nanoparticle

46
NP PLANT PART SHAPE AND SIZE REF . Gold Allium sativum (Garlic) Leaf [1] Abelmoschus esculentus (Okra) Seed Spherical | 45-75 nm [2] Adiantum philippense (Goyali Lota) Fronds Polycrystalline | 10-18 nm [3] Aloe barbadensis (Aloe vera) Leaf Spherical, triangle | 50-350 nm [4] Aloe ferox (Cape aloe) Leaf Spherical, triangular | 6-35 nm, 4- 45 , 50 nm [5] Anacardium occidentale (Cashew) Leaf Spherical | 6.5, 17 nm [6] Ananas comosus (Pineapple) Fruit Sperical | 10 nm [7] Azadirachta indica (Neem) Leaf Spherical Triangle, Hexagonal | 50- 35 nm [8] Basella Alba (Malabar Spinach) Leaf Beta vulgaris (Sugar beet) Pulp Nanorods, triangular, Spherical | 25 nm, 160 nm, 20 nm [9] Cacumen Platycladi Leaf [10 ] Callistemon viminalis (Weeping bottlebrush) Leaf Nanotriangles, spherical | 90 nm Calotropis procera (Sodom Apple) latex Spherical | 22 nm [11 ] Camellia sinensis (Green Tea) Leaf Spherical | 20 nm [12 ] Camellia sinensis (Tea plant) Leaf Nanotriangles | 40 nm [12 ] Cantella asiatica (Indian Pennywort) Leaf Triangular, hexagonal | 9.3-10.9 nm [12 ] Cassia auriculata (Avaram senna) Leaf Traingular, spherical | 15-25 nm [13

Upload: syed-shah-areeb-hussain

Post on 30-Nov-2015

477 views

Category:

Documents


0 download

DESCRIPTION

summary on phytochemical synthesis of nanoparticles

TRANSCRIPT

Page 1: Nanoparticle

NP PLANT PART SHAPE AND SIZE REF.Gold Allium sativum (Garlic) Leaf [1]

Abelmoschus esculentus (Okra) Seed Spherical | 45-75 nm [2]Adiantum philippense (Goyali Lota) Fronds Polycrystalline | 10-18 nm [3]Aloe barbadensis (Aloe vera) Leaf Spherical, triangle | 50-350 nm [4]Aloe ferox (Cape aloe) Leaf Spherical, triangular | 6-35 nm, 4-45 , 50 nm [5]

Anacardium occidentale (Cashew) Leaf Spherical | 6.5, 17 nm [6]Ananas comosus (Pineapple) Fruit Sperical | 10 nm [7]Azadirachta indica (Neem) Leaf Spherical Triangle, Hexagonal | 50-35 nm [8]

Basella Alba (Malabar Spinach) LeafBeta vulgaris (Sugar beet) Pulp Nanorods, triangular, Spherical |

25 nm, 160 nm, 20 nm[9]

Cacumen Platycladi Leaf [10]Callistemon viminalis (Weeping bottlebrush) Leaf Nanotriangles, spherical | 90 nm

Calotropis procera (Sodom Apple) latex Spherical | 22 nm [11]Camellia sinensis (Green Tea) Leaf Spherical | 20 nm [12]Camellia sinensis (Tea plant) Leaf Nanotriangles | 40 nm [12]Cantella asiatica (Indian Pennywort) Leaf Triangular, hexagonal | 9.3-10.9 nm [12]Cassia auriculata (Avaram senna) Leaf Traingular, spherical | 15-25 nm [13]Catharanthus roseus (Madagascar Periwinkle)

Leaf

Chenopodium album – (Pig weed) Plant Quasi-spherical | 10 nm [14]Cicer aiertinum (Chick pea) Beans Triangular prism | 25 nmCinnamomum camphora (Camphor tree) Leaf Flat, plate-like triangle | 55-80 nm [15]

Cinnamomum zeylanicum (Ciannamon) Leaf Nanoprism, spherical | 25 nm [16]Cissus quadrangularis (Veldt Grape) Spherical | 12 nm [17]Citrus limone (Lemon) Fruit [18]Citrus sinensis (Orange) Fruit [19]

Page 2: Nanoparticle

Calendula officinalis (Marigold) LeafColeus amboinicus (Indian borage) Leaf Spherical, truncated triangle, hexagonal |

4.6-55.1 nm[20]

Coriandrum sativum (Coriander) Leaf Spherical, triangle, truncated triangle | 20-30 nm [21]

Cymbopogon citratus (Lemon grass) Leaf 10-110 nm [22]Cymbopogon flexuosus (Malaber Lemongrass)

Leaf Triangle Spherical | 0.05-1.8 um [23]

Datura metel (Kamkam awlaw) LeafDiopyros kaki (Persimmon) Leaf Triangles, pentagons, hexagons, spherical | 300 nm [24]Dioscorea bulbifera (Air potato) Spherical | 11-30 nm [25]Eclipta alba (False Daisy) LeavesEmblica officinalis (Indian gooseberry) Fruit [26]

Eucalyptus camaldulensis (Red river gum) LeafFicus benghalensis (Peepal) LeafGnidia glauca Flower Spherical; 10 nm, 50-150 nm [27]Hibiscus rosa sinensis (Rose mallow) Leaf Spherical, triangular, hexagonal, dodecahedral |

14nm[28]

Lawsonia inermis (Henna) Leaf Spherical, triangular | 7.5-65 nm [29]Madhuca Longifolia (Mahwa) Leaf Triangular nanoplates [30]Magniferia indica (Mango) Leaf Spherical | 17 nmMagnolia kobus (Kobushi magnolia) Leaf Triangles, pentagons, hexagons, spherical |

5-300 nm[24]

Medicago sativa (alfalfa) Biomass Decahedral, icosahedral | 30-60 nm [31]Memecylon edule (Kaayam) Triangular, circular, hexagonal | 20-50 nm [32]

Mentha piperita (Peppermint) Spherical | 5-150 nm [33]Mucuna pruriens (Velvet beans) Seed Spherical | 6-17.7 nm [34]Murraya koeniggi (Curry tree) Leaf Spherical | 20 nm [35]

Page 3: Nanoparticle

Musa paradisiaca (Banana) Peel Microcubes, microwire | 300 nm [36]Nyctanthes arbor tristis (Night flowering Jasmine)

Flower [37]

Ocimum sanctum (Krishna tree) Leaf Hexagonal | 30 nm [38]Orea europaea (Olive) Leaf Triangle, hexagonal, spherical | 5-100 nm [39]Panax ginseng (Korean red ginseng) Root Spherical; 16 nm [40]Pelargonium graveolens (Geranium) Leaf Decahedral, icosohedral 20-40 nm [41]Pelargonium graveolens (Geranium) Stem Spherical 8.3-23.8 nm [41]Pelargonium graveolens (Geranium) Root Spherical, Triangle; 11.4-34 nm [41]Phyllanthus amarus Leaf Hexagonal, triangular, rod-shaped, spherical |

18-38 nm[42]

Pisidium guajava (Guava) Leaf Spherical triangular, hexagonal | 27nm

Punica granatum (Pomegranate) Fruit peelPyrus sp. (Pear) Fruit Triangular, hexagonal plates | 200-500, 12-50 nm [43]

Radix Ranunculi Ternati (Catclaw buttercup) Root Spherical | 9-24 nm [44]

Rhizophora mucronata (Mangrove) Leaf bud 4-26 nm [45]

Rosa hybrida Petals Spherical, triangular, hexagonal | 10 nm [46]

Rosa rugosa (Japanese Rosa) Leaf Triangular, hexagonal | 11 nm [47]Saraca asoca (Asoko) LeafScutellaria barbata (Barbated Skullcap) Plant Spherical, triangular | 5-30 nm [48]

Semecarpus anacardium (Markingnut Tree) Leaf [49]

Sorbus aucuparia (European mountain ash) Leaf Spherical, triangular, hexagonal | 18 nm [50]

Stevia rebaudiana (Sweet leaf) Leaf Octahedral | 8-20 nm [51]Swietinia mahogany (Mahogany) Leaf Spheroidal, triangles, hexagonal [52]

Page 4: Nanoparticle

Syzygium cumini (Jambul) LeafSyzygium aromatiocum (Clove) Flower Triangular, polygonal | 100-300 nm [53]Syzygium aromatiocum (Clove) Bud [53]Tamarindus indica (Tamarind) Leaf Flat-triangle, hexagonal | 20-40 nm [54]Tanacetum vulgare (Common tansy) Fruit Sphericle, triangular | 11 nm [55]Terminalia catappa (Almond) Leaf Spherical | 21.9 nm [56]Trapa bispinosa PeelTrianthema decandra Root Spherical, cubical, triangular, hexagonal |

33-65 nm[57]

Vitex negundo (Five Leaved Chaste tree) fcc cubic | 10-30 nmZingiber officinalis (Ginger) RootZiziphus mauritiana (Indian plum) Leaf

 Silver Acalypha indica (Indian Nettle) Leaf Spherical | 20–30 nm [58]  Adiantum philippense (Goyali Lota)   10-18 nm [3]  Aegle marmelos (Bael) Leaf Spherical | 60 nm [59]  Allium cepa (Onion) Stem Spherical | 33.67 nm [1]  Allium sativum (Garlic)   Spherical | 10 nm [60]  Aloe barbadensis (Aloe vera) Leaf Spherical | 15.2 ±4.2 nm [61]  Aloe ferox (Cape aloe) Leaf Spherical | 5 nm [5]  Aloysia citrodora (Lemon Verbena) Leaf Spherical | 15–30 nm  Ammannia baccifera (Monarch red stem) Aerial   [62]  Anacardium occidentale (Cashew) Leaf Spherical | 15.5 nm [63]  Anogeissus latifolia (Gum ghatti) Exudate Spherical | 5.7 nm [64]  Arbutus unedo (Strawberry) Leaf   [65]  Artemisia nilagirica   70-90 nm [66] 

Artocarpus heterophyllus (Jackfruit) Seed Irregular | 10.78 nm[67]

  Azadirachta indica (Neem) Leaf Spherical | 5–35 nm [8]

Page 5: Nanoparticle

  Bacopa moniera (Water hyssop) Plant Spherical | 10–30 nm [68]  Basella alba (Malabar Spinach) Leaf  Boswellia ovalifoliolata Stem Polydispersed | 30–40 nm [69]  Boswellia serrata (Gum olibanum)   Spherical | 7.5 nm [70]  Calotropis procera (Sodom Apple) Flower Cubical | 35 nm [71]  Camellia sinensis (Tea plant) Leaf Nanotriangles | 40 nm [12]  Capsicum annuum (Bell pepper) Fruit Spherical | 10 ±2 nm [72]  Carica papaya (Papaya) Callus Spherical | 60–80 nm [73]  Cassia fistula (Golden shower tree) Leaf Spherical | 50-60 nm [74]  Catharanthus roseus (Madagascar

periwinkle)Leaf fcc cubic | 48-67 nm

[75]

  Centella asiatica (Centella) Powder Irregular | 42 nm [76]  Ceratonia siliqua (Carob tree) Leaf Spherical | 5-40 nm [77]  Chenopodium album (Pig weed) Leaf Quasi-spherical | 12 nm [14]  Chrysopogon zizanioides (Vetiver) Leaf 20-50 nm [78]  Cinnamomum camphora (Camphor tree) Leaf Flat, spherical, rods, wires | 5–40 nm [15]  Cinnamomum zeylanicum (Cinnamon) Bark   [16]  Cissus quadrangularis (Veldt grape) Leaf Triangle, rod, spherical | 37-43 nm [79]  Citrus limon (Lemon) Fruit Spherical b50 nm [79]  Citrus sinensis (Orange) Powder Irregular | 41 nm [76]  Citrus sinensis (Orange) Peel Spherical 35 nm | 10 nm [80]  Citrus unshui (Satsuma mandarin) Peel 5-20 nm [81]  Clerodendrum inerme (Glory bower) Leaf [82] 

Cochlospermum gossypium (Buttercup tree) ExudateNanospheres, nanotriangles, Nanorods, Hexagonal, Polygonal prisms

[83]

  Codium capitatum     [84] 

Coleus amboinicus (Indian Borage) LeafSpherical, triangle decahedral, hexagonal |4.3–55 nm

[85]

  Coriandrum sativum (Coriander) Leaf Spherical | 26 nm  Curcuma longa (Turmeric) Tuber Quasi-spherical, triangular, rod [86]

Page 6: Nanoparticle

  Cycas Leaf Spherical | 2–6 nm [87]  Cyperus sp.    Desmodium gangeticum Leaf Spherical | 18-39 nm [88]  Desmodium triflorum (Tick clover) Plant Spherical 5–20 nm [99] [89]  Dillenia indica (Elephant Apple) Fruit   [90]  Diopyros kaki (Persimmon) Leaf Spherical | 32 nm [91]  Echhornia crassipes (Water hyacinth) Cellulose Spherical | 2-5 nm [92]  Eclipta (Daisy plant) Leaf Spherical | 2–6 nm [93]  Elaeis guineensis (Oil palm) Biosolid Spherical | 5–50 nm [94]  Enhydra fluctuans (Marsh herb)   [95]  Eucalyptus hybrid (Safeda) Leaf 50–150 nm [96]  Euphorbia hirta (Asthma weed) Leaf 40–50 nm [97]

Euphorbia nivulia Stem latex 5-10 nm [98]  Ficus benghalensis (Peepal) Leaf   [99]  Garcinia mangostana (Mangosteen) Leaf 35 nm [100] 

Gelidiella acerosaWhole Plant

Spherical | 22 nm[101]

  Ginko biloba (Ginkgo) Leaf [102]  Gliricidia sepium (Gliricidia) Leaf Spherical | 10–50 nm [103]  Gloriosa superba (Glory Lily) Leaf   [104]  Glycine max (Soybean) Leaf 25–100 nm [105]  Helianthus annuus (Sunflower) Leaf [106]  Hevea brasiliensis (Natural rubber) Latex Spherical, oval phase | 90–400 nm [107]  Hibiscus cannabinus (Kenaf) Leaf Spherical | 9 nm [108]  Hibiscus rosa sinensis (Rose mallow) Leaf Spherical | 13 nm [28]  Hydrilla verticilata Leaf 2–5 nm [109]  Ipomoea aquatic (Water spinach)   [110]  Iresine herbstii Leaf fcc cubuc | 44-64 nm [111]  Jatropha curcas (Jatropha) Latex Spherical | 20–40 nm [112]

Page 7: Nanoparticle

  Jatropha curcas (Jatropha) Seed Spherical | 15–50 nm [113]  Lawsonia inermis (Henna) Leaf Quasi-spherical | 21–39 nm [29]  Ludwigia adscendens (Water primrose) Leaf Spherical, cubic | 100–400 nm [95]  Magnifera indica (Mango) Peel Triangular, hexagonal, spherical | 20 nm [114]  Magnolia Kobus (Magnolia) Leaf  Malva parviflora (Cheeseweed) Leaf fcc cubic | 19-25 nm [115]  Medicago sativa (Alfalfa) Seed Spherical, flower-like, triangular | 5–108 nm [116]  Memecylon edule (Kaayam) Leaf Spherical | 50-90 nm [32]  Mentha piperita (Peppermint) Leaf Triangular, spherical, ellipsoidal | 5–30 nm [33]  Mimusops elengi (Spanish cherry) Leaf Spherical | 55-83 nm [117]  Morinda citrifolia (Indian mulberry) Root Spherical | 30-55 nm [118]  Moringa oleifera (Drumstick Tree) Leaf Spherical | 5–80 nm [119]  Mucuna pruriens (Velvet bean) Seed Spherical, triangular, oval, circular; 10-27 nm [120]  Murraya koenigii (Curry tree) Leaf 10 nm [35]  Musa paradisiaca (Banana) Peel [121]  Nelumbo nucifera (Indian Lotus) Leaf 20–80 nm [122]  Nerium Oleander Leaf Spherical, cubic | 20-35 nm [123]  Nicotiana tobaccum (Tobacco) Leaf Crystalline | 8 nm [124]  Ocimum basilicum (Basil) Root Spherical | 10 ±2 nm  Ocimum basilicum (Basil) Stem Stem | 5±1.5 nm  Ocimum sanctum (Tulsi) Leaf Spherical | 10–20 nm [125]  Orea europaea (Olive) Leaf Spherical | 20-25 nm [126]  Oryza sativa (Rice) Leaf  Papaver somniferum (Opium poppy)   Spherical | 3.2-7.6 um [127]  Parthenium hysterophorus (Parthenium) Leaf Irregular | 50 nm [128]  Pelargonium graveolens (Geranium) Leaf Spherical | 16–40 nm [129]  Phyllanthus amarus (Phyllanthus) Leaf Quasi-spherical, ellipsoidal | 30 nm [42]  Pinus desiflora (Pine) Leaf  Piper longum (Long pepper) Leaf Spherical | 17.6-41 nm [130]

Page 8: Nanoparticle

  Platanus orientalis (Oriental plane) Leaf [102]  Polyalthia longifolia Leaf Spherical | 35-50 nm [131]  Prosopis juliflora Leaf   [132]  Pulicaria glutinosa     [133]  Rhizophora mucronata (Mangrove plant) Leaf bud 4-26 nm [45]  Rosa rugosa (Japanese Rosa) Leaf Spherical | 12 nm [47]  Rosmarinus officinalis leaf fcc, 14.2-42.42 nm [134]  Saccharum officinarum (Sugarcane) Leaf [135]  Saraca Asoca (Ashoka) Leaf   [136]  Saururus chinensis Leaf 38-54 nm [137]  Sesbania grandiflora (Agati) Leaf Spherical | 10-25 nm [138]  Sesuvium portulacastrum (Saltmarsh plant) Leaf Callus Spherical | 5–20 nm [139]  Solanum lycopersicum (Tomato) Fruit   [140]  Solanum torvum (Turkey berry) Fruit Spherical | 14 [141]  Solanum trilobatum Powder Irregular | 52 nm [76]  Sorbus aucuparia (European mountain ash) Leaf Spherical, triangular, hexagonal | 16 nm [50]  Sorghum bicolor (Sorghum) Leaf [142]  Stevia rebaudiana Leaf Spherical | 2-50 nm [143]  Svensonia hyderabadensis Leaf Spherical | 45 nm [144]  Swietenia mahogany (Mahogany) Leaf Spheroidal [52]  Syzygium Cumini (Jambul) Leaf Spherical | 30, 29 nm [145]  Syzygium Cumini (Jambul) Seed Spherical | 92, 73 nm [145]  Syzgium cumini (Jambul) Powder Irregular | 53 nm [76]  Syzygium aromaticum (Clove) Flower bud Spherical, triangular [53]  Tanacetum vulgare (Common Tansy) Fruit Spherical, triangular | 16 nm [55]  Terminalia chebula (Yellow myrobalan) Fruit fcc, 25 nm [146]  Thevetia peruviana (Yellow oldeander) Latex Spherical | 10-30 nm [147]  Trachyspermum ammi (Ajwain)   Triangular | 87 nm [127]  Trianthema decandra (Sangamner) Root [57]

Page 9: Nanoparticle

  Tribulus terrestris (Caltrop) Fruit Spherical | 16-28 nm [148]  Triticum aestivum (Wheat) Seed Spherical | 5.6 nm [149]  Vitex negundo (Chaste tree) Leaf [150]  Zea mays (Maize) Leaf

Platinum Anacardium occidentale (Cashew) Leaf Rod shaped [151]Bacopa monnieri (Water hyssop) Leaf Spherical | 5-20 nm [152]Cacumen Platycladi   2.4 nm [153]Cochlospermiun gossypium (Buttercup tree) fcc cubic | 2-10 nm [154]Diopyros kaki (Persimmon) leaf 2-12 nm [155]Ocimum sanctum (Krishna tree) Leaf irregular, 23 nm [156]

Copper Euphorbia nivulia Stem latex   [157]Calotropis procera (Sodom Apple) Latex 15 nm [158]Magnolia Kobus (Kobushi Magnolia) Leaf 37-110 nm [159]Syzgium aromaticum (Clove)   Spherical | 5-40 nm [160]

Palladium

Piper betle (Betel) Leaf  [161]

Anacardium occidentale (Cashew) Leaf fcc cubic | 2.5-4.5 nm [162]Astraglmanna   15 nm [163]Cinnamomum camphora (Camphor tree)   3.2-6 nm [164]Cinnamomum zeylancium (Cinnamon)   15-20 nmGardenia jasminoides (Cape Jasmine)   3-5 nm [165]Glycine max (Soybean) Leaf 15 nm [166]Jatropha curcas   10-12.5 nmTerminalia chebula fruit 100 nm [167]Vitus vinifera   661 nm

Page 10: Nanoparticle

Lead Jatropha curcas (Jatropha) Latex 10-12.5 nm [168]

Zinc Oxide

Aloe barbadensis (Aloe vera) Leaf Spherical | 25-40 nm[169]

Brassica juncea (Indian mustard)   Spherical/non uniform | 95 nm [170]Calotropis procera (Sodom Apple) Latex Spherical, Granular | 5-40 nm [171]Hibiscus rosa-sinensis (Rose mallow) Leaf Spherical, Hexagonal | 40-56 nm [172]Parthenium hysterophorus (Whitetop weed) Leaf Spherical, hexagonal | 27,84 nm [173]Physalis alkengi (Chinese Lantern)   72.5 nm [174]Sedum alfredii (Hance plant)   Pseudo-spherical | 53.7 nm [175]

Titanium dioxide

Catharanthus roseus (Madagascar Periwinkle)

Leaf Irregular | 25-110 nm[176]

Eclipta prostrata (False Daisy)     [177]Nyctanthes Arbor Tristis Leaf Spherical | 100-150 nm [178]

Copper oxide

Aloe barbadensis (Aloe vera) Leaf Crystalline | 15-30 nm [179]

Iron Oxide

(Fe2O3) Camella sinensis (Green Tea) Leaf 60 nm [180](Fe3O4) Sargassum muticum (Japanese wireweed)   Cubic | 18 nm [181](Fe3O4) Ceratonia siliqua (Carob plant) Leaf 8 nm [182](Fe3O4) Tridax Procumbens Leaf Irregular sphere | 80-100 nm [183](Fe3O4) Glycine max (Soya bean) Sprouts Spherical | 8 nm [184]

(FeO) Terminalia chebula (Yellow myrobalan) Fruit 80 nm [167]

Cadmium oxide

Achillea wilhelmsii Flowers Spherical | 35 nm [185]

Page 11: Nanoparticle

[1] U. K. Parida, B. K. Bindhani, and P. Nayak, “Green Synthesis and Characterization of Gold Nanoparticles Using Onion (Allium sepa) extract,” Chemistry and Materials Science, vol. 1, no. 4, pp. 93–98, 2011.

[2] C. Jayaseelan, R. Ramkumar, A. A. Rahuman, and P. Perumal, “Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity,” Industrial Crops and Products, vol. 45, no. null, pp. 423–429, Feb. 2013.

Page 12: Nanoparticle

[3] D. G. Sant, T. R. Gujarathi, S. R. Harne, S. Ghosh, R. Kitture, S. Kale, B. a. Chopade, and K. R. Pardesi, “Adiantum philippense L. Frond Assisted Rapid Green Synthesis of Gold and Silver Nanoparticles,” Journal of Nanoparticles, vol. 2013, pp. 1–9, 2013.

[4] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract.,” Biotechnology Progress, vol. 22, pp. 577–583, 2006.

[5] Z. Krpetić, G. Scarì, E. Caneva, G. Speranza, and F. Porta, “Gold nanoparticles prepared using cape aloe active components.,” Langmuir : the ACS journal of surfaces and colloids, vol. 25, no. 13, pp. 7217–21, Jul. 2009.

[6] D. S. Sheny, J. Mathew, and D. Philip, “Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 97, pp. 306–10, Nov. 2012.

[7] N. Basavegowda, A. Sobczak-Kupiec, D. Malina, H. S. Yathirajan, V. Keerthi, N. Chandrashekar, S. Dinkar, and P. Liny, “Plant Mediated Synthesis of Gold Nanoparticles Using Fruit Extracts of Ananas comosus (L.)(Pineapple) and Evaluation of Biological Activities,” Advanced Materu\ials Letters, vol. 4, no. 5, pp. 332–337, 2013.

[8] S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.,” Journal of colloid and interface science, vol. 275, no. 2, pp. 496–502, Jul. 2004.

[9] L. Castro, M. L. Blázquez, F. González, J. A. Muñoz, and A. Ballester, “Extracellular biosynthesis of gold nanoparticles using sugar beet pulp,” Chemical Engineering Journal, vol. 164, no. 1, pp. 92–97, Oct. 2010.

[10] G. Zhan, J. Huang, L. Lin, W. Lin, K. Emmanuel, and Q. Li, “Synthesis of gold nanoparticles by Cacumen Platycladi leaf extract and its simulated solution: toward the plant-mediated biosynthetic mechanism,” Journal of Nanoparticle Research, vol. 13, no. 10, pp. 4957–4968, Jul. 2011.

[11] R. K. Das, P. Sharma, P. Nahar, and U. Bora, “Synthesis of gold nanoparticles using aqueous extract of Calotropis procera latex,” Materials Letters, vol. 65, no. 4, pp. 610–613, Feb. 2011.

Page 13: Nanoparticle

[12] A. R. Vilchis-Nestor, V. Sánchez-Mendieta, M. A. Camacho-López, R. M. Gómez-Espinosa, M. A. Camacho-López, and J. A. Arenas-Alatorre, “Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract,” Materials Letters, vol. 62, no. 17. pp. 3103–3105, 2008.

[13] V. G. Kumar, S. D. Gokavarapu, A. Rajeswari, T. S. Dhas, V. Karthick, Z. Kapadia, T. Shrestha, I. A. Barathy, A. Roy, and S. Sinha, “Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata.,” Colloids and surfaces. B, Biointerfaces, vol. 87, no. 1, pp. 159–63, Oct. 2011.

[14] A. D. Dwivedi and K. Gopal, “Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 369, no. 1, pp. 27–33, 2010.

[15] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen, “Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf,” Nanotechnology, vol. 18, no. 10, p. 105104, Mar. 2007.

[16] M. Sathishkumar, K. Sneha, S. W. Won, C.-W. Cho, S. Kim, and Y.-S. Yun, “Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity.,” Colloids and surfaces. B, Biointerfaces, vol. 73, no. 2, pp. 332–8, Oct. 2009.

[17] S. R. Bhuvanasree, D. Harini, A. Rajaram, and R. Rajaram, “Rapid synthesis of gold nanoparticles with Cissus quadrangularis extract using microwave irradiation.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 106, pp. 190–6, Apr. 2013.

[18] S. Pandey, G. Oza, M. Vishwanathan, and M. Sharon, “Biosynthesis of Highly Stable Gold nanoparticles Using Citrus limone,” Annals of Biological Research, vol. 3, no. 5, pp. 2378–2382, 2012.

[19] M. V Sujitha and S. Kannan, “Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 102, pp. 15–23, Feb. 2013.

[20] K. B. Narayanan and N. Sakthivel, “Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour,” Materials Characterization, vol. 61, no. 11, pp. 1232–1238, 2010.

Page 14: Nanoparticle

[21] K. B. Narayanan and N. Sakthivel, “Coriander leaf mediated biosynthesis of gold nanoparticles,” Materials Letters, vol. 62, pp. 4588–4590, 2008.

[22] A. Rai, A. Singh, A. Ahmad, and M. Sastry, “Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles.,” Langmuir The Acs Journal Of Surfaces And Colloids, vol. 22, pp. 736–741, 2006.

[23] S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, “Biological synthesis of triangular gold nanoprisms.,” Nature Materials, vol. 3, pp. 482–8, 2004.

[24] J. Y. Song, H.-K. Jang, and B. S. Kim, “Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts,” Process Biochemistry, vol. 44, no. 10, pp. 1133–1138, 2009.

[25] S. Ghosh, S. Patil, M. Ahire, and R. Kitture, “Synthesis of gold nanoanisotrops using dioscorea bulbifera tuber extract,” Journal of  …, 2011.

[26] B. Ankamwar, C. Damle, A. Ahmad, and M. Sastry, “Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution.,” Journal of Nanoscience and Nanotechnology, vol. 5, pp. 1665–1671, 2005.

[27] S. Ghosh, S. Patil, M. Ahire, R. Kitture, D. D. Gurav, A. M. Jabgunde, S. Kale, K. Pardesi, V. Shinde, J. Bellare, D. D. Dhavale, and B. A. Chopade, “Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential.,” Journal of nanobiotechnology, vol. 10, p. 17, Jan. 2012.

[28] D. Philip, “Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis,” Physica E: Low-dimensional Systems and Nanostructures, vol. 42, no. 5, pp. 1417–1424, 2010.

[29] J. Kasthuri, S. Veerapandian, and N. Rajendiran, “Biological synthesis of silver and gold nanoparticles using apiin as reducing agent.,” Colloids and surfaces. B, Biointerfaces, vol. 68, no. 1, pp. 55–60, Jan. 2009.

[30] A. M. Fayaz, M. Girilal, R. Venkatesan, and P. T. Kalaichelvan, “Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption.,” Colloids and surfaces. B, Biointerfaces, vol. 88, no. 1, pp. 287–91, Nov. 2011.

Page 15: Nanoparticle

[31] D. L. Starnes, A. Jain, and S. V Sahi, “In planta engineering of gold nanoparticles of desirable geometries by modulating growth conditions: an environment-friendly approach.,” Environmental science technology, vol. 44, pp. 7110–7115, 2010.

[32] T. Elavazhagan and K. D. Arunachalam, “Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.,” International journal of nanomedicine, vol. 6, pp. 1265–78, Jan. 2011.

[33] D. MubarakAli, N. Thajuddin, K. Jeganathan, and M. Gunasekaran, “Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens.,” Colloids and surfaces. B, Biointerfaces, vol. 85, no. 2, pp. 360–5, Jul. 2011.

[34] S. Arulkumar and M. Sabesan, The behavioral performance tests of Mucuna pruriens gold nanoparticles in the 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine treated mouse model of Parkinsonism, vol. 2, no. Supplement 1. 2012, pp. S499–S502.

[35] D. Philip, C. Unni, S. A. Aromal, and V. K. Vidhu, Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles., vol. 78, no. 2. 2011, pp. 899–904.

[36] A. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde, “Banana peel extract mediated synthesis of gold nanoparticles.,” Colloids and surfaces. B, Biointerfaces, vol. 80, no. 1, pp. 45–50, Oct. 2010.

[37] R. K. Das, N. Gogoi, and U. Bora, Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract., vol. 34, no. 5. 2011, pp. 615–619.

[38] D. Philip and C. Unni, Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi ( Ocimum sanctum ) leaf, vol. 43, no. 7. 2011, pp. 1318–1322.

[39] M. M. H. Khalil, E. H. Ismail, and F. El-Magdoub, Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano Updates, vol. 5, no. 4. 2012, pp. 431–437.

[40] K. Leonard, B. Ahmmad, H. Okamura, and J. Kurawaki, In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability, vol. 82, no. 2. 2011, pp. 391–396.

[41] S. S. Shankar, A. Ahmad, R. Pasricha, and M. Sastry, “Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes,” Journal of Materials Chemistry, vol. 13, p. 1822, 2003.

Page 16: Nanoparticle

[42] J. Kasthuri, K. Kathiravan, and N. Rajendiran, “Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach,” Journal of Nanoparticle Research, vol. 11, no. 5, pp. 1075–1085, Sep. 2008.

[43] G. Ghodake and D. S. Lee, “Green synthesis of gold nanostructures using pear extract as effective reducing and coordinating agent,” Korean Journal of Chemical Engineering, vol. 28, no. 12, pp. 2329–2335, Sep. 2011.

[44] F. Ren, X. He, K. Wang, and J. Yin, “Biosynthesis of gold nanoparticles using catclaw buttercup (Radix Ranunculi Ternati) and evaluation of its colloidal stability.,” Journal of biomedical nanotechnology, vol. 8, no. 4, pp. 586–93, Aug. 2012.

[45] J. Umashankari, D. Inbakandan, T. T. Ajithkumar, and T. Balasubramanian, “Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens.,” Aquatic biosystems, vol. 8, no. 1, p. 11, Jan. 2012.

[46] M. Noruzi, D. Zare, K. Khoshnevisan, and D. Davoodi, “Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 79, no. 5, pp. 1461–5, Sep. 2011.

[47] S. P. Dubey, M. Lahtinen, and M. Sillanpää, Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa, vol. 364, no. 1–3. 2010, pp. 34–41.

[48] Y. Wang, X. He, K. Wang, X. Zhang, and W. Tan, Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry., vol. 73, no. 1. 2009, pp. 75–79.

[49] D. Raju, U. J. Mehta, and S. Hazra, “Synthesis of gold nanoparticles by various leaf fractions of Semecarpus anacardium L. tree,” Trees, vol. 25, no. 2, pp. 145–151, Sep. 2010.

[50] S. P. Dubey, M. Lahtinen, H. Särkkä, and M. Sillanpää, “Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids.,” Colloids and surfaces. B, Biointerfaces, vol. 80, no. 1, pp. 26–33, Oct. 2010.

[51] A. N. Mishra, S. Bhadauria, M. S. Gaur, R. Pasricha, and B. S. Kushwah, “Synthesis of Gold Nanoparticles by Leaves of Zero-Calorie Sweetener Herb (Stevia rebaudiana) and Their Nanoscopic Characterization by Spectroscopy and Microscopy,” Mar. 2010.

Page 17: Nanoparticle

[52] S. Mondal, N. Roy, R. A. Laskar, I. Sk, S. Basu, D. Mandal, and N. A. Begum, Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves., vol. 82, no. 2. 2011, pp. 497–504.

[53] A. K. Singh, M. Talat, D. P. Singh, and O. N. Srivastava, “Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1667–1675, Jan. 2010.

[54] B. Ankamwar, M. Chaudhary, and M. Sastry, “Gold Nanotriangles Biologically Synthesized using Tamarind Leaf Extract and Potential Application in Vapor Sensing,” Synthesis and Reactivity in Inorganic MetalOrganic and NanoMetal Chemistry, vol. 35, pp. 19–26, 2005.

[55] S. P. Dubey, M. Lahtinen, and M. Sillanpää, “Tansy fruit mediated greener synthesis of silver and gold nanoparticles,” Process Biochemistry, vol. 45, no. 7, pp. 1065–1071, Jul. 2010.

[56] B. Ankamwar, “Biosynthesis of Gold Nanoparticles (Green-gold) Using Leaf Extract of Terminalia Catappa,” E-Journal of Chemistry, vol. 7, no. 4, pp. 1334–1339, 2010.

[57] R. Geethalakshmi and D. V. L. Sarada, “Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties.,” International journal of nanomedicine, vol. 7, pp. 5375–84, Jan. 2012.

[58] C. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan, “Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens.,” Colloids and surfaces. B, Biointerfaces, vol. 76, no. 1, pp. 50–6, Mar. 2010.

[59] K. Jagajjanani Rao and S. Paria, “Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract,” Materials Research Bulletin, vol. 48, no. 2, pp. 628–634, Feb. 2013.

[60] G. Von White, P. Kerscher, R. M. Brown, J. D. Morella, W. McAllister, D. Dean, and C. L. Kitchens, “Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract,” Journal of Nanomaterials, vol. 2012, pp. 1–12, 2012.

[61] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract.,” Biotechnology progress, vol. 22, no. 2, pp. 577–83, 2008.

Page 18: Nanoparticle

[62] T. Y. Suman, D. Elumalai, P. K. Kaleena, and S. R. R. Rajasree, “GC–MS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors,” Industrial Crops and Products, vol. 47, pp. 239–245, 2013.

[63] D. S. Sheny, J. Mathew, and D. Philip, Phytosynthesis of Au, Ag and AuAg bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale, vol. 79, no. 1. 2011, pp. 254–262.

[64] A. J. Kora, S. R. Beedu, and A. Jayaraman, “Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity.,” Organic and medicinal chemistry letters, vol. 2, no. 1, p. 17, Jan. 2012.

[65] P. Kouvaris, A. Delimitis, V. Zaspalis, D. Papadopoulos, S. A. Tsipas, and N. Michailidis, “Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract,” Materials Letters, vol. 76, no. null, pp. 18–20, Jun. 2012.

[66] M. Vijayakumar, K. Priya, F. T. Nancy, A. Noorlidah, and A. B. A. Ahmed, “Biosynthesis, characterization an anti-bacterial effect of plant mediated silver nanoparticles using Artemisia nilagirica,” Industrial Crops and Products2, vol. 41, pp. 235–240, 2013.

[67] U. B. Jagtap and V. A. Bapat, “Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity,” Industrial Crops and Products, vol. 46, no. null, pp. 132–137, Apr. 2013.

[68] B. Mahitha and B. D. P. Raju, “Biosynthesis, characterization and antimicrobial studies of AgNPs extract from Bacopa monniera whole plant,” Dig J Nanomat  …, 2011.

[69] S. Ankanna, T. N. K. V. Prasad, E. K. Elumalai, and N. Savithramma, “Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark,” Dig J Nanomater …, vol. 5, no. 2, pp. 369–372, 2010.

[70] A. J. Kora, R. B. Sashidhar, and J. Arunachalam, “Aqueous extract of gum olibanum (Boswellia serrata): A reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles,” Process Biochemistry, vol. 47, no. 10, pp. 1516–1520, Oct. 2012.

[71] S. Babu and H. Prabu, “Synthesis of AgNPs using the extract of< i> Calotropis procera</i> flower at room temperature,” Materials Letters, 2011.

Page 19: Nanoparticle

[72] S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, and Q. Zhang, “Green synthesis of silver nanoparticles using Capsicum annuum L. extract,” Green Chem., 2007.

[73] N. Mude, A. Ingle, A. Gade, and M. Rai, “Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report,” Journal of Plant Biochemistry and  …, 2009.

[74] L. Lin, W. Wang, J. Huang, Q. Li, D. Sun, X. Yang, H. Wang, N. He, and Y. Wang, “Nature factory of silver nanowires: Plant-mediated synthesis using broth of Cassia fistula leaf,” Chemical Engineering Journal, vol. 162, no. 2, pp. 852–858, Aug. 2010.

[75] K. Mukunthan, E. Elumalai, T. N. Patel, and V. R. Murty, “Catharanthus roseus: a natural source for the synthesis of silver nanoparticles.,” Asian Pacific journal of tropical biomedicine, vol. 1, no. 4, pp. 270–4, Aug. 2011.

[76] P. Logeswari, S. Silambarasan, and J. Abraham, “Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties,” Scientia Iranica, vol. 20, no. 3, pp. 1054–1049, 2013.

[77] A. Awwad, N. Salem, and A. Abdeen, “Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity,” International Journal of Industrial  …, 2013.

[78] K. D. Arunachalam and S. K. Annamalai, “Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications.,” International journal of nanomedicine, vol. 8, pp. 2375–84, Jan. 2013.

[79] M. Vanaja, G. Gnanajobitha, K. Paulkumar, S. Rajeshkumar, C. Malarkodi, and G. Annadurai, “Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors,” Journal of Nanostructure in Chemistry, vol. 3, no. 1, p. 17, 2013.

[80] S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, and K. Srinivasan, “Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 79, no. 3, pp. 594–8, Aug. 2011.

[81] N. Basavegowda and Y. Rok Lee, “Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: A novel approach towards waste utilization,” Materials Letters, vol. 109, no. null, pp. 31–33, Oct. 2013.

Page 20: Nanoparticle

[82] M. Farooqui, “Extraction of silver nanoparticles from the leaf extracts of Clerodendrum inerme,” Digest Journal of  …, 2010.

[83] A. J. Kora, R. B. Sashidhar, and J. Arunachalam, “Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application,” Carbohydrate Polymers, vol. 82, no. 3, pp. 670–679, Oct. 2010.

[84] R. R. R. Kannan, W. A. Stirk, and J. Van Staden, “Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae),” South African Journal of Botany, vol. 86, no. null, pp. 1–4, May 2013.

[85] K. Narayanan and N. Sakthivel, “Extracellular synthesis of silver nanoparticles using the leaf extract of< i> Coleus amboinicus</i> Lour.,” Materials Research Bulletin, 2011.

[86] M. Sathishkumar, K. Sneha, and Y.-S. Yun, “Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity.,” Bioresource technology, vol. 101, no. 20, pp. 7958–65, Oct. 2010.

[87] A. Jha and K. Prasad, “Green synthesis of silver nanoparticles using Cycas leaf,” …  Journal of Green Nanotechnology: Physics and …, 2010.

[88] M. Thirunavoukkarasu, U. Balaji, S. Behera, P. K. Panda, and B. K. Mishra, “Biosynthesis of silver nanoparticle from leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. null, no. null, Aug. 2013.

[89] N. Ahmad, S. Sharma, and V. Singh, “Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization,” Biotechnology  …, 2010.

[90] S. Singh, J. P. Saikia, and A. K. Buragohain, “A novel ‘green’ synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract.,” Colloids and surfaces. B, Biointerfaces, vol. 102, pp. 83–5, Feb. 2013.

[91] J. Song and B. Kim, “Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract,” Korean Journal of Chemical Engineering, 2008.

[92] T. Mochochoko, O. S. Oluwafemi, D. N. Jumbam, and S. P. Songca, “Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth,” Carbohydrate Polymers, vol. 98, no. 1, pp. 290–294, Oct. 2013.

Page 21: Nanoparticle

[93] A. Jha and K. Prasad, “Biosynthesis of silver nanoparticles using Eclipta leaf,” Biotechnology progress, 2009.

[94] P. Velmurugan and J. Shim, “Crystallization of silver through reduction process using Elaeis guineensis biosolid extract,” Biotechnology  …, 2011.

[95] N. Roy and A. Barik, “Green synthesis of silver nanoparticles from the unexploited weed resources,” International Journal of Nanotechnology and …, vol. 4, no. 2, pp. 95–101, 2010.

[96] M. Dubey, S. Bhadauria, and B. Kushwah, “Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf,” Dig. J. Nanomaterials &  …, 2009.

[97] E. Elumalai and T. Prasad, “Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities,” J Pharm Sci  …, 2010.

[98] M. Valodkar, P. S. Nagar, R. N. Jadeja, M. C. Thounaojam, R. V. Devkar, and S. Thakore, “Euphorbiaceae latex induced green synthesis of non-cytotoxic metallic nanoparticle solutions: A rational approach to antimicrobial applications,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 384, no. 1–3, pp. 337–344, Jul. 2011.

[99] A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh, “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, pp. 91–94, Jan. 2012.

[100] R. Veerasamy and T. Xin, “Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities,” Journal of Saudi  …, 2011.

[101] M. Vivek, P. S. Kumar, S. Steffi, and S. Sudha, “Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects,” Avicenna Journal of Medical …, vol. 3, no. 3, 2011.

[102] J. Y. Song and B. S. Kim, “Rapid biological synthesis of silver nanoparticles using plant leaf extracts.,” Bioprocess and biosystems engineering, vol. 32, no. 1, pp. 79–84, Jan. 2009.

[103] W. Raut and R. Lakkakula, “Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.),” Current  …, 2009.

Page 22: Nanoparticle

[104] S. Ashokkumar, S. Ravi, and S. Velmurugan, “Green Synthesis of Silver nanoparticles from< i> Gloriosa superba. L</i> Leaf extract and their catalytic activity,” Spectrochimica Acta Part A:  …, 2013.

[105] S. Vivekanandhan, “Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties,” Journal of Nanoscience  …, 2009.

[106] A. Leela and M. Vivekanandan, “Tapping the unexploited plant resources for the synthesis of silver nanoparticles,” African Journal of Biotechnology, vol. 7, no. 17, pp. 3162–3165, 2008.

[107] E. J. Guidelli, A. P. Ramos, M. E. D. Zaniquelli, and O. Baffa, “Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 82, no. 1, pp. 140–5, Nov. 2011.

[108] M. R. Bindhu and M. Umadevi, “Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 101, no. null, pp. 184–90, Jan. 2013.

[109] N. SABLE, S. GAIKWAD, S. BONDE, A. GADE, and M. RAI, “Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticilata,” Nus Biosci, 2012.

[110] D. Sivaraman and P. Panneerselvam, “, CHARACTERIZATION AND ANTI-MICROBIAL ACTIVITY OF SILVER NANOPARTICLES PRODUCED USING IPOMOEA AQUATICA FORSK LEAF EXTRACT,” ijpsr.com.

[111] C. Dipankar and S. Murugan, “The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts.,” Colloids and surfaces. B, Biointerfaces, vol. 98, no. null, pp. 112–9, Oct. 2012.

[112] H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra, “Green synthesis of silver nanoparticles using latex of Jatropha curcas,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 339, no. 1–3, pp. 134–139, May 2009.

[113] H. Bar, D. Bhui, G. Sahoo, and P. Sarkar, “Green synthesis of silver nanoparticles using seed extract of< i> Jatropha curcas</i>,” Colloids and Surfaces A:  …, 2009.

Page 23: Nanoparticle

[114] N. Yang and W.-H. Li, “Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics,” Industrial Crops and Products, vol. 48, pp. 81–88, 2013.

[115] M. F. Zayed, W. H. Eisa, and A. A. Shabaka, “Malva parviflora extract assisted green synthesis of silver nanoparticles.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 98, no. null, pp. 423–8, Dec. 2012.

[116] A. Lukman, B. Gong, and C. Marjo, “Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using< i> Medicago sativa</i> seed exudates,” Journal of colloid and  …, 2011.

[117] P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, and M. Saravanan, “Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates.,” Colloids and surfaces. B, Biointerfaces, vol. 108, no. null, pp. 255–9, Aug. 2013.

[118] T. Y. Suman, S. R. Radhika Rajasree, A. Kanchana, and S. B. Elizabeth, “Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract.,” Colloids and surfaces. B, Biointerfaces, vol. 106, no. null, pp. 74–8, Jun. 2013.

[119] T. Prasad and E. Elumalai, “Biofabrication of Ag nanoparticles using< i> Moringa oleifera</i> leaf extract and their antimicrobial activity,” Asian Pacific journal of tropical biomedicine, 2011.

[120] S. Arulkumar and M. Sabesan, “Rapid preparation process of antiparkinsonian drug Mucuna pruriens silver nanoparticle by bioreduction and their characterization.,” Pharmacognosy research, vol. 2, no. 4, pp. 233–6, Jul. 2010.

[121] A. Bankar, B. Joshi, A. Kumar, and S. Zinjarde, “Banana peel extract mediated novel route for the synthesis of silver nanoparticles,” Colloids and Surfaces A:  …, 2010.

[122] T. Santhoshkumar and A. Rahuman, “Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors,” Parasitology  …, 2011.

[123] M. Roni, K. Murugan, C. Panneerselvam, J. Subramaniam, and J.-S. Hwang, “Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae).,” Parasitology research, vol. 112, no. 3, pp. 981–90, Mar. 2013.

Page 24: Nanoparticle

[124] K. Prasad and D. Pathak, “Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect,” African Journal of Biotechnology, vol. 10, no. 41, pp. 8122–8130, 2011.

[125] C. Ramteke, T. Chakrabarti, B. K. Sarangi, and R.-A. Pandey, “Synthesis of Silver Nanoparticles from the Aqueous Extract of Leaves of Ocimum sanctum for Enhanced Antibacterial Activity,” Journal of Chemistry, vol. 2013, pp. 1–7, 2013.

[126] M. M. H. Khalil, E. H. Ismail, K. Z. El-Baghdady, and D. Mohamed, “Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity,” Arabian Journal of Chemistry, vol. null, no. null, Apr. 2013.

[127] K. Vijayaraghavan, S. P. K. Nalini, N. U. Prakash, and D. Madhankumar, “One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum.,” Colloids and surfaces. B, Biointerfaces, vol. 94, pp. 114–7, Jun. 2012.

[128] V. Parashar and R. Parashar, “Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization,” Digest journal of  …, 2009.

[129] S. S. Shankar, A. Ahmad, and M. Sastry, “Geranium leaf assisted biosynthesis of silver nanoparticles.,” Biotechnology progress, vol. 19, no. 6, pp. 1627–31.

[130] S. J. P. Jacob, J. S. Finub, and A. Narayanan, “Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line.,” Colloids and surfaces. B, Biointerfaces, vol. 91, no. null, pp. 212–4, Mar. 2012.

[131] S. Kaviya, J. Santhanalakshmi, and B. Viswanathan, “Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-Sorbitol: Study of Antibacterial Activity,” Journal of Nanotechnology, vol. 2011, pp. 1–5, 2011.

[132] K. Raja, A. Saravanakumar, and R. Vijayakumar, “Efficient synthesis of silver nanoparticles from< i> Prosopis juliflora</i> leaf extract and its antimicrobial activity using sewage,” Spectrochimica Acta Part A:  …, 2012.

[133] M. Khan, M. Khan, S. F. Adil, M. N. Tahir, W. Tremel, H. Z. Alkhathlan, A. Al-Warthan, and M. R. H. Siddiqui, “Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract.,” International journal of nanomedicine, vol. 8, pp. 1507–16, Jan. 2013.

Page 25: Nanoparticle

[134] J. Das and P. Velusamy, “Antibacterial effects of biosynthesized silver nanoparticles using aqueous leaf extract of Rosmarinus officinalis L,” Materials Research Bulletin, vol. null, no. null, Jul. 2013.

[135] P. Chaudhari, S. Masurkar, V. Shidore, and S. Kamble, “Biosynthesis of silver nanoparticles using Saccharum officinarum and its antimicrobial activity,” Micro & Nano Letters, 2012.

[136] A. Mishra, N. K. Kaushik, M. Sardar, and D. Sahal, “Evaluation of antiplasmodial activity of green synthesized silver nanoparticles.,” Colloids and surfaces. B, Biointerfaces, vol. 111C, no. null, pp. 713–718, Jul. 2013.

[137] P. C. Nagajyoti, T. N. V. K. . Prasad, T. V. M. Sreekanth, and K. Lee, “Bio-fabrication of silver nanoparticles using Leaf extract of Saururus Chinensis,” Digest Journal of Nanomaterials and Biostructures, vol. 6, no. 1, pp. 121–133, 2011.

[138] J. Das, M. Paul Das, and P. Velusamy, “Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 104, no. null, pp. 265–70, Mar. 2013.

[139] A. Nabikhan, K. Kandasamy, A. Raj, and N. M. Alikunhi, “Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.,” Colloids and surfaces. B, Biointerfaces, vol. 79, no. 2, pp. 488–93, Sep. 2010.

[140] M. Umadevi, M. R. Bindhu, and V. Sathe, “A Novel Synthesis of Malic Acid Capped Silver Nanoparticles using Solanum lycopersicums Fruit Extract,” Journal of Materials Science & Technology, vol. 29, no. 4, pp. 317–322, Apr. 2013.

[141] K. Govindaraju and S. Tamilselvan, “Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity,” Journal of  …, 2010.

[142] E. Njagi, H. Huang, and L. Stafford, “Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts,” Langmuir, 2010.

[143] M. Yilmaz, H. Turkdemir, M. A. Kilic, E. Bayram, A. Cicek, A. Mete, and B. Ulug, “Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana,” Materials Chemistry and Physics, vol. 130, no. 3, pp. 1195–1202, Nov. 2011.

Page 26: Nanoparticle

[144] M. Rao and N. Savithramma, “Biological synthesis of silver nanoparticles using Svensonia hyderabadensis leaf extract and evaluation of their antimicrobial efficacy,” J. Pharm. Sci. Res, 2011.

[145] R. Prasad and V. S. Swamy, “Antibacterial Activity of Silver Nanoparticles Synthesized by Bark Extract of Syzygium cumini,” Journal of Nanoparticles, vol. 2013, pp. 1–6, 2013.

[146] T. J. I. Edison and M. G. Sethuraman, “Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue,” Process Biochemistry, vol. 47, no. 9, pp. 1351–1357, Sep. 2012.

[147] N. N. Rupiasih, A. Aher, S. Gosavi, and P. B. Vidyasagar, “Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana : a novel approach towards poisonous plant utilization,” Journal of Physics: Conference Series, vol. 423, no. 1, p. 012032, Apr. 2013.

[148] V. Gopinath, D. MubarakAli, S. Priyadarshini, N. M. Priyadharsshini, N. Thajuddin, and P. Velusamy, “Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.,” Colloids and surfaces. B, Biointerfaces, vol. 96, no. null, pp. 69–74, Aug. 2012.

[149] S. Waghmode, P. Chavan, V. Kalyankar, and S. Dagade, “Synthesis of Silver Nanoparticles Using Triticum aestivum and Its Effect on Peroxide Catalytic Activity and Toxicology,” Journal of Chemistry, vol. 2013, pp. 1–5, 2013.

[150] M. Zargar, A. Hamid, and F. Bakar, “Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L.,” Molecules, 2011.

[151] D. S. Sheny, D. Philip, and J. Mathew, “Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 114, no. null, pp. 267–71, Oct. 2013.

[152] J. Nellore, C. Pauline, and K. Amarnath, “Bacopa monnieri Phytochemicals Mediated Synthesis of Platinum Nanoparticles and Its Neurorescue Effect on 1-Methyl Parkinsonism in Zebrafish,” Journal of Neurodegenerative Diseases, vol. 2013, 2013.

Page 27: Nanoparticle

[153] B. Zheng, T. Kong, X. Jing, T. Odoom-Wubah, X. Li, D. Sun, F. Lu, Y. Zheng, J. Huang, and Q. Li, “Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism.,” Journal of colloid and interface science, vol. 396, no. null, pp. 138–45, Apr. 2013.

[154] V. T. P. Vinod, P. Saravanan, B. Sreedhar, D. K. Devi, and R. B. Sashidhar, “A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium).,” Colloids and surfaces. B, Biointerfaces, vol. 83, no. 2, pp. 291–8, Apr. 2011.

[155] J. Y. Song, E.-Y. Kwon, and B. S. Kim, “Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract.,” Bioprocess and biosystems engineering, vol. 33, no. 1, pp. 159–64, Jan. 2010.

[156] C. Soundarrajan, A. Sankari, P. Dhandapani, S. Maruthamuthu, S. Ravichandran, G. Sozhan, and N. Palaniswamy, “Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications.,” Bioprocess and biosystems engineering, vol. 35, no. 5, pp. 827–33, Jun. 2012.

[157] M. Valodkar, R. N. Jadeja, M. C. Thounaojam, R. V. Devkar, and S. Thakore, “Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells,” Materials Chemistry and Physics, vol. 128, no. 1–2, pp. 83–89, Jul. 2011.

[158] S. Harne, A. Sharma, M. Dhaygude, S. Joglekar, K. Kodam, and M. Hudlikar, “Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells.,” Colloids and surfaces. B, Biointerfaces, vol. 95, pp. 284–8, Jun. 2012.

[159] H.-J. Lee, J. Y. Song, and B. S. Kim, “Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity,” Journal of Chemical Technology & Biotechnology, p. n/a–n/a, Mar. 2013.

[160] I. Subhankari and P. Nayak, “Synthesis of Copper Nanoparticles Using Syzygium aromaticum (Cloves) Aqueous Extract by Using Green Chemistry,” World Journal of Nano Science and Technology, vol. 2, no. 1, pp. 14–17, 2013.

[161] K. Mallikarjuna, N. John Sushma, B. V. Subba Reddy, G. Narasimha, and B. Deva Prasad Raju, “Palladium nanoparticles: Single-step plant-mediated green chemical procedure using Piper betle leaves broth and their anti-fungal studies,” International Journal of Chemical and Analytical Science, vol. 4, no. 1, pp. 14–18, Mar. 2013.

Page 28: Nanoparticle

[162] D. S. Sheny, D. Philip, and J. Mathew, “Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 91, pp. 35–8, Jun. 2012.

[163] K. Farhadi, A. Pourhossein, M. Forough, R. Molaei, A. Abdi, and A. Siyami, “Biosynthesis of Highly Dispersed Palladium Nanoparticles Using Astraglmanna Aqueous Extract,” Journal of the Chinese Chemical Society, May 2013.

[164] M. Sathishkumar, K. Sneha, I. S. Kwak, J. Mao, S. J. Tripathy, and Y.-S. Yun, “Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract.,” Journal of hazardous materials, vol. 171, no. 1–3, pp. 400–4, Nov. 2009.

[165] L. Jia, Q. Zhang, Q. Li, and H. Song, “The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation.,” Nanotechnology, vol. 20, no. 38, p. 385601, Sep. 2009.

[166] P. R. Kumar, S. Vivekanandhan, M. Misra, A. K. Mohanty, and N. Satyanarayana, “Soybean (Glycine Max) Leaf Extract Based Green Synthesis of Palladium Nanoparticles,” Journal of Biomaterials and Nanobiotechnology, vol. 03, no. 01, pp. 14–19, 2012.

[167] K. Mohan Kumar, B. K. Mandal, K. Siva Kumar, P. Sreedhara Reddy, and B. Sreedhar, “Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 102, pp. 128–33, Feb. 2013.

[168] S. Joglekar, K. Kodam, M. Dhaygude, and M. Hudlikar, “Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. latex,” Materials Letters, vol. 65, no. 19–20, pp. 3170–3172, Oct. 2011.

[169] G. Sangeetha, S. Rajeshwari, and R. Venckatesh, “Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties,” Materials Research Bulletin, vol. 46, no. 12, pp. 2560–2566, Dec. 2011.

[170] J. Qu, C. Luo, Q. Cong, and X. Yuan, “A new insight into the recycling of hyperaccumulator: synthesis of the mixed Cu and Zn oxide nanoparticles using Brassica juncea L.,” International journal of phytoremediation, vol. 14, no. 9, pp. 854–60, Oct. 2012.

[171] R. P. Singh, V. K. Shukla, R. S. Yadav, P. K. Sharma, P. K. Singh, and P. K. Pandey, “Biological approach of zinc oxide nanoparticles formation and its characterization,” Adv. Mat. Lett, vol. 2, pp. 313 – 317, 2011.

Page 29: Nanoparticle

[172] M. J. Divya, C. Sowmia, K. Joona, and K. P. Dhanya, “Synthesis of Zinc Oxide Nanoparticle from Hibiscus rosa-sinensis leaf Extract and Investigation of Its Antimicrobial Activity .,” Research Journal of Pharmaceutical , Biological and Chemical Sciences, vol. 4, no. 2, pp. 1137–1142, 2013.

[173] P. Rajiv, S. Rajeshwari, and R. Venckatesh, “Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 112, no. null, pp. 384–7, Aug. 2013.

[174] J. Qu, X. Yuan, X. Wang, and P. Shao, “Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L.,” Environmental pollution (Barking, Essex : 1987), vol. 159, no. 7, pp. 1783–8, Jul. 2011.

[175] J. Qu, C. Luo, and J. Hou, “Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants,” Micro & Nano Letters, vol. 6, no. 3, p. 174, Mar. 2011.

[176] K. Velayutham, A. A. Rahuman, G. Rajakumar, T. Santhoshkumar, S. Marimuthu, C. Jayaseelan, A. Bagavan, A. V. Kirthi, C. Kamaraj, A. A. Zahir, and G. Elango, “Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis.,” Parasitology research, vol. 111, no. 6, pp. 2329–37, Dec. 2012.

[177] G. Rajakumar, a. A. Rahuman, B. Priyamvada, V. G. Khanna, D. K. Kumar, and P. J. Sujin, “Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles,” Materials Letters, vol. 68, pp. 115–117, Feb. 2012.

[178] M. Sundrarajan and S. Gowri, “Green Synthesis of Titanium Dioxide nanoparticles by Nyctanthes Arbor-tristis leaves extract,” Chalcogenide Letters, vol. 8, no. 8, pp. 447–451, 2011.

[179] S. Gunalan, R. Sivaraj, and R. Venckatesh, “Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties.,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 97, pp. 1140–4, Nov. 2012.

[180] B. Ahmmad, K. Leonard, M. Shariful Islam, J. Kurawaki, M. Muruganandham, T. Ohkubo, and Y. Kuroda, “Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity,” Advanced Powder Technology, vol. 24, no. 1, pp. 160–167, Jan. 2013.

Page 30: Nanoparticle

[181] M. Mahdavi, F. Namvar, M. Bin Ahmad, and R. Mohamad, “Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract.,” Molecules (Basel, Switzerland), vol. 18, no. 5, pp. 5954–64, Jan. 2013.

[182] A. M. Awwad and N. M. Salem, “A Green and Facile Approach for Synthesis of Magnetite Nanoparticles,” Nanoscience and Nanotechnology, vol. 2, no. 6, pp. 208–213, Jan. 2013.

[183] M. Senthil and C. Ramesh, “Biogenic Synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa,” Digest Journal of Nanomaterials and Biostructures, vol. 7, no. 3, pp. 1655–1660, 2012.

[184] Y. Cai, Y. Shen, A. Xie, S. Li, and X. Wang, “Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 19, pp. 2938–2943, Oct. 2010.

[185] J. K. Andeani and S. Mohsenzadeh, “Phytosynthesis of Cadmium Oxide Nanoparticles from Achillea wilhelmsii Flowers,” Journal of Chemistry, vol. 2013, 2013.