behavior of the model

– p. 18/98

Page 28: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The behavior

B

U

allowed, according to the model

forbidden

possible events

– p. 19/98

Page 29: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The behavior & scientific theory

Every “good” scientific theory is prohibition:it forbids certain things to happen...The more a theory forbids, the better it is.

Karl PopperConjectures and Refutations:The Growth of Scientific KnowledgeRouthledge, 1963

Karl Popper(1902-1994)

– p. 20/98

Page 30: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Examples

– p. 21/98

Page 31: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Discrete event phenomena

Examples:

◮ Words in a natural languageU = {a,b,c, . . . ,x,y,z}n

with n = the number of letters in the longest word

B = all words recognized by the spelling checker.For example, SPQR/∈ B.

B is basically defined by enumeration, by listing itselements.

– p. 22/98

Page 32: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32(mod 2)

=31

∑k=1

ak

}

– p. 23/98

Page 33: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32(mod 2)

=31

∑k=1

ak

}

B can be expressed in many other ways. For example,

B = {a1a2 · · ·a31a32 | ak ∈{0,1} and32

∑k=1

ak(mod 2)

= 0}

B =

a1a2...

a31a32

| ∃

b1b2...

b30b31

s.t.

a1a2...

a31a32

=

1 0 0 ··· 0−1 1 0 ··· 0... ... ... ...... ... ... ...0 0 ··· −1 10 0 ··· 0 −1

b1b2...

b30b31

– p. 23/98

Page 34: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32(mod 2)

=31

∑k=1

ak

}

B can be expressed in many other ways. For example,

B = {a1a2 · · ·a31a32 | ak ∈{0,1} and32

∑k=1

ak(mod 2)

= 0}

B =

a1a2...

a31a32

| ∃

b1b2...

b30b31

s.t.

a1a2...

a31a32

=

1 0 0 ··· 0−1 1 0 ··· 0... ... ... ...... ... ... ...0 0 ··· −1 10 0 ··· 0 −1

b1b2...

b30b31

input/output representation

kernel representation

image representation– p. 23/98

Page 35: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Continuous phenomena

Examples:

◮ The pressure, volume, quantity, and temperature of a gasin a vessel

Gas

(pressure, volume, quantity, temperature)

U = (0,∞)× (0,∞)× (0,∞)× (0,∞)

Gas law: B = {(P,V,N,T ) ∈ U | PV = NT }

– p. 24/98

Page 36: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Dynamical phenomena

◮ Planetary motion U =(

R3)R

Kepler’s laws ; B

– p. 25/98

Page 37: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Dynamical phenomena

◮ Planetary motion U =(

R3)R

PLANET

SUN

DC

B

A 1 year

34 months

Kepler’s laws ; B = the orbits R → R3 that satisfy:

K.1 periodic, ellipses, with the sun in one of the foci;K.2 the vector from sun to planet sweeps out equal areas

in equal time;K.3 the square of the period

divided by the third powerof the major axis is thesame for all the planets

– p. 25/98

Page 38: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Dynamical phenomena

◮ The second law

Isaac Newtonby William Blake

unit mass

+

force F

position q

U =(

R3×R

3)R

B =

{

(F,q) : R → R3×R

3 | F = d2

dt2 q

}

– p. 26/98

Page 39: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Distributed phenomena

◮ The temperature profile of, and heat absorbed by, a rod

�������������������������������������������������������������

���

q(x,t)

T(x,t)x

Events: maps fromR×R to [0,∞)×R

U = {(T,q) : R2 → [0,∞)×R}

B ={

(T,q) : R2 → [0,∞)×R | ∂

∂ t T = ∂ 2

∂ x2 T +q}

– p. 27/98

Page 40: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Behavioral models

Behavioral models fit the tradition of modeling, butmodeling has not been approached in this manner in adeterministic setting.

The behavior captures the essence of what a modelarticulates.

The behavior is all there is.Equivalence of models, properties of models,

symmetry, optimality,system identification (modeling from measured data),

etc., must all refer to the behavior.

– p. 28/98

Page 41: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Recapitulation

◮ A model deals with events

◮ The events belong to a universum,U

◮ A model is specified by its behaviorB,

a subset of the event setU

◮ In dynamical systems, the events are functions of

time and the behaviorB is hence a family of

time-trajectories.

– p. 29/98

Page 42: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Dynamical systems

– p. 30/98

Page 43: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The dynamic behavior

In dynamical systems, ‘events’ are maps, with the time axis asdomain, hence functions of time.

It is convenient to distinguish in the notation

the domain of the maps, thetime setand their codomain, the signal space

the set where the functions take on their values.

– p. 31/98

Page 44: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The dynamic behavior

In dynamical systems, ‘events’ are maps, with the time axis asdomain, hence functions of time.

It is convenient to distinguish in the notation

the domain of the maps, thetime setand their codomain, the signal space

the set where the functions take on their values.

The behavior of a dynamical system is usually described by asystem of ordinary differential equations (ODEs) ordifference equations.

In contrast to distributed phenomena; partial differential equations (PDEs)

– p. 31/98

Page 45: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The dynamic behavior

A dynamical system:⇔ (T,W,B)

T ⊆ R ‘time set’W ‘signal space’B ⊆ W

T the ‘behavior’a family of trajectories T → W

– p. 32/98

Page 46: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The dynamic behavior

A dynamical system:⇔ (T,W,B)

T ⊆ R ‘time set’W ‘signal space’B ⊆ W

T the ‘behavior’a family of trajectories T → W

mostly, T = R,R+,Z, or N (∼= Z+),and, in this lecture,W = R

w,B is a family of

(finite dimensional) vector-valued time trajectories

– p. 32/98

Page 47: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The dynamic behavior

A dynamical system:⇔ (T,W,B)

T ⊆ R ‘time set’W ‘signal space’B ⊆ W

T the ‘behavior’a family of trajectories T → W

w : T → Rw ∈ B ⇔ ‘w is compatible with the model’

w : T → Rw /∈ B ⇔ ‘the model forbids w’

– p. 32/98

Page 48: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The dynamic behavior

A dynamical system:⇔ (T,W,B)

T ⊆ R ‘time set’W ‘signal space’B ⊆ W

T the ‘behavior’a family of trajectories T → W

w : T → Rw ∈ B ⇔ ‘w is compatible with the model’

w : T → Rw /∈ B ⇔ ‘the model forbids w’

T = R or R+ ; ‘continuous-time’ systems and ODEsT = Z or N ; ‘discrete-time’ systems and difference eqn’sWe deal with the caseT = R only.

– p. 32/98

Page 49: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Systems

– p. 33/98

Page 50: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

– p. 34/98

Page 51: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Features

◮ open

◮ interconnected

◮ modular

◮ dynamic

– p. 35/98

Page 52: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Features

◮ open

◮ interconnected

◮ modular

◮ dynamic

Theme:

develop a suitable mathematical language

– p. 35/98

Page 53: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Open, connected, modular, dynamic

– p. 36/98

Page 54: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Open

SYSTEM

ENVIRONMENT

Boundary

Systems interact with their environment

– p. 37/98

Page 55: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Connected

Architecture

Systems consist of subsystems, interconnected

– p. 38/98

Page 56: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Modular

Systems consist of an interconnection of‘building blocks’

��������

��������

��

����������������

SYSTEM

x

– p. 39/98

Page 57: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Dynamic

time

w2

w1

w3

There is a delay, an after-effect, memory

– p. 40/98

Page 58: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The development of the notion

of a dynamical system

a brief causerie

– p. 41/98

Page 59: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematization

1. Get the physics right

2. The rest is mathematics

R.E. KalmanOpening lecture

IFAC World CongressPrague, July 4, 2005

– p. 42/98

Page 60: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematization

1. Get the physics right

2. The rest is mathematics

R.E. KalmanOpening lecture

IFAC World CongressPrague, July 4, 2005Prima la fisica, poi la matematica

– p. 42/98

Page 61: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

How it all began ...

– p. 43/98

Page 62: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The celestial question

Planet ???

How, for heaven’s sake, does it move?

– p. 44/98

Page 63: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Kepler’s laws

Johannes Kepler1571-1630

PLANET

SUN

DC

B

A 1 year

34 months

Kepler’s laws:Ellipse, sun in focus;= areas in = times;(period)2 ∼= (diameter)3

– p. 45/98

Page 64: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The equation of the planet

Consequence:acceleration = function of position and velocity

d2

dt2w(t) = A(w(t),ddt

w(t))

; via calculusand calculation

d2

dt2w(t)+

1w(t)

|w(t)|2= 0

Isaac Newton (1643-1727)– p. 46/98

Page 65: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The equation of the planet

Consequence:acceleration = function of position and velocity

d2

dt2w(t) = A(w(t),ddt

w(t))

; via calculusand calculation

d2

dt2w(t)+

1w(t)

|w(t)|2= 0

Isaac Newton (1643-1727)

Hypotheses non

fingo

∼= another representationof K.1, K.2, K.3

– p. 46/98

Page 66: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Newton’s laws

2-nd law F ′(t) = m d2

dt2w(t)

gravity F ′′(t) = m1w(t)

|w(t)|2

3-rd law F ′(t)+F ′′(t) = 0

d2

dt2w(t)+

1w(t)

|w(t)|2= 0

– p. 47/98

Page 67: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Newton’s laws

2-nd law F ′(t) = m d2

dt2w(t)

gravity F ′′(t) = m1w(t)

|w(t)|2

3-rd law F ′(t)+F ′′(t) = 0Isaac Newton by William Blake

d2

dt2w(t)+

1w(t)

|w(t)|2= 0

Viewing as interconnection is the key to generalization

– p. 47/98

Page 68: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The paradigm of closedsystems

– p. 48/98

Page 69: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

K.1, K.2, & K.3

;d2

dt2w(t)+1w(t)

| ddt w(t)|2

= 0

; with x = (w, ddt w) d

dt x = f (x)

– p. 49/98

Page 70: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

K.1, K.2, & K.3

;d2

dt2w(t)+1w(t)

| ddt w(t)|2

= 0

; with x = (w, ddt w) d

dt x = f (x)

; generalization ddt x = f (x)

; ‘dynamical systems’, flows

; flows as paradigm of dynamics ; closed systems

Motion determined by internal initial conditions.

– p. 49/98

Page 71: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

Henri Poincare (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930- )

– p. 50/98

Page 72: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

X

A dynamical systemis defined bya state spaceX anda state transition function

φ : · · · such that · · ·

φ(t,x) = state at timet starting from state x

– p. 51/98

Page 73: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

X

A dynamical systemis defined bya state spaceX anda state transition function

φ : · · · such that · · ·

φ(t,x) = state at timet starting from state x

This framework of closed systems is universallyused for dynamics in mathematics and physics

– p. 51/98

Page 74: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

How could they forget Newton’s2nd law,about Maxwell’s eq’ns,

about thermodynamics,about tearing & zooming & linking, ...?

– p. 52/98

Page 75: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

How could they forget Newton’s2nd law,about Maxwell’s eq’ns,

about thermodynamics,about tearing & zooming & linking, ...?

Reply: assume‘fixed boundary conditions’

– p. 52/98

Page 76: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

How could they forget Newton’s2nd law,about Maxwell’s eq’ns,

about thermodynamics,about tearing & zooming & linking, ...?

Reply: assume‘fixed boundary conditions’

SYSTEM

ENVIRONMENT

Boundary

; to model a system, we have to model also the environment!

– p. 52/98

Page 77: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

How could they forget Newton’s2nd law,about Maxwell’s eq’ns,

about thermodynamics,about tearing & zooming & linking, ...?

Reply: assume‘fixed boundary conditions’

SYSTEM

ENVIRONMENT

Boundary

; to model a system, we have to model also the environment!

Chaos theory, cellular automata, sync, etc., function in thisframework ...

– p. 52/98

Page 78: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Inputs and outputs

meanwhile, in engineering...

– p. 53/98

Page 79: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Input/output systems

SYSTEMstimulus response

causeinput

effectoutput

– p. 54/98

Page 80: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The originators

Oliver Heaviside (1850-1925) Norbert Wiener (1894-1964)

and the many electrical circuit theorists ...

– p. 55/98

Page 81: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematical description

SYSTEM output input

u: input, y: output ,

SISO, LTI case ; G(s) = q(s)p(s) transfer functions,

impedances, admittances.

Circuit analysis and synthesisClassical controlBode, Nyquist, root-locus.

– p. 56/98

Page 82: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematical description

SYSTEM output input

y(t) =∫ t

0 or −∞ H(t − t ′)u(t ′) dt ′

– p. 57/98

Page 83: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Mathematical description

SYSTEM output input

y(t) =∫ t

0 or −∞ H(t − t ′)u(t ′) dt ′

y(t) = H0(t)+∫ t

−∞H1(t − t ′)u(t ′) dt ′+

∫ t

−∞

∫ t ′

−∞H2(t − t ′,t ′− t ′′)u(t ′)u(t ′′) dt ′dt ′′ + · · ·

Awkward nonlinear — far from the physicsFail to deal with ‘initial conditions’.

– p. 57/98

Page 84: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Input/state/output systems

Around 1960: aparadigm shift to

ddt x = f (x,u), y = g(x,u)

Rudolf Kalman (1930- )

– p. 58/98

Page 85: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Input/state/output systems

Around 1960: aparadigm shift to

ddt x = f (x,u), y = g(x,u)

Rudolf Kalman (1930- )

◮ open

◮ deals with initial conditions

◮ incorporates nonlinearities, time-variation

◮ models many physical phenomena

◮ · · ·

– p. 58/98

Page 86: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

‘Axiomatization’

State transition function:φ(t,x,u) : state reached at timet from x using input u.

X

ddt x = f (x,u), y = g(x,u)

Read-out function:g(x,u) : output value with statex and input value u.

– p. 59/98

Page 87: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The input/state/output paradigm

The input/state/output view turned out to bevery effective and fruitful

– p. 60/98

Page 88: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The input/state/output paradigm

The input/state/output view turned out to bevery effective and fruitful

◮ for modeling

◮ for control (stabilization, robustness, ...)

◮ prediction of one signal from another, filtering

◮ understanding system representations(transfer f’n, input/state/output repr., etc.)

◮ model simplification, reduction

◮ system ID: models from data

◮ etc., etc., etc.

– p. 61/98

Page 89: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Linear time-invariant differential systems

LTIDSs

– p. 62/98

Page 90: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈ B,α ∈ R]] ⇒ [[αw1 +w2 ∈ B]] ]]

– p. 63/98

Page 91: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈ B,α ∈ R]] ⇒ [[αw1 +w2 ∈ B]] ]]

[[ time-invariant ]] :⇔ [[[[w∈B,σ t the t-shift]]⇒ [[σ tw∈B ∀t ∈R]]]]

(σ t f )(t ′) := f (t ′ + t)σ

t−shift

f

map

t f

t

– p. 63/98

Page 92: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈ B,α ∈ R]] ⇒ [[αw1 +w2 ∈ B]] ]]

[[ time-invariant ]] :⇔ [[[[w∈B,σ t the t-shift]]⇒ [[σ tw∈B ∀t ∈R]]]]

[[ differential ]] :⇔ [[B is ‘described’ by an ODE]].

– p. 63/98

Page 93: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Linearity

This definition of linearity has as a special case

u 7→ y = L(u) L a linear map

u ∈ a space of inputs,y ∈ a space of outputs, w =

[

uy

]

.

B = {w =

[

uy

]

| y = L(u)} = the ‘graph’ of L

– p. 64/98

Page 94: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Linearity

This definition of linearity has as a special case

u 7→ y = L(u) L a linear map

u ∈ a space of inputs,y ∈ a space of outputs, w =

[

uy

]

.

B = {w =

[

uy

]

| y = L(u)} = the ‘graph’ of L

But, a dynamical system, even an input/output system,is seldom an input/output map !

Response depends on initial condition, as well as on drivinginput.

– p. 64/98

Page 95: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔the behavior consists of the set of solutions of a system oflinear, constant coefficient, ODEs

R0w+R1ddt

w+ · · ·+Rn

dn

dtnw = 0.

R0,R1, · · · ,Rn ∈ R•×w real matrices that parametrize the

system, andw : R → Rw.

– p. 65/98

Page 96: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔the behavior consists of the set of solutions of a system oflinear, constant coefficient, ODEs

R0w+R1ddt

w+ · · ·+Rn

dn

dtnw = 0.

R0,R1, · · · ,Rn ∈ R•×w real matrices that parametrize the

system, andw : R → Rw. In polynomial matrix notation

; R(

ddt

)

w = 0

with R(ξ ) = R0 +R1ξ + · · ·+Rnξ n ∈ R [ξ ]•×w

a polynomial matrix , usually ‘wide’ or square.

– p. 65/98

Page 97: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

LTIDS

We should define what we mean by a solution of

R(

ddt

)

w = 0

– p. 66/98

Page 98: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

LTIDS

We should define what we mean by a solution of

R(

ddt

)

w = 0

For ease of exposition, we takeC ∞ (R,Rw) solutions.Hence the behavior defined is

B =

{

w ∈ C∞ (R,Rw) | R

(

ddt

)

w = 0

}

– p. 66/98

Page 99: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

LTIDS

We should define what we mean by a solution of

R(

ddt

)

w = 0

For ease of exposition, we takeC ∞ (R,Rw) solutions.Hence the behavior defined is

B =

{

w ∈ C∞ (R,Rw) | R

(

ddt

)

w = 0

}

B = kernel(

R(

ddt

))

‘kernel representation’ of this B.

Notation:B ∈ L w L w = the LTIDSs with w variables

B ∈ L •, L • = the LTIDSs.– p. 66/98

Page 100: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Representations of LTIDSs

There are numerous representations of LTIDSs

◮ As the solutions of R(

ddt

)

w = 0 R ∈ R [ξ ]•×w (our def.)

R(

ddt

)

: C ∞ (

R,Rcoldim(R))

→ C ∞ (

R,Rrowdim(R))

‘kernel repr’n’

– p. 67/98

Page 101: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Representations of LTIDSs

There are numerous representations of LTIDSs

◮ As the solutions of R(

ddt

)

w = 0 R ∈ R [ξ ]•×w (our def.)

R(

ddt

)

: C ∞ (

R,Rcoldim(R))

→ C ∞ (

R,Rrowdim(R))

‘kernel repr’n’

◮ With input/output partition

P(

ddt

)

y = Q(

ddt

)

u w ∼=

[

u

y

]

det(P) 6= 0,P−1Q proper

– p. 67/98

Page 102: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Representations of LTIDSs

There are numerous representations of LTIDSs

◮ As the solutions of R(

ddt

)

w = 0 R ∈ R [ξ ]•×w (our def.)

R(

ddt

)

: C ∞ (

R,Rcoldim(R))

→ C ∞ (

R,Rrowdim(R))

‘kernel repr’n’

◮ With input/output partition

P(

ddt

)

y = Q(

ddt

)

u w ∼=

[

u

y

]

det(P) 6= 0,P−1Q proper

◮ Input/state/output representationin terms of matrices A,B,C,D such thatB consists of allw′s generated by

ddt x = Ax +Bu, y = Cx+Du w ∼=

[

uy

]

Rudolf E. Kalmanborn 1930

– p. 67/98

Page 103: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Representations of LTIDSs

◮ w = M(

ddt

)

ℓ with M ∈ R [ξ ]wו

M(

ddt

)

: C ∞ (

R,Rcoldim(M))

C ∞ (

R,Rrowdim(M))

‘image repr’n’ B = image(

M(

ddt

))

– p. 68/98

Page 104: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Representations of LTIDSs

◮ w = M(

ddt

)

ℓ with M ∈ R [ξ ]wו

M(

ddt

)

: C ∞ (

R,Rcoldim(M))

C ∞ (

R,Rrowdim(M))

‘image repr’n’ B = image(

M(

ddt

))

◮ First principles models often contain ‘latent variables’(see later); R

(

ddt

)

w = M(

ddt

)

ℓ ‘latent variable repr’n’

B = {w | ∃ ℓ such that ...}

– p. 68/98

Page 105: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Representations of LTIDSs

◮ w = M(

ddt

)

ℓ with M ∈ R [ξ ]wו

M(

ddt

)

: C ∞ (

R,Rcoldim(M))

C ∞ (

R,Rrowdim(M))

‘image repr’n’ B = image(

M(

ddt

))

◮ First principles models often contain ‘latent variables’(see later); R

(

ddt

)

w = M(

ddt

)

ℓ ‘latent variable repr’n’

B = {w | ∃ ℓ such that ...}

◮ Special case:ddt Fx = Ax +Bw DAEs

B = {w | ∃ x such that ...}

– p. 68/98

Page 106: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Representations of LTIDSs

◮ representations withrational symbolsR

(

ddt

)

w = 0, w = M(

ddt

)

ℓ, etc.

with R,M ∈ R(ξ )•×•, or proper stable rational, etc.

– p. 69/98

Page 107: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Representations of LTIDSs

◮ representations withrational symbolsR

(

ddt

)

w = 0, w = M(

ddt

)

ℓ, etc.

with R,M ∈ R(ξ )•×•, or proper stable rational, etc.

◮ and then, there are theconvolution representations

∫ +∞

−∞H(t ′)w(t − t ′)dt ′ = 0

with the kernel, input/output, image versions

y(t) =∫ +∞

−∞H(t ′)u(t − t ′)dt ′, w =

[

uy

]

– p. 69/98

Page 108: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Representations of LTIDSs

◮ representations withrational symbolsR

(

ddt

)

w = 0, w = M(

ddt

)

ℓ, etc.

with R,M ∈ R(ξ )•×•, or proper stable rational, etc.

◮ and then, there are theconvolution representations

∫ +∞

−∞H(t ′)w(t − t ′)dt ′ = 0

with the kernel, input/output, image versions

y(t) =∫ +∞

−∞H(t ′)u(t − t ′)dt ′, w =

[

uy

]

◮ Rich ... but confusing!

– p. 69/98

Page 109: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Recapitulation

◮ Dynamical systems; Σ = (T,W,B) with

behavior B ⊆ (W)T a family of time trajectories

◮ Closed systems: awkward special case

◮ Input/output systems: successful special case

◮ LTIDSs: B is the sol’n set of a system of linear

constant coefficient ODEs

– p. 70/98

Page 110: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Latent variables

– p. 71/98

Page 111: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Kernels, images, and projections

A model B is a subset ofU . There are many ways to specifya subset. For example,

◮ as the solution set of equations

◮ as an image of a map

◮ as a projection

– p. 72/98

Page 112: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Kernels, images, and projections

A model B is a subset ofU . There are many ways to specifya subset. For example,

◮ as the solution set of equations

f : U →•; B = {w | f (w) = 0 }

◮ as an image of a map

f : •→ U ; B = {w | ∃ ℓ such that w = f (ℓ) }

◮ as a projection

Bextended⊆U ×L ; B = {w | ∃ ℓ such that (w, ℓ) ∈ Bextended}

– p. 72/98

Page 113: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Kernels, images, and projections

A model B is a subset ofU . There are many ways to specifya subset. For example,

◮ as the solution set of equations ‘kernel representation’

f : U →•; B = {w | f (w) = 0 }

◮ as an image of a map ‘image representation’

f : •→ U ; B = {w | ∃ ℓ such that w = f (ℓ) }

◮ as a projection ‘latent variable representation’

Bextended⊆U ×L ; B = {w | ∃ ℓ such that (w, ℓ) ∈ Bextended}

– p. 72/98

Page 114: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Kernel

f

0B

U

– p. 73/98

Page 115: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Kernel

f

0B

U

For example, p0y+ p1ddt

y+ · · ·+ pndn

dtny

= q0u+q1ddt

u+ · · ·+qndn

dtnu, w =

[

uy

]

– p. 73/98

Page 116: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Image

f

B

U

– p. 74/98

Page 117: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Image

f

B

U

For example, u = p0ℓ+ p1ddt

ℓ+ · · ·+ pndn

dtnℓ,

y = q0ℓ+q1ddt

ℓ+ · · ·+qndn

dtnℓ, w =

[

uy

]

– p. 74/98

Page 118: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Projection

Bextended

B

U

– p. 75/98

Page 119: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Projection

Bextended

B

U

For example,ddt

x = Ax+Bu,y = Cx+Du, w =

[

uy

]

– p. 75/98

Page 120: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Latent variable representations

Combining equations with latent variables;

Bextendedspecified by

Bextended= {(w, ℓ) | f (w, ℓ) = 0 = 0}

B = {w | ∃ ℓ such that f (w, ℓ) = 0}

– p. 76/98

Page 121: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Latent variable representations

Combining equations with latent variables;

Bextendedspecified by

Bextended= {(w, ℓ) | f (w, ℓ) = 0 = 0}

B = {w | ∃ ℓ such that f (w, ℓ) = 0}

First principles models usually come in this form.Latent variables naturally emerge from interconnections.

– p. 76/98

Page 122: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Example

– p. 77/98

Page 123: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in series

FF

L

k1 k2

¡¡ Model relation betweenL and F !!

– p. 78/98

Page 124: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in series

FF

L

k1 k2

¡¡ Model relation betweenL and F !!

View as interconnection of two springs

F1F1

L1

F2 F2

L2

ρ1 ρ2

– p. 78/98

Page 125: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in series

k k’F F

L

F1F1

L1

F2 F2

L2

ρ1 ρ2

Model for (L,F) (assume that for the individual springs thelength is a function of the force exerted).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 = F2 L = L1 +L2

– p. 79/98

Page 126: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in series

Model for (L,F) (assume that for the individual springs thelength is a function of the force exerted).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 = F2 L = L1 +L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; L = ρ1(F)+ρ2(F)

Latent variables are easily eliminated, for this example.

– p. 79/98

Page 127: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in series

Model for (L,F) (assume that for the individual springs thelength is a function of the force exerted).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 = F2 L = L1 +L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; L = ρ1(F)+ρ2(F)

Latent variables are easily eliminated, for this example.

In the linear case: L1 = L∗1 +ρ1F1 L2 = L∗

2 +ρ2F2

After elimination ; L = L∗1 +L∗

2 +(ρ1 +ρ2)F

– p. 79/98

Page 128: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in parallel

F F

L

k1

k2

’!’! Model relation between L and F !!

– p. 80/98

Page 129: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in parallel

F F

L

k1

k2

’!’! Model relation between L and F !!

View as interconnection of two springs

F1F1

L1

F2 F2

L2

ρ1 ρ2

– p. 80/98

Page 130: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in parallel

k

k’FF

L

F1F1

L1

F2 F2

L2

ρ1 ρ2

Model for (L,F) (assume that for the individual springs thelength is a function of the force exerted, and neglect thedimensions of the interconnecting mechanism).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 + F2 L = L1 = L2

– p. 81/98

Page 131: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in parallel

Model for (L,F) (assume that for the individual springs thelength is a function of the force exerted, and neglect thedimensions of the interconnecting mechanism).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 + F2 L = L1 = L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; B = {(L,F) | ∃ α : L = ρ1(α), ρ1(α) = ρ2(F −α)}

Latent variables are not easily eliminated, for this example,

– p. 81/98

Page 132: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Two springs interconnected in parallel

Model for (L,F) (assume that for the individual springs thelength is a function of the force exerted, and neglect thedimensions of the interconnecting mechanism).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 + F2 L = L1 = L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; B = {(L,F) | ∃ α : L = ρ1(α), ρ1(α) = ρ2(F −α)}

Latent variables are not easily eliminated, for this example,unless we are in the linear case:L1 = L∗

1 +ρ1F1,L2 = L∗2 +ρ2F2

After elimination ; L = ρ2ρ1+ρ2

L∗1 + ρ1

ρ1+ρ2L∗

2 + ρ1ρ2ρ1+ρ2

F

– p. 81/98

Page 133: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

A dynamic example

– p. 82/98

Page 134: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Elimination problem

First principles models invariably contain (many) auxiliaryvariables in addition to the variables whose behavior we wishto model.

– p. 83/98

Page 135: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Elimination problem

First principles models invariably contain (many) auxiliaryvariables in addition to the variables whose behavior we wishto model.

Can these latent variables be eliminated?

We illustrate the emergence of latent variables and theelimination question by means of an extensive example in thedynamic systems case.

– p. 83/98

Page 136: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

RLC circuit

Model the port behavior of

��

RL

C

C

LRI

V−

+��

��

�� ��

��������

����

��

by tearing, zooming, and linking.

– p. 84/98

Page 137: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

RLC circuit

Model the port behavior of

��

RL

C

C

LRI

V−

+��

��

d

f

b

c

h

��

1

4

6

3

5

2

a

e

g

��

��������

����

��

;

by tearing, zooming, and linking.

In each vertex there is an element; module equationsinvolving 2 variables (potential, current) for each terminal,

In each edge a connection; interconnection equations– p. 84/98

Page 138: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Modules

1

3

2

22

11 1

11

2

322

������

������

������

������

connector 1

capacitor C connector 2

inductor Lresistor RC

resistor RL

– p. 85/98

Page 139: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Module equations

vertex 1 : Vconnector1,1 = Vconnector1,2 = Vconnector1,3

Iconnector1,1 + Iconnector1,2 + Iconnector1,3 = 0

vertex 2 : VRC,1−VRC,2 = RCIRC,1, IRC,1 + IRC,2 = 0

vertex 3 : L ddt IL,1 = VL,1−VL,2, IL,1 + IL,2 = 0

vertex 4 : C ddt

(

VC,1−VC,2)

= IC,1, IC,1 + IC,2 = 0

vertex 5 : VRL,1−VRL,2 = RLIRL,1

IRL,1+ IRL,2 = 0

vertex 6 : Vconnector2,1 = Vconnector2,2 = Vconnector2,3

Iconnector2,1 + Iconnector2,2 + Iconnector2,3 = 0

– p. 86/98

Page 140: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Interconnection

current left current right

potential left potential right

Interconnection of two electrical terminals

Interconnection equations:

potential left = potential right

current left + current right = 0

– p. 87/98

Page 141: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Interconnection equations

edge c: VRC,1 = Vconnector12 IRC,1 + Iconnector1,2 = 0

edge d: VL1 = Vconnector13 IL1 + Iconnector13 = 0

edge e: VRC,2 = VC1 IRC,2 + IC1 = 0

edge f: VL2 = VRC,1 IL2 + IRL,1 = 0

edge g: VC2 = Vconnector21 IC2 + Iconnector21 = 0

edge h: VRL,2 = Vconnector22 IRL,2 + Iconnector22 = 0

– p. 88/98

Page 142: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Manifest variable assignment

Vexternalport = Vconnector1,1−Vconnector2,3

Iexternalport = Iconnector11

– p. 89/98

Page 143: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Tableau

vertex 1 : Vconnector1,1 = Vconnector1,2 = Vconnector1,3

Iconnector1,1 + Iconnector1,2 + Iconnector1,3 = 0

vertex 2 : VRC ,1−VRC ,2 = RCIRC ,1, IRC ,1 + IRC ,2 = 0

vertex 3 : L ddt IL,1 = VL,1−VL,2, IL,1 + IL,2 = 0

vertex 4 : C ddt

(

VC,1−VC,2)

= IC,1, IC,1 + IC,2 = 0

vertex 5 : VRL ,1−VRL ,2 = RLIRL,1

IRL,1 + IRL ,2 = 0

vertex 6 : Vconnector2,1 = Vconnector2,2 = Vconnector2,3

Iconnector2,1 + Iconnector2,2 + Iconnector2,3 = 0

edge c: VRC,1 = Vconnector12

IRC,1 + Iconnector1,2 = 0

edge d: VL1 = Vconnector13

IL1 + Iconnector13 = 0

edge e: VRC,2 = VC1

IRC,2 + IC1 = 0

edge f: VL2 = VRC,1

IL2 + IRL,1 = 0

edge g: VC2 = Vconnector21

IC2 + Iconnector21 = 0

edge h: VRL,2 = Vconnector22

IRL,2 + Iconnector22 = 0

Vexternalport = Vconnector1,1−Vconnector2,3 Iexternalport = Iconnector11

– p. 90/98

Page 144: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Variables and equations

In total 28 latent variables Vconnector1,1, . . . ,VRC,1, IRC,1, . . . , Iconnector2,3

2 manifest variables,(

Vexternalport, Iexternalport)

24 equations.

Which equation(s) govern(s)(

Vexternalport, Iexternalport)

A constant-coefficient linear differential equation that doesnot contain the branch variables?

Does the fact that all the equationsbefore elimination of thelatent (auxiliary) variables are constant-coefficient lineardifferential equations imply the sameafter elimination?

– p. 91/98

Page 145: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The port equation

The port defines the systemΣ = (R,R2,B) with behavior B

specified by:

Case 1: CRC 6=L

RL

(

RC

RL+

(

1+RC

RL

)

CRCddt

+CRCL

RL

d2

dt2

)

Vexternalport

=

(

1+CRCddt

)(

1+L

RL

ddt

)

RCIexternalport

Case 2: CRC =L

RL(

RC

RL+CRC

ddt

)

Vexternalport= (1+CRC)ddt

RCIexternalport

– p. 92/98

Page 146: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The elimination theorem

– p. 93/98

Page 147: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Elimination theorem

TheoremL • is closed under projection

– p. 94/98

Page 148: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Elimination theorem

TheoremL • is closed under projection

Consider

B = {(w1,w2) : R → Rw1 ×R

w2 | (w1,w2) ∈ B}

Define the projection

B1 = {w1 : R → Rw1 | ∃ w2 : R → R

w1 such that (w1,w2) ∈ B}

The theorem states that [[B ∈ L w1+w2]] ⇒ [[B1 ∈ L w1]]

This is, as seen, important in modeling.

– p. 94/98

Page 149: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Applications of the elimination theorem

[[ddt

x = Ax+Bu,y = Cx+Du]] ⇒ [[P

(

ddt

)

y = Q

(

ddt

)

u]]

[[Eddt

x = Ax+Bw]] ⇒ [[R

(

ddt

)

w = 0]]

linear DAE’s allow elimination of nuisance variables

[[R

(

ddt

)

w = M

(

ddt

)

ℓ]] ⇒ [[R′

(

ddt

)

w = 0]]

elimination of latent variables in LTIDSs is always possible.

[[w = M

(

ddt

)

ℓ]] ⇒ [[R′

(

ddt

)

w = 0]]

– p. 95/98

Page 150: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Recapitulation

◮ Models are usually given as equations

◮ First principles models invariantly contain

(many) latent variables

◮ In LTIDSs, latent variables can be completely

eliminated

– p. 96/98

Page 151: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

Summary

– p. 97/98

Page 152: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

– p. 98/98

Page 153: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

◮ First principles models contain latent variables.

– p. 98/98

Page 154: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

◮ First principles models contain latent variables.

◮ LTIDSs are those described by linear,constant-coefficient differential equations

; R(

ddt

)

w = 0,R ∈ R [ξ ]•×w

– p. 98/98

Page 155: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

◮ First principles models contain latent variables.

◮ LTIDSs are those described by linear,constant-coefficient differential equations

; R(

ddt

)

w = 0,R ∈ R [ξ ]•×w

◮ The elimination theorem: L • is closed under projection.

Latent variables can be eliminated from linear constantcoefficient ODEs.

– p. 98/98

Page 156: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

◮ First principles models contain latent variables.

◮ LTIDSs are those described by linear,constant-coefficient differential equations

; R(

ddt

)

w = 0,R ∈ R [ξ ]•×w

◮ The elimination theorem: L • is closed under projection.

Latent variables can be eliminated from linear constantcoefficient ODEs.

◮ Behavioral systems are fundamental.Input/output and input/state/output systems areimportant special cases.

– p. 98/98

Page 157: Models and Behaviors - homes.esat.kuleuven.be · Models and Behaviors Jan C. Willems K.U. Leuven, Flanders, Belgium Aveiro, Portugal September 24, 2008 – p. 1/98

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

◮ First principles models contain latent variables.

◮ LTIDSs are those described by linear,constant-coefficient differential equations

; R(

ddt

)

w = 0,R ∈ R [ξ ]•×w

◮ The elimination theorem: L • is closed under projection.

Latent variables can be eliminated from linear constantcoefficient ODEs.

◮ Behavioral systems are fundamental.Input/output and input/state/output systems areimportant special cases.

End of the lecture– p. 98/98