nanocomposite materials for microchannel plate detectors

40
Anil U. Mane Nanocomposite Materials for Microchannel Plate Detectors CPAD Instrumentation Frontier Workshop 2018 Brown University and Rhode Island Convention Center Providence, Rhode Island (December 9-11, 2018)

Upload: others

Post on 05-Nov-2021

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nanocomposite Materials for Microchannel Plate Detectors

Anil U. Mane

Nanocomposite Materials for

Microchannel Plate Detectors

CPAD Instrumentation Frontier Workshop 2018Brown University and Rhode Island Convention Center

Providence, Rhode Island(December 9-11, 2018)

Page 3: Nanocomposite Materials for Microchannel Plate Detectors

Outline

Introduction

Nanocomposites material developmento Atomic layer Deposition (ALD) method

o In-situ growth QCM studies

o Nanocomposites engineering

ALD nanocomposite application to MCPs

Summary

Page 4: Nanocomposite Materials for Microchannel Plate Detectors

Microchannel Plates (MCPs)

HEP, NE, Astrophysics, and Materials Time-of-flight (ToF), mass spectrometry,

Photomultiplier tubes (PMTs)

Field emission displays, Night Vision Devices

Security Scanners, Neutron detector, SNM (U, Pu) detection

Medical imaging (PET scanners)

Airborne surveillance of moving objects, LIDAR, and 3-D topographic imaging

Page 5: Nanocomposite Materials for Microchannel Plate Detectors

Microchannel Plates (MCPs)

Conventional Fabrication:– Draw lead glass fiber bundle

– Slice and polish

– Chemical etch,

– heat in hydrogen

Problems:– Expensive and need to import

– Resistance and secondary emission properties are linked

– Long conditioning process needed

– Contains lead (ES&H concerns)

– Small (1.5” diameter)

2D –Electron amplifiers

Page 6: Nanocomposite Materials for Microchannel Plate Detectors

New Strategy – ALD Functionalization of Porous Glass

1) Resistive coating (ALD)

2) Emissive coating (ALD)

3) Contact electrode (PVD)

-Typically NiCr

A. Mane et. al., SPIE (2011)D. Beaulieu, et. al., Nucl. Instr. Meth. Phys. A, 633, S59, (2011)

6

Micro capillary array (MCA) Glass (Incom Inc) ALD Functionalization

Page 7: Nanocomposite Materials for Microchannel Plate Detectors

Atomic Layer Deposition (ALD) method

• Precursor introduce separately in time and space

•Self-limiting material growth mechanism

Elam, Chem. Mater., Vol. 15, No. 4, 2003

e.g. 1)ALD of Al2O3 by TMA and H2O2) ALD of ZnO by DEZ and H2OExample: ALD Al2O3 using TMA-H2O

Page 8: Nanocomposite Materials for Microchannel Plate Detectors

Uniform-Conformal Materials on 3D matters by ALD

AR=~10

Elam – APS/CNM Users Meeting – May 14, 2015

AlSiSE

SEM/EDXAspect ratio (AR) =

(length/width) ~ 3000

Variety of materials growth by ALD methods

Page 9: Nanocomposite Materials for Microchannel Plate Detectors

Quartz Crystal Microbalance (QCM) for in-situ growth

f = -Cf mΔf - the observed frequency change, in Hz,Δm - the change in mass per unit area, in g/cm2

Cf - the sensitivity factor for the crystal used

Page 10: Nanocomposite Materials for Microchannel Plate Detectors

In-situ QCM study for ALD process: E.g. ALD Al2O3

Rev. Sci. Instrum., Vol. 73, No. 8, August 2002

•Precursor introduce separately in time and space•Involved self-limiting film growth via alternate surface saturation reactions

Timings= TMA 1s—purge 5s—H2O 1s—Purge 5s

Precursor dose/purge time evaluation by QCM study

Page 11: Nanocomposite Materials for Microchannel Plate Detectors

ALD Capabilities at Argonne

11

Substrate size (2”x18”), in situ QCM, QMS, FTIR, I-V

(ALD powder coater 1 kg ) 60” L x 6” dia. long tube ALD Portable ALD – in situ

synchrotron X-ray studies

Page 12: Nanocomposite Materials for Microchannel Plate Detectors

12

Oxford FlexAL PEALD, 8” wafers, auto-load, in situ ellipsometry and emission spectrometry

Beneq TFS500 –3D chamber, large substrates, scale-up, batch coating (15x300mmwafers)

ALD Capabilities at Argonne

R006-20 Hz-1.07 torr

92 nmZnO

High-speed injector (20 Hz)

ALD: GaN, AlN etc.

Page 13: Nanocomposite Materials for Microchannel Plate Detectors

ALD of Nanocomposites:Case study M-Al2O3 (Where M = W or Mo)

Page 14: Nanocomposite Materials for Microchannel Plate Detectors

ALD of M-Al2O3 Composites (Where M = W or Mo)

• Used thermal ALD method for synthesis

• Precursors used for ALD = Al(CH3)3, H2O, WF6, MoF6, Si2H6

• Precursors properties: High vapor pressure, availability, and low cost

• ALD growth:

Growth of pure layers : W, Mo and Al2O3

Growth composite layers : W-Al2O3, and Mo-Al2O3

• Low temperature deposition processes (100-400oC)

• Process scale up for commercialization

Mane et.al., (US20130280546) Elam et.al., ECS 2013Mane et.al., (US20140220244) W. Tong et.al., APL 102 (2013) 252901Mane et.al., SPIE 2013 Mane et.al., CVD (2013) 186 Mane et.al., ECS 2014 Mane et.al., SPIE 2016

Page 15: Nanocomposite Materials for Microchannel Plate Detectors

M-Al2O3 Composite Films by ALD

Adjust properties with M/(M+Al2O3) cycle ratio

Combine 2 ALD processes:

‒ Oxide -- TMA/H2O → Al2O3 : insulator, ρ=1015 Ωcm

‒ Metal -- MF6/Si2H6 → M=W, Mo : conductor, ρ=10-5 Ωcm

Page 16: Nanocomposite Materials for Microchannel Plate Detectors

In-situ QCM study: @ same growth T= 200oC

ALD W

•GR=5-5.5 A/cycle

•Nanocrystalline growth

150 155 160 165 170 175 18011000

11500

12000

12500

13000

13500

14000

14500

WF6

dose

WF6

dose

Si2H

6

dose

Time(s)

Ma

ss (

ng

/cm

2)

Si2H

6

dose

W on Al2O3//Si

ALD Al2O3

• GR=1.2-1.3 A/cycle

•Amorphous growth

0 10 20 30 40 500

40

80

120

Time(s)

Ma

ss (

ng

/cm

2)

TMA

dose

TMA

dose

H2O

dose

H2O

dose

ALD Mo

• GR=10-11A/cycle

•Nanocrystalline growth

570 580 590 600 610 6203000

3500

4000

4500

5000

Si2H6

Dose

Si2H6

DoseMoF6

Dose

MoF6

Dose

Time(s)

Ma

ss(n

g/c

m2)

MoF6

Dose

Al2O3//Si Mo on Al2O3//Si

Page 17: Nanocomposite Materials for Microchannel Plate Detectors

400 600 800 1000

0

1000

2000

3000

4000

5000

6000

7000

Mass

TMA Dose

H2O Dose

MoF6 Dose

Si2H6 Dose

Time(s)

Ma

ss(n

g/c

m2)

400 600 800 1000 1200 1400

0

5000

10000

15000

20000

25000

TMA dose

H2O dose

WF6 dose

Si2H

6 dose

Time (s)

Ma

ss(n

g/c

m2)

Mass

•Nucleation delay, Mass uptake and compatibility of processes

Al2O3-Mo-Al2O3Al2O3-W-Al2O3

In-situ QCM study: Materials compatibility

Page 18: Nanocomposite Materials for Microchannel Plate Detectors

20%W-80%Al2O3

ALD cycles

10%Mo-90%Al2O3

ALD cycles

In-situ QCM study: W-Al2O3 and Mo-Al2O3

Reproducible and linear growth with super cycles

Page 19: Nanocomposite Materials for Microchannel Plate Detectors

Nanocomposites with tunable electrical parameters

for MCPs

Page 20: Nanocomposite Materials for Microchannel Plate Detectors

Nanocomposites with tunable electrical parameters

Mane et.al., CVD (2013) 186 Mane et.al., ECS 2014

Tunable resistive coatings

Room Temperature MCPs

Page 21: Nanocomposite Materials for Microchannel Plate Detectors

Microstructure of composite materials

21

1-2 nm nanoparticles embedded in amorphous matrix

Page 22: Nanocomposite Materials for Microchannel Plate Detectors

E.g.30%W-70%Al2O3

ALD cycles

E.g.10%Mo-90%Al2O3

ALD cycles

Composition: XPS Depth Profiling

• Al bonded with O and F, AlOxFy and W or Mo mostly in metallic state

Page 23: Nanocomposite Materials for Microchannel Plate Detectors

Nanocomposites Resistivity Adjustment by

• ALD cycle method

• Nucleation role

• Precursors sequencing

• Reducing precursors

Page 24: Nanocomposite Materials for Microchannel Plate Detectors

102

103

104

105

106

107

108

109

102

103

104

105

106

107

108

109

1010

Rh

o(o

hm

-cm

)

E(V/m)

D-18 (9:1)

D-25 (18:2)

D-26 (27:3)

Longitudinal measurement(on comb structures)

(a)

Resistivity trend vs. ALD cycle method9xALO: 1xMo

18xALO: 2xMo

27xALO: 3xMo

104

105

106

107

108

109

102

103

104

105

106

107

108

109

1010

Rh

o(o

hm

-cm

)

E(V/m)

D-18 (9:1)

D-25 (18:2)

D-26 (27:3)

(b)

Transverse measurementGold bottom & Hg top electrodes

All other parameters are kept constant

E.g. 10Mo -90% Al2O3

Total Number of cycles kept constant

Page 25: Nanocomposite Materials for Microchannel Plate Detectors

W nucleation role on composite layer properties

25% W:75%Al2O3//Si

1:3 2:6 3:9 4:12 5:15 7:2110

2

103

104

105

106

107

108

109

Re

sis

tivity (

-cm

)

W:Al2O

3 ALD cycle ratio

1:3 2:6 3:9 4:12 5:15 7:21

2

4

6

8

10

W a

tom

ic %

W:Al2O

3 ALD cycle ratio

1:3 2:6 3:9 4:12 5:15 7:211.0

1.1

1.2

1.3

1.4

1.5

Gro

wth

ra

te (

A/c

ycle

)

W:Al2O

3 ALD cycle ratio

ALOALOALOALO W W W W W W W W W0

200

400

600

800M

ass/A

LD

cycle

(n

g/c

m2)

ALD Cycle

QCM study

Pure Al2O3

Pure W

•Growth rate, Concentration, Electrical transport follows nucleation trend

25% W:75%Al2O3//Si

25% W: 75%Al2O3//Si

All other parametersare kept constant

Page 26: Nanocomposite Materials for Microchannel Plate Detectors

In-situ QCM: “Precursors sequencing”

130 140 150 160 170 180 190 200 210130 140 150 160 170 180 190 200 210

400

500

600

700

800

H2O

H2O

TM

A

H2O

TM

A

WF

6

Ma

ss (

ng

/cm

2)

Time (s)

Si 2

H6

TM

A

H2O

H2O

TM

A

Si 2

H6

WF

6

240 250 260 270 280 290 300 310

600

700

800

900

1000

240 250 260 270 280 290 300 310

Ma

ss (

ng

/cm

2)

TM

A

H2O

WF

6

Time (s)

Si 2

H6

H2O

TM

A

H2O

TM

A

Si 2

H6

WF

6

H2O

TM

A

280 290 300 310 320 330 340 350 360

600

700

800

900

1000

1100

280 290 300 310 320 330 340 350 360

TM

A

H2O

TM

A

Si 2

H6

Si 2

H6

WF

6

TM

A

TM

A

TM

A

H2O

H2O

H2O

Ma

ss (

ng

/cm

2)

Time (s)

WF

6

360 370 380 390 400 410 420 430 440

1400

1500

1600

1700

1800

1900

360 380 400 420 440

TM

A

Si 2

H6

WF

6

H2O

Ma

ss(n

g/c

m2)

TM

A

TM

A

H2O

TM

A

H2O

TM

A

H2O

WF

6

Si 2

H6

Time (s)

Layer Precursors sequence Notation Average Mass uptake (ng/cm2 /ALD cycle)

Al2O3 1x(TMA-H2O) Steady state 37

W 1x(Si2H6-WF6) Steady state 930

25:75% ALD

cycles

3xAl2O3 1xW Super cycle Total

W:Al2O3 3x(TMA-H2O)-1x(Si2H6-WF6) THSW 63 129 192

W:Al2O3 3x(TMA-H2O)-1x(WF6-Si2H6) THWS 52 136 188

W:Al2O3 3x(H2O-TMA)-1x(Si2H6-WF6) HTSW 62 87 146

W:Al2O3 3x(H2O-TMA)-1x(WF6-Si2H6) HTWS 53 89 142

26

E.g. W:Al2O3 with 25:75% ALD cycles Growth temperature = 200oC

105

106

107

108

104

105

106

107

108

109

Re

sis

tivity (

-cm

)

E(V/M)

THSW

THWS

HTWS

HTSW

Page 27: Nanocomposite Materials for Microchannel Plate Detectors

Temperature coefficient of resistance (TCR) of ALD

nanocomposites

Can we control TCR through material design and engineering?

Important parameter for tunable R coatings which defines thermal runaway for devices E.g. (MEMS/NEMS, detectors, Sensors, etc.) Mane et. al, ALD 2017

Page 28: Nanocomposite Materials for Microchannel Plate Detectors

Adjusting Resistivity of MCPs for various operations

• Process -1 for Around Room Temperature MCP operation• Process -2 for Low Temperature MCP operation (Liquid Ar)• Process -3 for High Temperature MCP operation

Page 29: Nanocomposite Materials for Microchannel Plate Detectors

MCPs Fabrication

Page 30: Nanocomposite Materials for Microchannel Plate Detectors

MCP Fabrication and Performance

• A. Mane et. al., Chem. Vap. Deposition, 19, 186–193, (2013)• A. Mane et. al., Physics Procedia, 37, 722-732 (2012)• O. Siegmund et. al. , Physics Procedia, 37, 803-810 (2012)Small form easy to functionalized by ALD

Page 31: Nanocomposite Materials for Microchannel Plate Detectors

Capillary Glass Array Substrates for MCPs

• Very challenging substrate to coat for any thin film deposition method

20cm

20cm • Surface area = 8.7 m2

• Pore size = 20m• Thickness of plate=1.2mm• Aspect Ratio = 60• No. of Pores = ~80Millions• Porosity = 65%• Bias Angle = 8o

• Sensitive Surface to OH• Complex Geometry

Page 32: Nanocomposite Materials for Microchannel Plate Detectors

Large Area ALD MCPs

• High Gain (>105)/mcp• Very Low Background• 10x psec time resolution• 100m spatial resolution• Excellent Stability• Short (2-3days) scrubbing time

Bare MCA ALD MCP

ALD MCPs in Photodetector

8”x8” MCP-photodetector tile

8”x8” MCPGain Map

World’s Largest MCP

Page 33: Nanocomposite Materials for Microchannel Plate Detectors

Large Area ALD MCPs

• High Gain (>105)/mcp• Very Low Background• 10x psec time resolution• 100m spatial resolution• Excellent Stability• Short (2-3days) scrubbing time

Bare MCA ALD MCP

ALD MCPs in Photodetector

8”x8” MCP-photodetector tile

8”x8” MCPGain Map

World’s Largest MCP

Made in USA

Page 34: Nanocomposite Materials for Microchannel Plate Detectors

Photographs of various types of ALD MCPsCurtesy : ANL, Incom Inc. UCB and LAPPD

60mmx60mm

140mm

Page 35: Nanocomposite Materials for Microchannel Plate Detectors

Tested many prototype photodetectors based on ALD MCPs

33mm

6cmx6cm

10cmx10cm

20cmx20cm

2 x 3 Super-Module Mockup• Great cost saving!!! • Varity of applications

Argonne Sensor Science LLCUCB

Incom Inc

UoC

Page 36: Nanocomposite Materials for Microchannel Plate Detectors

http://www.hamamatsu.com/

20cm

Used 13000 PMTs

Super-Kamioka Neutrino Detection Experiment Japan

Jiangmen Underground Neutrino Observatory (JUNO), China

(dynode type PMTs)

Using 15000 PMTs

Geometry factor, better time and special resolution Suffers image reconstruction capabilities and cost

Next generationneutrino expt.(?)

LAPPDTM

20cmx20cm

Page 37: Nanocomposite Materials for Microchannel Plate Detectors

ALD-MCP technology is commercialized and products are available @ Incom Inc. MA

Publications ~200 (https://psec.uchicago.edu/)

Page 38: Nanocomposite Materials for Microchannel Plate Detectors

ALD nanocomposites for Functional Components and

built-up charge quashing applications

& many more in 3D printing space…….

Page 39: Nanocomposite Materials for Microchannel Plate Detectors

Next Plan :

In-situ ALD on MCP and performance testing system

• ALD Process optimization • Quick screening of high / low SEE materials• MCP performance optimization• (Gain, stability , TCR, and environmental study)

Page 40: Nanocomposite Materials for Microchannel Plate Detectors

Summary

Demonstrated

• Various aspects of ALD for nanostructure materials

development and engineering

• Applications of ALD nanocomposite materials

• Process Scale up and Technology commercialization

Thank you !!