nano technology & nano materials

Click here to load reader

Post on 18-Jan-2015




11 download

Embed Size (px)


Nano Technology & Nano Materialsby Ray Fernando, PHDCalifornia Polytechnic State UniversityPolymers and Coatings ProgramDepartment of Chemistry and BiochemistrySan Luis Obispo, CAwww.polymerscoatings.calpoly.eduDelivered 22 June 2009 @ SLINTEC


  • 1. Ray Fernando, PhDFernando22 June 2009 California Polytechnic State UniversityPolymers and Coatings ProgramDepartment of Chemistry and Biochemistry San Luis Obispo, CA p ,

2. Nanotechnology OverviewNanomaterials PropertiesPotential BenefitsCommercial ApplicationsChallenges 3. Nanotechnology is the understanding andcontrol of matter at dimensions of roughly 1to 100 nanometers, where uniquephenomena enable novel applications.encompassing nano-scale science,engineering and t h li i d technology; nanotechnology t h linvolves imaging, measuring, modeling, andmanipulating matter at this length scale scale.( 4. U.S. National Nanotechnology Initiative (NNI)Initial phase funded by Federal Government in late1990sFormal NNI proposal on March 11, 1999Funded in 2001 with a$489 million.a new industrial revolution powered bysystematic control of matter at the nanoscale. yNNI is largest nanotechnology investorover last 7 years ($7 billion)Now NNI involves 26 independent agencies $1.5 ldd $billion (2008) Top ten advances in materials Science, J. Wood, Materials Today, 1(12), 40 5. Global InitiativesOver 65 countries have national research focus projectson nanotechnology2007 global nanotechnology related R&D budget was g gygin excess of $12 billionIndustry investment surpassed governments in recentyears.years Top ten advances in materials Science, J. Wood, Materials Today, 1(12), 40 6. 7. C-C bond 1.5 angstromsgC-H bond 1.1 angstromsEthanol: CH3-CH2OH 10-4 10-2 100 102104106108 1010 Nanometer 8. Size and refractive index of particles are important Nanoparticles are smaller than the wavelength of visible light; reduces chance of light scattering 9. Polymer latex particle size 50 - 500 nmHiding Hidi grade TiO2 particle dti l 200 - 250 nm sizePolyurethane Dispersion 50 - 100 nm particle sizePolymer molecular size in 2 - 100 nm solution 10. A = 4r2 11. Volume = 4/3**r3 Surface area = 4**r2 1 gram of TiO2Volume = 0.25 cm3 Particle P ti l ParticlesP ti lSurfaceS fSurface S f diameter per gramarea perArea / (nm)gram (m2) Volume2006 x 10137.51.8 x 101220 6 x 101675 1 8 x 1016 1.8 2 6 x 10197501.8 x 1020 12. Bulk properties are not scalable to nanoscale 13. A particle of 10nm diameter has 20% surface atoms A particle of 2nm diameter has 80% surface atoms A particle of 1nm diameter hasti l f 1 di t h 100% surface atoms Single wall Carbon nanotube A capped single-wall carbon nanotube with a slight bend. 14. Particle Diameter(nm)( )300 250 200150100 50 Interfacial0.030.040.05 0.06 0.10 0.22 Volume Fraction 10 nm Interfacial LayerDispersed particle volume fraction is 0.3 in all cases 15. Extensive interfacial area 103 to 104 m2/ml Large number density of particles 106 to 108 particles/m3 Low percollation threshold ~0.1 2 volume% Short d Shdistance between particlesb l ~0.1 2 volume% Bulk B lk material properties not scalablet i lti tl blOptical clarity 16. Polymer molecules at i t f P l l lt interface Surfactants tS f t t at water/air i t ft / i interface 17. Thermo-mechanical properties of LLDPE/SiO2 nanocomposites, E. Kontou and M. Niaounsikis, Polymer, 47, 1267, 2006 - Tg K td M Niiki P l47 1267T increases of 25 to 30oC observed with up to 10% nano silicaGlass-Transition Temperature Behavior of Alumina/PMMAGlass Transition Nanocomposites, B. J. Ash, R. W. Siegel, and L. S. Schadler, J. Polym. Sci.: Part B: Polym. Phys., 42, 4371, 2004. Nano alumina / PMMA composites. 25oC drop in Tg with lessppg than 1% 38nm and 0.5% 17 nm. Up to 10% further addition did not lead to additional Tg reductions 18. Glass Transition of the Polymer Microphase, Bares, J., Macromolecules, 8, 244, 1975 - Tg of finely dispersed phases (~12 nm) was 20oC lower than the analogous bulk phase; proposed the first equation (modified Fox-Flory) relating theFox Flory) Tg to the enhanced surface to volume ratio Nanofiller effect on the glass transition of a polyurethane, J. G.-I. Rodriguez, al., J. Rodriguez et al J Thermal Anal Calorimetry, 87(1), 45, 2007 - Anal. Calorimetry 87(1) 45 DSC study on polyester PU with nano silica. Silica particle sizes are 175, 395, 730 nm, and levels are up to 10 wt.%; PU Tg ( oC) did not change with the nanoparticles; g (-10 ) gp 19. y Dynamic and viscoelastic behavior of natural rubber/layered silicate nanocomposites obtained by melt blending, Ramorino, et al., Polym. Eng Sci Polym Eng. Sci., 2007 Natural rubber nanocomposite reinforced with nano silica, Chen, et al., Polym. Eng. Sci.,silica , 2008 Sol-gel process of alkyltriethoxysilane in latex for alkylated silica formation in natural rubber, Siramanont, et al., Polym. Eng. Sci., 2009 20. Dispersion of layered inorganics in polymer In-situ generation of nano-phases Incorporation of nano-particles 21. Nylon/Clay Nanocomposites (Toyota/Ube, 1980s) 1980 )70% higher tensilemodulus125% higher flexuralmodulusHeat distortionH t di t titemperatureincreased from 65 oC Epoxy / Layered Silicate (Vaia tot 152 oC Materials Today, 2004) 22. X-ray diffraction pattern Dispersed IntercalatedExfoliatedPinnavaia, T.J., and Beall and G.W. (Ed.), Polymer-Clay Nanocomposites, Wiley (2000) Gao F Materials Today November 2004 F.,Today, Vaia, R.A. and Wagner, H.D., Materials Today, November 2004 23. Barrier Gas, Water etc Gas Water, etc. Anti-Corrosion Fire Retardancy Mechanical Properties MicrocompositeAspect Ratio25:1NanocompositeAspect Ratio 250:1 24. Nano-Clay SuppliersElementisNanocorSouthern ClayOthers Product Manufacturers P d M f Inmat, Inc. 2001 Wilson double core tennis balls Recent efforts on PET, PP film barrier coatings Others 25. TEOS Hydrolysis/condensation 26. Sol- Sol-Gel Hybrid Nano-CompositeNano- Coatings OCH3 TEOS H3CO SiOCH2CH2CHCH2 Cyclo-aliphatic Epoxy OCH3O OC2H5++OH2 GPTMOS C C Si O C2H5OOC2H5O O OC2H5Inorganic / Organic Nanocompositeg gp 27. Aluminum Oxide Copper Oxide Antimony Tin Oxide Indium Tin Oxide Barium Sulfate Iron Oxide Bismuth OxideNano-Clays Boehmite POSS Calcium Cabonate Silicon Dioxide Carbon Nanotubes Titanium Dioxide Cerium Oxide Zinc Oxide Cobalt Aluminate ... 28. Anti-microbialOptical Properties AntistaticPhotocatalysis Gas/Stain Barrier Surface Energy Corrosion Modification Fire RetardantUV Stability IR-Absorption X-Ray Shield Magnetic.. Mechanical 29. 100 90Gloss Retention (20 ) o80 70 Alumina C60 Alumina D %G50 Silica A 400 0.50511.5 15 22.5 253 3.5 35Nanoparticle Content (Wt.%) 30. Transformation of a Simple Plastic into a Superhydrophobic Surface Erbil, Demirel, Avci, and Mert, Science, Vol 299, Issue 5611, 1377-1380 , 28 February 2Figure 1. (A) The profile of a water drop on a smooth i-PP surface that has acontact angle of 104 2 Th i PP film was prepared by melting at 200Ct t l f2. The i-PP fil dbltitbetween two glass slides and crystallizing at 100C. (B) The profile of a waterdrop on a superhydrophobic i-PP coating on a glass slide that has a contactangle of 160. The i-PP was dissolved in a 60% p-xylene/40% MEK mixture byvolume at an initial concentration of 20 mg/ml at 100C. The solvent mixturewas evaporated at 70C in a vacuum oven The morphology of the i-PP coating 70 C shown in Fig. 4. Fig. 4. SEM picture of an i- PP coating obtained using the nonsolvent MEK as described in Fig. 1B 31. - Contact AngleZero Contact Angle Spontaneous Wetting& Spreading 32. Rainwater cleans lotus leaves because of their bumpy surface. Abramzon, et al., Chemistry & Life (1982)y () Barthlott et al., Annals of Botany (1997) 33. Nano-Structuring MethodsNun, Oles, & Schleich, Macromol. Symp., 187, 677-682 (2002)Nanostructured superhydrophobic surfaces, H. M. Shang, Y. Wang, K. Takahashi, G. Z. Cao, D. Li, and Y. N. Xia, J. Mater. Sci., 40, 3587, 2005 34. 1.0 Wt. % Alumina D ~25nm Avg. 0.67 Wt. % Alumina C ~25 nm Avg. particle size, 10 micron scan area particle size, 10 micron scan area 35. g Self-cleaning surface Antibacterial ActivitySuper hydrophilicity Anti fogging Anti-fogging activity 36. 1.21 UV Visible RegionIRce 0.8 08 Reflectanc 0.6 R 0.4 Rutile Anatase 0.20360 400440480 520 560 600 640 680 720 Wavelength (nm)W l th () 37. TiO2 + UV light e- + hole+ e- + hole+ TiO2 + heat hole+ + OH- OH e- + O O 2 -2O2- + OH + (-CH2-) intermediates O2- + OH + intermediates CO2 + H2OUV light + O2 + (-CH2-) intermediates UV light + intermediates CO2 + H2OSelf-Cleaning Surfaces 38. Chalking: loose pigment particles form on the surface from the erosion of the binder as a result of photodegradation.photodegradationType IType II Type IIIType IV Anatase RutileRutileRutile Product NameLWR-900 R-900, R-901R-960 TiO2 min %min.%94928080 Chalkingfreemediummediummedium resistant resistant resistant Surface treatment noneAl2O3 SiO2 +Al2O3 SiO2 +Al2O3Complete encapsulation to protect TiO2 from UV free radical reaction 39. 40. Umicore transparent Cerium Oxide and Zinc Oxide in Waterborne and solvent-based PU coatings for wood.Nanovations - Lignol Wood Coating with nanoscale UV absorber; Nano- Silver, antimicrobial and energy saving faade paint from Bioni PaintsBioni Paints are the only chemical free coatings in the world that can preventBioni the growth of moss, algae and mildew permanentlyTeak Guard Marine with Nanotechnology UV protectionNanotec Ultra Coating UV protectionNanolinx First wood floors finishing system to use a network of crosslinkedg y nanoparticlesNanoseal Wood by Nanotec is not a sealer; nano particles adhere directly to substrate moleculeshydrophobic surface; Nanoprotect AntiG is amolecules hydrophobic surface ; water based nanotechnology treatment that provides a layer against Graffiti on concrete and natural stone surfaces 41. Nichiha Fiber Cement - Nichiha uses Nanotechnology to create self-Nichiha self cleaning

View more