nanomaterials for bottom-up manufacturingnanomaterials for bottom-up manufacturing jurriaan huskens...

33
Nanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA + Institute for Nanotechnology Molecular Nanofabrication group Enschede, The Netherlands

Upload: others

Post on 30-Jun-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Nanomaterialsfor bottom-up manufacturing

Jurriaan Huskens

University of Twente, MESA+ Institute for NanotechnologyMolecular Nanofabrication group

Enschede, The Netherlands

Page 2: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

General philosophy

Assembly: fundamental appliedPatterning:

fundamental

applied

3D nanostructures

flat stampsNIL patterning

printboards, multivalency, supramolecular nanolithography

patterned protein

constructions

Page 3: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Molecular printboards

CD monolayers on gold: infinite 2D receptor lattices:

M. W. J. Beulen, J. Bügler, M. R. de Jong, B. Lammerink, J. Huskens, H. Schönherr, G. J. Vancso, B. A. Boukamp,H. Wieder, A. Offenhäuser, W. Knoll, F. C. J. M. van Veggel, D. N. Reinhoudt, Chem. Eur. J. 2000, 6, 1176

CA: polarity: θadv = 55o

EIS: thickness: 2 - 3 nmXPS: bound sulfur: 65 %SIMS: molecular peaks: (M+Au)+

AFM: molecular order: 2.1 nmβ-cyclodextrin (CD)OHOH

OO

OH

7

Page 4: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Molecular printboards

Small guests at a CD monolayer:

K(M-1)

Δαsat

(°)

K(M-1)

ΔH(kcal mol-1)

TΔS(kcal mol-1)

OHFe 9.9⋅103 0.145 1.0⋅104 -6.1 -0.7

NH

O

2.6⋅104 0.179 3.0⋅104 -5.2 0.9

NH

O5.7⋅104 0.090 6.8⋅104 -5.9 0.7

00.020.040.060.08

0.10.12

0 20 40 60 80

Δα (º)

[guest] (μM)

M. R. de Jong,J. Huskens,D. N. Reinhoudt,Chem. Eur. J.2001, 7, 4164

Page 5: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

General introduction to multivalency

Multivalency at interfaces:

Examples in Nature:

cell membrane interactionswith bacteria and viruses:

M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 2754

Page 6: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

μCP on SAMs

Patterning with multiple multivalent molecules:

Em > 600 nm 500 < Em < 530 nm Simultaneous

Confocal microscopy images

60 μm

S. Onclin, A. Mulder, J. Huskens, B. J. Ravoo, D. N. Reinhoudt, Langmuir 2004, 20, 5460A. Mulder, S. Onclin, M. Péter, J. P. Hoogenboom, H. Beijleveld, J. ter Maat, M. F. García-Parajó, B. J. Ravoo, J. Huskens, N. F. van Hulst, D. N. Reinhoudt, Small 2005, 1, 242

Page 7: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Supramolecular materials

Supramolecular layer-by-layer assembly scheme using CD-Au colloids andadamantyl-functionalized dendrimers:

+

G5 dendrimer

Layer-by-layer assembly: G. Decher, Science 1997, 277, 1232O. Crespo-Biel, B. Dordi, D. N. Reinhoudt, J. Huskens, J. Am. Chem. Soc. 2005, 127, 7594

Page 8: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Supramolecular materials

Supramolecular building blocks for LBL assembly:

J. J. Michels, M. W. P. L. Baars, E. W. Meijer, J. Huskens, D. N. Reinhoudt, J. Chem. Soc., Perkin Trans. 2, 2000, 1914

OHOH

OO

OH

7

Molecular printboards:

J. Huskens, M. A. Deij, D. N. Reinhoudt, Angew. Chem. Int. Ed. 2002, 41, 4467; T. Auletta, B. Dordi, A. Mulder, A. Sartori, S. Onclin, C. M. Bruinink, C. A. Nijhuis, H. Beijleveld, M. Péter, H. Schönherr, G. J. Vancso, A. Casnati, R. Ungaro, B. J. Ravoo, J. Huskens, D. N. Reinhoudt, Angew. Chem. Int. Ed. 2004, 43, 369

+

Adamantyl dendrimers:

β-cyclodextrin

Page 9: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Supramolecular materials

Supramolecular building blocks for LBL assembly:

J. Liu, W. Ong, E. Román, M. J. Lynn, A. E. Kaifer, Langmuir 2000, 16, 3000

NaBH4HAuCl4DMSOCH3CNOHOH

OO

SH

7

+

O. Crespo-Biel, A. Juković, M. Karlsson, D. N. Reinhoudt, J. Huskens, Isr. J. Chem. 2005, 45, 353

Cyclodextrin gold nanoparticles:

TEM: diameter 2.8 ± 0.6 nm

Au

Supramolecular multivalent aggregation:

Page 10: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Supramolecular materials

Layer-by-layer assembly using CD-Au colloids and Ad dendrimers:SPR spectroscopy:

0.95

1.05

1.15

1.25

1.35

1.45

1.55

1.65

50 100 150 200 250 300 350 400 450 500

time (min)

Nor

m.In

tens

ity a

t Det

ecto

r

Solutions: 6.5 μM CD-Au (H2O)0.01 mM Ad-G5 (1 mM CD pH 2)

Rinse 1 mM CD pH 2Rinse H2O

O. Crespo-Biel, B. Dordi, D. N. Reinhoudt, J. Huskens, J. Am. Chem. Soc. 2005, 127, 7594

Page 11: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

300 400 500 600 700 800λ (nm)

A

0

0.01

0.02

0.03

0 5 10 15 20# bilayers

A a

t 534

nm

Supramolecular materials

Layer-by-layer assembly using CD-Au colloids and Ad dendrimers:UV/Vis at glass substrates:

Quantitative interpretation possible:1 monolayer of particles per bilayer

0-18 bilayers

O. Crespo-Biel, B. Dordi, D. N. Reinhoudt, J. Huskens, J. Am. Chem. Soc. 2005, 127, 7594

Page 12: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Towards patterned LBL assemblies:

3D Nanofabrication:x,y: top-down patterningz: LBL assembly

3D Supramolecular materials

silicon

CD

silicon

silicon

inert SAM

CD inert SAM

CDpolymer template

Patterned SAMs:(μCP, NIL)

Patterned gold:(μCP+etching,

NIL+metal lift-off,sieve evaporation)

Patterned mask:(NIL)

silicon

Structures onpatterned

stamp:(μCP)

Page 13: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

3D Supramolecular materials

Alternative: LBL on PDMS stamp followed by assembly transfer by μCP:

goldsilicon

silicon

PDMS

UV/O3

LBL assembly

CDs

O. Crespo-Biel, B. Dordi, P. Maury, M. Péter, D. N. Reinhoudt, J. Huskens, Chem. Mater. 2006, 18, 2545LBL in combination with μCP: J. Park, P. T. Hammond, Adv. Mater. 2004, 16, 520

Page 14: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

3D Supramolecular materials

Patterned LBL assemblies by μCP:

1 2 3 4 5 6 7

5

10

15

20

heig

ht (n

m)

# bilayers

silicon

AFM height image(80 x 80 μm2)2 bilayers: 7 nm

AFM height image(60 x 60 μm2)4 bilayers: 14 nm

Assemblies are stable againstrinsing with competitive CD solutions

O. Crespo-Biel, P. Maury, M. Péter, B. Dordi, D. N. Reinhoudt, J. Huskens, Chem. Mater. 2006, 18, 2545

Page 15: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Directed nanoparticle assembly on NIL templatesNanofabrication scheme including NIL and directed nanoparticle deposition:

P. Maury, M. Péter, V. Mahalingam, D. N. Reinhoudt, J. Huskens, Adv. Funct. Mater. 2005, 15, 451

chemical template

topographical template

topographical template

chemical template

T>Tg

T≈Tg

Page 16: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Directed nanoparticle assembly on NIL templates

Improved particle deposition process: controlled wetting and capillary forces:

physical principle vertical NP deposition tool

Page 17: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Directed nanoparticle assembly on NIL templates

Particle adsorption in PMMA templates using vertical colloidal deposition:

P. Maury, M. Escalante, M. Péter, D. N. Reinhoudt, J. Huskens, Adv. Mater. 2005, 17, 2718

5 μm lines 600 nm lines

1 μm holes

10 μm 1 μm

1 μm1 μm

500 nm

1 μm

500 nm lines

Page 18: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Directed nanoparticle assembly on NIL templates

Particle adsorption on NIL-patterned SAMs using vertical colloidal deposition:

P. Maury, M. Escalante, M. Péter, D. N. Reinhoudt, J. Huskens, Adv. Mater. 2005,17, 2718

5 μm lines

200 nm lines

1 μm dots

1 μm dots

5 μm

1 μm

1 μm 1 μm

200 nm

Page 19: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

NIL-patterned molecular printboards

NIL-patterned CD monolayers on SiO2:templates for multivalent supramolecular adsorption:

P. Maury, M. Péter, O. Crespo-Biel, X. Y. Ling, D. N. Reinhoudt, J. Huskens, Nanotechnology 2007, 18, 044007

a)

1 mμ

b)

1 mμ

c)

1 mμ

AFM height: 0.9 nm 0.9 nm 2.8 nm(after polymer removal)

Page 20: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

3D Supramolecular materials

Integration with layer-by-layer (LBL) assembly:

P. Maury, M. Péter, O. Crespo-Biel, X. Y. Ling, D. N. Reinhoudt, J. Huskens, Nanotechnology 2007, 18, 044007

Lift-off

NPs: 2.8 nm CD Au

NPs: 60 nm CD SiO2

Lift-off

Page 21: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

3D Supramolecular materials

AFM height image(30 x 30 μm2)2 bilayers: 6 nm

AFM height image(30 x 30 μm2)4 bilayers: 10 nm(15 process steps!)

NIL-patterned polymer masks for directed LBL: results:

NIL-patterned CD SAMs:

NIL-patterned CD SAMs followed by LBL, then polymer removal:

AFM height image(8 x 8 μm2)no bilayers: 2 nm(7 process steps)

Page 22: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

3D Supramolecular materials

AFM height image(2.8 x 2.8 μm2)4 bilayers: 10 nmline width: 700 nm

AFM height image(4 x 4 μm2)2 bilayers: 5 nmline width: 700 nm

NIL-patterned polymer masks for directed LBL: results:

NIL-patterned CD SAMs followed by LBL:submicron patterns:

15 process steps !

J. Huskens, P. Maury, O. Crespo-Biel, M. Péter, D. N. Reinhoudt, Proceed. Instit. Mech. Engin. N: J. Nanoengin. Nanosys. 2006, 220, 157

P. Maury, M. Péter, O. Crespo-Biel, X. Y. Ling, D. N. Reinhoudt, J. Huskens, Nanotechnology 2007, 18, 044007

Page 23: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

3D Supramolecular materials

dot width: 200 nm 100 nm 50 nm

NIL-patterned polymer masks for directed LBL:results using an e-beam made master:

15 bilayers:37 process steps !!

SEM

P. Maury, M. Péter, O. Crespo-Biel, X. Y. Ling, D. N. Reinhoudt, J. Huskens, Nanotechnology 2007, 18, 044007

500 nm500 nm 500 nm

500 nm 500 nm 500 nm

AFM

50 250150100 20010

20

30

40

50

Diameter (nm)

Hei

ght (

nm)

Page 24: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

3D Supramolecular materials

NIL-patterned polymer masks for directed LBL:LBL with 60 nm CD SiO2 NPs:

SEM

P. Maury, M. Péter, O. Crespo-Biel, X. Y. Ling, D. N. Reinhoudt, J. Huskens, Nanotechnology 2007, 18, 044007

2μm 2μm

2μm1

2

3

1-3 bilayers:height = n x 60 nm

AFM

Page 25: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

3D Supramolecular materials

NIL-patterned polymer masks for directed LBL:LBL with 60 nm CD SiO2 NPs:

SEM

P. Maury, M. Péter, O. Crespo-Biel, X. Y. Ling, D. N. Reinhoudt, J. Huskens, Nanotechnology 2007, 18, 044007

2 bilayers on line and grid patterns

AFM

500 nm 100 nm

500 nm1 mμ

1 bilayer on dot patterns

Page 26: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

3D Supramolecular materials

NIL-patterned polymer masks for directed LBL:LBL with 3 nm CD Au and 60 nm Fc SiO2 NPs:

5 m8

500 nm-5 0 5 10 15 20 25 30 35 40 45

0

500

1000

1500

2000

2500

3000

Thic

knes

s

Distance (micron)

L6 L5 L4 L3 L2 L1

L1 L2 L3 L4 L5 L60

50

100

150

200

250

300

350

400

450

thic

knes

s (n

m)

number of bilayerX. Y. Ling, I. Y. Phang, G. J. Vancso, D. N. Reinhoudt, J. Huskens, Int. J. Mol. Sci. 2008, 9, 486

Page 27: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Nanoparticle-substrate interface chemistry

Key question: What is the role of the interface chemistry on the assembly (order, reversibility) of large nanoparticles?Case study: 500 nm polystyrene NPs:

physisorption electrostatic host-guestX. Y. Ling, L. Malaquin, D. N. Reinhoudt, H. Wolf, J. Huskens, Langmuir 2007, 23, 9990

Page 28: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Nanoparticle-substrate interface chemistry

Key question: What is the role of the interface chemistry on the assembly (order, reversibility) of large nanoparticles?

Setup:

Movement of substrate

Evaporation

( ) Assembly ZoneA ( ) Solution ZoneB

Glass slideParticle convective flow

Tc

Temperature controller

X. Y. Ling, L. Malaquin, D. N. Reinhoudt, H. Wolf, J. Huskens, Langmuir 2007, 23, 9990

Page 29: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Physisorption: PS-COOH NPs on clean SiO2:

Assembly zone

Solution zone

Nanoparticle-substrate interface chemistry

Page 30: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Host-guest interaction: PS-CD NPs on CD SAMs with G1 Fc dendrimers:

Assembly zone

Solution zone

Nanoparticle-substrate interface chemistry

2 mμ

Page 31: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Host-guest interaction: PS-CD NPs on CD SAMs with G1 Fc dendrimers:

Assembly zone

Solution zone

competition by CD in solution

Nanoparticle-substrate interface chemistry

Page 32: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Summary

Assembly: fundamental appliedPatterning:

fundamental

applied

3D nanostructures

flat stampsNIL patterning

printboards, multivalency, supramolecular nanolithography

patterned protein

constructions

Page 33: Nanomaterials for bottom-up manufacturingNanomaterials for bottom-up manufacturing Jurriaan Huskens University of Twente, MESA+ Institute for Nanotechnology Molecular Nanofabrication

Acknowledgements

Molecular Nanofabrication group:Xing Yi Ling Dr. Olga Crespo-BielManon Ludden Dr. Pascale MauryProf. David Reinhoudt Dr. Maria Peter

Dr. Venkataramanan MahalingamProf. Bart Jan Ravoo

IBM Zurich, Switzerland: Dr. Laurent Malaquin, Dr. Heiko WolfTransducer Science and Technology, MESA+, University of Twente:Dr. Henri Jansen, Dr. Niels Tas, Prof. Miko ElwenspoekMaterials Science and Technology of Polymers, MESA+, University of Twente:Dr. Mark Hempenius, Prof. G. Julius Vancso

Financial support: