modification of fuel for increasing the power of paks units botond beliczai pa zrt. nufo rfo 2009

25
Modification of fuel for increasing the power of Paks units Botond Beliczai PA Zrt. NUFO RFO 2009.

Upload: sydney-hensley

Post on 27-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Modification of fuel for increasing the power of

Paks units

Botond BeliczaiPA Zrt. NUFO RFO

2009.

Increasing the lattice pitch and its effectProfiled enrichment

4th unit 23rd cycle subchannel outlet

temperature values applying fuel assemblies

with different lattice pitch

1 306.8

2 302.4

3 301.6

4 301.6

5 301.3

6 300.8

7 301.1

8 305.1

9 302.6

10 311.5

11 311.5

12 313.1

13 311.7

14 313.4

15 311.6

16 312.9

17 311.3

18 312.7

19 310.9

20 311.9

21 310.0

22 309.7

23 301.1

24 302.1

25 312.3

26 313.4

27 313.6

28 313.4

29 313.0

30 313.1

31 312.3

32 312.6

33 312.0

34 312.5

35 312.0

36 312.2

37 312.1

38 311.7

39 310.2

40 300.5

41 302.3

42 312.8

43 314.1

44 313.7

45 313.3

46 312.2

47 312.0

48 311.2

49 311.3

50 310.6

51 310.9

52 310.5

53 311.1

54 310.8

55 311.8

56 311.9

57 312.0

58 310.3

59 300.5

60 302.4

61 312.7

62 314.1

63 313.6

64 313.0

65 311.8

66 311.4

67 310.6

68 310.5

69 310.0

70 310.1

71 309.7

72 309.9

73 309.7

74 310.2

75 310.2

76 311.2

77 311.5

78 311.6

79 310.1

80 300.2

81 302.2

82 312.5

83 314.4

84 313.9

85 313.1

86 311.9

87 311.3

88 310.5

89 310.3

90 309.8

91 309.7

92 308.4

93 309.4

94 309.2

95 309.4

96 309.4

97 309.8

98 310.0

99 310.9

100 311.4

101 311.5

102 309.7

103 299.8

104 302.8

105 312.1

106 313.8

107 313.9

108 313.5

109 312.4

110 311.6

111 310.7

112 310.3

113 309.9

114 308.6

115 303.2

116 302.9

117 302.5

118 308.1

119 309.0

120 309.2

121 309.2

122 309.7

123 310.1

124 311.0

125 311.1

126 310.7

127 308.9

128 300.3

129 304.3

130 307.5 131

302.8

132 312.0

133 313.7

134 313.9

135 313.4

136 312.3

137 311.4

138 310.6

139 310.2

140 309.8

141 308.5

142 302.9

143 302.6

144 302.6

145 307.8

146 308.9

147 309.0

148 309.2

149 309.5

150 310.1

151 310.8

152 311.0

153 310.5

154 308.9

155 300.2

156 302.0

157 312.3

158 313.9

159 313.6

160 312.7

161 311.6

162 310.8

163 310.2

164 309.9

165 309.5

166 309.3

167 308.2

168 309.0

169 308.9

170 309.0

171 309.0

172 309.3

173 309.6

174 310.4

175 311.1

176 311.2

177 309.4

178 299.6

179 302.0

180 312.2

181 313.4

182 313.0

183 312.3

184 311.2

185 310.7

186 310.0

187 309.8

188 309.5

189 309.4

190 309.2

191 309.2

192 309.1

193 309.5

194 309.6

195 310.4

196 310.7

197 311.0

198 309.6

199 299.8

200 301.8

201 311.9

202 313.3

203 312.9

204 312.4

205 311.3

206 311.1

207 310.3

208 310.3

209 309.8

210 310.0

211 309.7

212 310.1

213 310.1

214 310.8

215 311.1

216 311.2

217 309.6

218 299.8

219 301.3

220 311.4

221 312.4

222 312.6

223 312.4

224 312.0

225 312.0

226 311.3

227 311.5

228 310.9

229 311.5

230 311.0

231 311.1

232 311.0

233 310.6

234 309.4

235 299.6

236 301.7

237 310.7

238 310.4

239 312.0

240 310.6

241 312.2

242 310.6

243 311.7

244 310.3

245 311.6

246 309.8

247 310.7

248 309.0

249 309.0

250 300.2

251 305.6

252 301.6

253 300.8

254 300.7

255 300.3

256 299.9

257 300.4

258 304.4

TsubOutCO[C] data

Sector/Assembly Num: 1/12

Axial Layer: 1

1

TsubOutCO[C]:

316.13:317.52 314.73:316.13 313.34:314.73 311.94:313.34 310.55:311.94 309.15:310.55 307.76:309.15 306.37:307.76 304.97:306.37 303.58:304.97 302.18:303.58 300.79:302.18 299.39:300.79 298.00:299.39 296.60:298.00

Assembly 12.2 mm lattice pitch

12.3 mm lattice pitch

Difference

12 314.4 C 312.9 C - 1.5 C

26 315.0 C 313.4 C - 1.6 C

38 308.6 C 307.3 C - 1.3 C

56 287.8 C 287.1 C - 0.7 C

Geometry of Hf-layer in the CFA

Effect of applying Hf-layer in the CFA

Decreasing the power peak in the pin next to the CFA

Axial distribution of the linear heat rate

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

Axial layer

Lin

ear

hea

tra

te(W

/cm

)

Without Hf

With Hf

Axial distribution of the linear heat rate

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

Axial layer

Lin

ear

hea

tra

te(W

/cm

)

Without Hf

With Hf

Purpose of modification: helping in the increase of heat power

• Increasing the subchannel outlet temperature reserve for 8 % heat power increase:5 ( 4+1) C

Sources of increasing the subchannel outlet temperature reserve : • Change in the pressure control: 1 C• VERONA upgrade + modified engineering limits 1.5 C• Modified fuel 1.5 CAlltogether 4 COther sources:

More conservative reload patternReduced pressure in the secondary circuitApplying a mixing modell inside the FA

Reload patternof 4th unit 20th cycle

1

22,74 1007

2

13,64 1011

3

11,09 1011

4

21,00 1007

5

11,09 1011

6

20,20 1010

7

13,21 1013

8

24,24 1010

9

0,000 1011

10

24,90 1007

11

23,56 1010

12

23,39 1010

13

11,99 1011

14

7,749 1011

15

26,21 1010

16

22,52 1010

17

0,000 1011

18

0,000 1011

19

35,16 1010

20

13,81 1011

21

12,24 1011

22

13,40 1011

23

23,69 1010

24

27,06 1010

25

12,89 1011

26

0,000 1011

27

35,26 1010

28

10,49 1011

29

25,43 1010

30

0,000 1013

31

33,78 1010

32

0,000 1011

33

13,17 1013

34

35,45 1010

35

25,42 1010

36

20,08 1010

37

24,14 1010

38

34,97 1010

39

0,000 1011

40

0,000 1011

41

35,65 1010

42

10,46 1011

43

7,752 1011

44

26,06 1010

45

0,000 1011

46

0,000 1011

47

35,78 1010

48

11,90 1011

49

25,51 1010

50

0,000 1013

51

0,000 1011

52

0,000 1011

53

0,000 1011

54

0,000 1011

55

36,89 1010

56

36,76 1010

57

0,000 1011

58

36,85 1010

59

36,84 1010

Time= 0,00 eff.day

Power= 1485,000 MW

Tin.= 267,000 C

Mod.Flow= 29816,0 t/h

Cb= 7,383 g/kg

Reactivity= 0,0008 %

h6 pos.= 212,000 cm

2 -Ass.pos.

23,4 -AssBu[MWd/kgU] 1010 -AssType

AssBu[MWd/kgU]:

34,78:37,26

32,29:34,78

29,81:32,29

27,32:29,81

24,84:27,32

22,36:24,84

19,87:22,36

17,39:19,87

14,90:17,39

12,42:14,90

9,94:12,42

7,45: 9,94

4,97: 7,45

2,48: 4,97

0,00: 2,48

Results of C-PORCA Calculations

Unit=4 Cycle=20

code info:/4/20/tterv/boros/0/-/-

parameters: value: sec: ass.pos: pinpos: layer:

Ass.Pow-max[MW]: 5,602 1 53

Ass.Bu-max[MWd/kgU]: 36,89 1 55

PinPow-max[kW]: 47,33 1 39 10

PinBu-max[MWd/kgU]: 39,45 1 59 120

Tsub-max[C]: 316,9 1 39 14

Nlin-max[W/cm]: 256,0 1 53 10 9

Nlin-limit[W/cm]: 325,0 1 53 10 9

LocPinBu-max[MWd/kgU]: 45,37 1 56 58 8

Kampány eleje:

Kazetták típusa Elsőéves Másodéves Harmadéves Negyedéves

Számmal Betűvel DarabKiégés

(GWn/tU)Darab

Kiégés (GWn/tU)

DarabKiégés

(GWn/tU)Darab

Kiégés (GWn/tU)

7 G 0 0,00 0 0,00 13 22,93 0 0,00

10 H 0 0,00 0 0,00 84 24,11 66 35,76

11 K 84 0,00 78 11,42 0 0,00 0 0,00

13 N 12 0,00 12 13,19 0 0,00 0 0,00

Kampány vége:

Kazetták típusa Elsőéves Másodéves Harmadéves Negyedéves

Számmal Betűvel DarabKiégés

(GWn/tU)Darab

Kiégés (GWn/tU)

DarabKégés

(GWn/tU)Darab

Kiégés (GWn/tU)

7 G 0 0,00 0 0,00 13 32,88 0 0,00

10 H 0 0,00 0 0,00 84 35,93 66 41,52

11 K 84 12,28 78 25,22 0 0,00 0 0,00

13 N 12 14,19 12 25,00 0 0,00 0 0,00

Measured characteristics of reload pattern of unit 4_____________________________________________________________________________

|Mintavetel:2006- 8- 3 10:14:40 >>> IRIS <<< 4.bl. 20.kamp. 30.32 eff. nap||_____________________________________________________________________________||Telj. |SZBV 6cs.|Cborsav |T hideg|T meleg|DeltaT|R.forgalom |By pass|Pr.nyom.|| 96.1%|218.07cm | 6.5g/kg|265.50C|296.73C|31.23C|31621.64t/h| 3.80%|122.57 b||_____________________________________________________________________________||MAX3 : Osszefoglalo naplo a tartalekok alapjan legterheltebb kazettakrol ||_____________________________________________________________________________|| Reaktorfizikai feldolgozas alapjan szubcsatorna kilepo homerseklet || tartalek (TS-t) minimum, futoelem linearis teljesitmeny tartalek (NL-t) || minimum, futoelem teljesitmeny tartalek (PP-t) minimum es kazetta || teljesitmeny tartalek (AP-t) minimum szerint kivalasztva. ||=============================================================================|| 1. legterheltebb kazettak ||Kiv|koord/sz| TS-t ( Tsub) | NL-t ( Nlin) |PP-t (Ppin) |AP-t (Pass) ||===|========|===============|==================|==============|==============|TS-t:11-28/53 6.0 (313.3) C 45.2 (240.8) W/cm 6.6 ( 45.4) kW 0.90 (5.38) MWNL-t:19-34/53 6.3 (313.0) C 45.1 (240.9) W/cm 6.5 ( 45.5) kW 0.88 (5.40) MWPP-t:15-52/30 9.3 (310.0) C 54.4 (231.6) W/cm 6.5 ( 45.5) kW 0.91 (5.37) MWAP-t:19-34/53 6.3 (313.0) C 45.1 (240.9) W/cm 6.5 ( 45.5) kW 0.88 (5.40) MW|=============================================================================|| Maximalisan elerheto teljesitmenyek az alapveto korlatok szerint ||=============================================================================| Szubcsatorna kilepo homerseklet szerint: 108.2 % Futoelem linearis teljesitmeny szerint: 114.1 % Futoelem teljesitmeny szerint : 109.7 % Kazetta teljesitmeny szerint : 111.8 % |=============================================================================|| Maximalisan elerheto teljesitmeny : 108.2 % |=============================================================================| 

Mért és számított kazetta dT eltérések kazettatípusonként 4. blokk 20. kampány

0

5

10

15

20

25

30

35

-5 -4 -3 -2 -1 0 1 2 3 4 5

eltérés [C]

elté

rése

k sz

áma

1011 1010

Characteristics of reload patterns

• Before increasing the heat power: 90 FAs/cycle, 4-year usage of working FAs

• 1485 MW power, unchanged average enrichment: 102 FAs/cycle, higher relative fuel cost (Ft/kWh)

• Enhancing the economy: higher enriched FAs with burnable poison – Boric acid conc. at BOC, moderator

temperature coefficient– Subcriticality under the conditions of

storing-transporting

Opportunities for fuel development

• Present or modified geometry • Enrichment ( 4.2 – 4.4)• Annual number of FAs, 4 or 5-year

usage of FAS, maximum burnup • Pins with Gd-burnable poison

(number, arrangement)• CFA follower (with burnable

poison ?)

Different perspectives of investigations

• Economy ( Ft / kWh )• Maximum burnup (licensing,

reliability)• Storage subcriticality • Planning capabilities for reload

patterns – equlibrium, transient – reserves to the limits ( 1485 MW ! )

Fuel costs

Cycle FAs / cycle Fuel cost / kWh

Present / 1485 MW

102 1

Gd-1 / 1485 MW 90 -3.6 %

Gd-2 / 1485 MW 84 -6.3 %

Present and expected burnups Assembly Pin Pellet

Engineering factor 2.90 5.1 7Present limit 49.00 55 64Limit - Eng. Fac. 46.10 49.90 57.00Limit + 3 % (under licencing) 50.50 56.70 66.00New limit - Eng. Fac. 47.60 51.60 59.00

Gd1 case - 90 assembly / year 48.60 53 61Related to present limit 1.05 1.06 1.07Related to new limit 1.02 1.03 1.03

Gd2 case - 84 assembly / year 51.40 54.4 61Related to present limit 1.11 1.09 1.07Related to new limit 1.08 1.05 1.03

PIE program investigations 44.00 50 56

Higher enriched fuel (3 Gd pins)

6 Gd or 3 Gd pins

1.05

1.07

1.09

1.11

1.13

1.15

1.17

1.19

1.21

1.23

1.25

0 2000 4000 6000 8000 10000 12000 14000

Burnup (MWd/tU)

K-i

nf

Gd-3-3.35%

Prof-3.8

Gd-6-3.35%

Limits during the cycle (examples)Cycle Data Calculated by C-PORCA Unit=5 Cycle=7

Pin.p_max [kW]

teff [FPD]320300280260240220200180160140120100806040200

Pin.

p_m

ax [

kW]

50

49

48

47

Cycle Data Calculated by C-PORCA Unit=5 Cycle=7

t_sub_max [C]

teff [FPD]300250200150100500

t_su

b_m

ax [

C]

322

321

320

319

318

317

316

315

Cycle Data Calculated by C-PORCA Unit=5 Cycle=7

Pin.p_max [kW]

teff [FPD]350300250200150100500

Pin.

p_m

ax [

kW]

48

47

46

45

44

Cycle Data Calculated by C-PORCA Unit=5 Cycle=7

t_sub_max [C]

teff [FPD]350300250200150100500

t_su

b_m

ax [

C]

321

320

319

318

317

316

315

314

313

6 Gd pins

6 Gd pins

3 Gd pins

3 Gd pins

Storage subcriticality

• 6 Gd pins: deep subcriticality for all cases

• 3 Gd pins : Gd-1 o.k., Gd-2

• New calculations: – Modified geometry with 3 Gd-pins:

o.k.

Ultimate common proposal/ 1

- Diameter of fuel pin - 9,07 mm; - Height of fuel pin in the working FA - 2480 mm;- Height of fuel pin in the working control FA - 2360 mm;- Outer diameter of fuel pellet - 7,6 mm;- Inner diameter of fuel pellet - 1,20 mm;- Lattice pitch of fuel pins - 12,3 mm;- Thickness of the shroud of working and control FAs - 1,5 mm;- Outer „diameter” of working and control FAs - 145 mm;- Average enrichment of working and control FAs kb 4,25 %;

Ultimate proposal / 2

Higher enriched fuel (Russian proposal)

Features of equilibrium cycle/1

FUEL DESCRIPTION 1ST C. 2ND C. 3RD C. 4TH C. 5TH C.

3-gd pins working FA 72 12.06 78 25.35 72 37.19 78 45.16 12 47.27

3-gd pins.Hf fol. FA 12 15.65 6 28.37 12 41.27 6 47.68 0 0.00

1.6%-os follower FA 0 0.00 1 18.91 0 0.00 0 0.00 0 0.00

Features of equilibrium cycle/2

teff power rodh6 tin flow cb apmax s po ppmax s po pin tsmax s po cha nlmax nllim nltar s po le pin

0.0 1485.0 212.0 267.0 30000.0 6.13 5.56 1 13 47.5 1 13 92 316.4 1 13 176 236.7 325.0 88.3 1 9 10 35

5.0 1485.0 212.0 267.0 30000.0 6.13 5.64 1 13 48.0 1 13 92 316.9 1 13 176 235.5 325.0 89.5 1 24 10 122

20.0 1485.0 212.0 267.0 30000.0 5.71 5.63 1 13 47.9 1 13 92 316.8 1 13 176 232.2 325.0 92.8 1 24 10 122

40.0 1485.0 212.0 267.0 30000.0 5.28 5.54 1 13 47.2 1 13 92 316.1 1 13 176 230.3 325.0 94.7 1 9 9 35

60.0 1485.0 212.0 267.0 30000.0 4.86 5.47 1 24 47.1 1 24 124 316.0 1 24 245 229.2 325.0 95.8 1 9 9 35

80.0 1485.0 212.0 267.0 30000.0 4.44 5.49 1 24 47.1 1 24 124 315.9 1 24 245 228.0 325.0 97.0 1 9 8 35

100.0 1485.0 212.0 267.0 30000.0 4.03 5.50 1 24 47.0 1 24 111 315.9 1 24 245 161.0 258.8 97.7 1 15 12 71

120.0 1485.0 212.0 267.0 30000.0 3.63 5.50 1 24 47.0 1 24 111 315.9 1 24 216 158.8 256.5 97.7 1 15 12 71

140.0 1485.0 212.0 267.0 30000.0 3.22 5.51 1 24 47.0 1 24 111 315.9 1 24 216 156.9 254.3 97.4 1 15 12 71

160.0 1485.0 212.0 267.0 30000.0 2.82 5.51 1 24 46.9 1 24 111 315.8 1 24 216 155.2 252.1 96.9 1 15 7 71

180.0 1485.0 212.0 267.0 30000.0 2.42 5.52 1 24 46.8 1 24 111 315.7 1 24 216 155.3 250.8 95.4 1 44 7 23

200.0 1485.0 212.0 267.0 30000.0 2.02 5.51 1 24 46.8 1 24 111 315.7 1 24 216 155.0 248.6 93.6 1 44 6 23

220.0 1485.0 212.0 267.0 30000.0 1.62 5.51 1 24 46.7 1 9 35 315.6 1 24 216 154.6 246.3 91.8 1 44 6 23

240.0 1485.0 212.0 267.0 30000.0 1.22 5.50 1 24 46.6 1 54 82 315.5 1 24 216 153.5 243.5 90.0 1 44 5 13

260.0 1485.0 212.0 267.0 30000.0 0.82 5.50 1 24 46.4 1 9 35 315.4 1 24 216 153.2 241.3 88.1 1 44 5 13

280.0 1485.0 212.0 267.0 30000.0 0.42 5.49 1 24 46.3 1 9 35 315.3 1 24 216 152.9 239.1 86.2 1 44 5 13

300.0 1485.0 212.0 267.0 30000.0 0.03 5.48 1 24 46.1 1 24 111 315.2 1 24 216 152.5 236.9 84.4 1 44 5 13

320.0 1485.0 225.0 267.0 30000.0-0.31 5.48 1 24 46.0 1 24 111 315.1 1 24 216 153.7 234.6 80.9 1 15 16 71

323.0 1485.0 245.0 267.0 30000.0-0.26 5.48 1 24 46.1 1 9 35 315.2 1 24 245 162.2 234.3 72.0 1 15 17 71

325.0 1485.0 245.0 267.0 30000.0-0.30 5.48 1 24 46.1 1 9 35 315.2 1 24 245 162.5 234.1 71.5 1 15 17 71

Process of works

• 2006 second half: decision making (Hungarian – Russian)

• 2006 end : contracts for the analysis (TVEL, KFKI, etc. )

• 2007 –2008: safety analyses• 2009 : 12-18 Test FAs to Paks• 2010 : FAs for the whole core (84

pieces)

One main problem: mixing in the FA-head

Test FA for hydraulical measurement

Process of solution

• Buying the measured results from TVEL

• CFD program validataion• Parametrization of temperature

difference• Introduction of its results into

VERONA system • Check on the test FAs, corrections