neutrino physics: lecture 3theory.tifr.res.in/~amol/nuphy/lectures/lecture3.pdf · neutrino...

24
Neutrino Physics: Lecture 3 Atmospheric neutrinos, Vacuum oscillations Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Feb 16, 2010

Upload: others

Post on 30-May-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Neutrino Physics: Lecture 3Atmospheric neutrinos, Vacuum oscillations

Amol Dighe

Department of Theoretical PhysicsTata Institute of Fundamental Research

Feb 16, 2010

Outline

1 Atmospheric neutrinos and the puzzle

2 Neutrino masses and vacuum oscillations

Outline

1 Atmospheric neutrinos and the puzzle

2 Neutrino masses and vacuum oscillations

Neutrino production from cosmic rays

π+ → µ+ + νµ

µ+ → e+ + νe + ν̄µ

“νµ” flux = 2× “νe” flux“Down” flux = “Up” flux

Incoming nucleon fluxes

Administrator
Pencil

Expected neutrino fluxes at the Earth surface

νµ/νe ratio: increases with energy

Expected neutrino fluxes at Earth surface

νµ flux: smaller at larger | cos θ|However:

Fluxcos θ=a = Fluxcos θ=−a

How to detect νe and νµ through Cherenkov cones

Diffused ring Sharp ring

Atmospheric neutrino puzzle

Double ratio:

Super-Kamiokande

Administrator
Pencil
Administrator
Pencil

Atmospheric neutrino puzzle

Zenith angle dependence:

Super-Kamiokande

Administrator
Pencil
Administrator
Pencil

Preliminary observations from zenith angle data

Electron neutrinos match predictionsHigh energy νµ from above: match predictionsHigh energy νµ through the earth: partially lostLow energy νµ: lost even when coming from above, losswhile passing through the Earth even greater

Outline

1 Atmospheric neutrinos and the puzzle

2 Neutrino masses and vacuum oscillations

Effective Hamiltonian for a single neutrino

H =√

p2 + m2 ≈ p +m2

2p≈ p +

m2

2E

Schrödinger’s equation:

iddt|ν(t)〉 = H|ν(t)〉

Time evolution:

|ν(t)〉 = |ν(0)〉e−iHt

= |ν(0)〉e−ipte−m22E t

Simple for a mass eigenstate with fixed momentum !

Effective Hamiltonian for a single neutrino

H =√

p2 + m2 ≈ p +m2

2p≈ p +

m2

2E

Schrödinger’s equation:

iddt|ν(t)〉 = H|ν(t)〉

Time evolution:

|ν(t)〉 = |ν(0)〉e−iHt

= |ν(0)〉e−ipte−m22E t

Simple for a mass eigenstate with fixed momentum !

Effective Hamiltonian for a single neutrino

H =√

p2 + m2 ≈ p +m2

2p≈ p +

m2

2E

Schrödinger’s equation:

iddt|ν(t)〉 = H|ν(t)〉

Time evolution:

|ν(t)〉 = |ν(0)〉e−iHt

= |ν(0)〉e−ipte−m22E t

Simple for a mass eigenstate with fixed momentum !

Time evolution for a flavour eigenstate

|να〉 = cos θ|ν1〉+ sin θ|ν2〉

Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil

Time evolution for a flavour eigenstate

Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil

Vacuum oscillations

P(να → να) = 1− sin2 2θ sin2(

∆m2L4E

)Amplitude, wavelength:

Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil

Explaining broad features of atmospheric ν data

Electron neutrinos match predictionsHigh energy νµ from above: match predictionsHigh energy νµ through the earth: partially lostLow energy νµ: lost even when coming from above, losswhile passing through the Earth even greater

Administrator
Pencil

Detailed features of atmospheric ν data

Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil

Detailed features of atmospheric ν data

Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil
Administrator
Pencil

Detailed features of atmospheric ν data

Administrator
Pencil
Administrator
Pencil

Atmospheric ν solution through “vacuum oscillations”

PrerequisitesNeutrino flavours mix with each otherNeutrinos have different massesνe do not participate in the oscillations

Neutrino oscillations: νµ oscillate into ντ

P(νµ → νµ) = 1− sin2 2θ sin2(

∆m2L4E

)∆m2 ≡ m2

2 −m21

Atmospheric ν solution through “vacuum oscillations”

PrerequisitesNeutrino flavours mix with each otherNeutrinos have different massesνe do not participate in the oscillations

Neutrino oscillations: νµ oscillate into ντ

P(νµ → νµ) = 1− sin2 2θ sin2(

∆m2L4E

)∆m2 ≡ m2

2 −m21