non-profit joint stock company almaty university of …

33
3 Non-Profit Joint Stock Company The department of Higher mathematics MATHEMATICS 1 Methodological Guidelines and Tasks for carrying out the calculation-graphical work for students of specialties 5В071700 «Heat power engineering», 5В071800 «Electrical power engineering», 5В071900 «Radio engineering, electronics and telecommunications» Part 1 Almaty 2014 ALMATY UNIVERSITY OF POWER ENGINEERING AND TELECOMMUNICATIONS

Upload: others

Post on 01-Mar-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

3

Non-Profit Joint Stock Company

The department of

Higher mathematics

MATHEMATICS 1

Methodological Guidelines and Tasks

for carrying out the calculation-graphical work for students of specialties

5В071700 «Heat power engineering»,

5В071800 «Electrical power engineering»,

5В071900 «Radio engineering, electronics and telecommunications»

Part 1

Almaty 2014

ALMATY UNIVERSITY OF

POWER ENGINEERING

AND

TELECOMMUNICATIONS

Page 2: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

4

Compiler: Kim R.E., Mathematics 1. Methodological Guidelines and Tasks

for carrying out the calculation-graphical work for students of specialties

5В071700 «Heat power engineering», 5В071800 «Electrical power

engineering», 5В071900 «Radio engineering, electronics and

telecommunications». Part 1. – Almaty, 2014 – 33 p.

Methodological Guidelines and Tasks for carrying out the calculation-

graphical work contain sections of the first semester program of course of

mathematics for students of AUPET: elements of linear algebra, analytic geometry

and complex numbers.

The basic theoretical questions of the program and the solution of an

exemplary embodiment are given.

Tables 11, figures 6, bibl. 3

Reviewer: candidate of sciences in philology, V.S. Kozlov

Printed according to the Publishing plan of Non-Profit Joint Stock Company

"Almaty University of Power Engineering and Telecommunications " for 2014

© Non-Profit Joint Stock Company

"Almaty University of Power Engineering and Telecommunications", 2014

Page 3: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

5

Introduction

Mathematics plays an important role in engineering studies. It is not only a

quantitative calculation device, but also mathematics is the means of accurate

research and extremely precise formulation of concepts and problems.

Mathematical methods have become an integral part of any technical discipline.

These facts lead to the need to strengthen the applied orientation of course of

mathematics and improve basic mathematical training. CGW is performed in a

separate thin notebook. In the number of each task the second digit indicates the

variant.

Calculation-graphical work.

Elements of linear algebra, analytic geometry and complex numbers

Purpose: to master the fundamental concepts and methods of the theory of

algebra and geometry. Get the skills in calculation of determinants and operations

on matrices and vectors, which are used for solving systems of equations and used

in analytic geometry. By the analytical curve equations determine their geometric

properties and relative location on the plane or in space.

Perform all arithmetic operations with complex numbers.

Theoretical questions

1. Determinants and their properties, the calculation.

2. Matrices, operations on them, the inverse matrix.

3. Vectors, their length, linear operations on vectors. Collinearity.

4. Scalar, vector, mixed products of vectors and their applications.

5. Different types of equation of the straight line on the plane and in space.

6. Equations of a plane.

7. Angle between the lines, planes, straight line and plane.

8. The distance from a point to the straight line and to the plane.

9. Ellipse, hyperbola, parabola. Their canonical equations.

10. Second-order surfaces.

11. Bringing of the general equations of the second-order curves and surfaces

to the canonical form.

12. Various methods for solving systems of linear equations:

а) Cramer's rule;

b) by using the inverse matrix.

13. Complex numbers, the module and the main part of the complex

numbers, operations over the complex numbers, De Moivre formula.

Calculated tasks

Task1. The third order determinant is given.

It is required to calculate:

a) the minor 23M and the algebraic complement 23A of the element 23a ;

b) the determinant by the triangle rule (rule of Sarrus);

Page 4: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

6

c) the determinant by the method of expansion along the i-th row and the j-th

column.

1.1 1,2,

121

201

213

ji 1.2 3,2,

314

131

232

ji 1.3 2,1,

122

013

376

ji

1.4 1,3,

234

084

371

ji 1.5 2,1,

110

231

462

ji 1.6 2,3,

7110

111

496

ji

1.7 1,2,

812

713

301

ji 1.8 2,3,

148

131

215

ji 1.9 1,3,

134

633

522

ji

1.10 2,3,

465

103

553

ji 1.11 3,2,

121

423

211

ji 1.12 1,3,

323

504

234

ji

1.13 3,2,

243

678

312

ji 1.14 2,1,

121

453

212

ji 1.15 1,2,

113

342

653

ji

1.16 1,3,

354

013

582

ji 1.17 3,2,

321

642

063

ji 1.18 3,3,

231

720

103

ji

1.19 2,3,

730

529

1116

ji 1.20 3,1,

434

603

521

ji 1.21 2,3,

121

332

111

ji

1.22 2,2,

503

421

245

ji 1.23 1,3,

221

173

545

ji 1.24 1,2,

722

234

013

ji

1.25 3,2,

161

135

072

ji 1.26 3,1,

2310

155

118

ji 1.27 1,1,

201

123

523

ji

1.28 3,2,

210

123

674

ji 1.29 3,1,

321

135

157

ji 1.30 2,3,

753

421

121

ji

Task 2. Given matrices А, В, С.

Find:

а) the product of matrices АВ or ВС, or СВ (if possible). Explain why if it is

impossible;

b) the matrix 1A , the inverse matrix for A.

Page 5: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

7

2.1

А= ,

324

381

273

В= ,

1

7

2

С=

310

411

2.2

А= ,

512

142

350

В= ,042

113

С=

4

2

5

2.3

,

172

394

412

А ,124В

33

12

17

С

2.4

,

634

142

111

А ,

34

71

42

В 234 С

2.5

,

234

352

401

А ,20

13

В

6517

2413С

2.6

,

353

421

121

А ,

56

11

20

14

В

20

17С

2.7

,

321

135

175

А ,

2

6

3

В

301

332С

2.8

,

332

154

043

А ,153

224

В

3

1

6

С

2.9

А= ,

112

620

171

,135В

22

03

18

С

2.10

173

232

201

А , ,

05

74

13

В 245 С

2.11

,

231

713

103

А ,31

24

В

1651

3524С

Page 6: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

8

2.12

,

121

642

414

А ,

47

02

31

25

В

10

28С

2.13

А= ,

221

152

110

В= ,

1

3

4

С=

731

420

2.14

А= ,

112

111

496

В= ,

742

321 С=

1

8

5

2.15

А= ,

213

812

301

В= ,426 С=

22

17

63

2.16

А= ,

124

301

154

В=

57

24

23

, С= 432

2.17

А= ,

212

434

633

В= ,21

54

С=

2291

8132

2.18

А= ,

301

234

352

В= ,

32

21

94

13

С=

12

65

2.19

А= ,

602

734

214

В= ,

9

1

8

С=

342

516

2.20

А= ,

412

271

603

В= ,

114

483 С=

8

6

2

2.21

А= ,

524

301

713

В= ,047 С=

43

91

32

2.22

А= ,

264

532

143

В= ,

35

22

16

С= 560

2.23

А= ,

212

043

351

В= ,

12

93 С=

2931

4132

Page 7: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

9

2.24

А= ,

314

712

163

В= ,

53

20

15

27

С=

42

26

2.25

А= ,

172

514

332

В= ,

4

5

3

С=

960

142

2.26

А= ,

322

813

465

В= ,210

186

С=

3

6

7

2.27

А= ,

452

271

532

В= ,415 С=

13

72

19

2.28

А= ,

164

042

315

В= ,

30

14

85

С= 825

2.29

А= ,

325

113

2010

В= ,24

37

С=

6314

1732

2.30

А= ,

323

914

132

В= ,

32

73

61

34

С=

24

15

Task 3. Given points А and В; and vectors b and c .

Find:

a) the module (length) of the vector ABa and the midpoint of the

segment AB;

b) the projection of the vector a on c ;

c) the area of the parallelogram, obtained from the vectors b and c ;

d) volume of the pyramid constructed from the vectors cba ,, .

3.1 А(5, -4, 3), В(1, 2, -8),

в =(0, 1, 4), с =(5, 2, -3)

3.2 А(-3, 1, 0), В(7, 1, -5),

в =(7, 1, 4), с =(5, 8, -3)

3.3 А(0, 4, 5), В(3, -2, 1),

в =(6, 4, 4), с =(0, 2, -2)

3.4 А(3, -2, 5), В(4, 5, 7),

в =(5, 1, 4), с =(5, -3, -3)

3.5 А(2, -3, 7), В(3, 2, 8),

в =(6, 4, 6), с =(0, 6, -2)

3.6 А(2, -1, 7), В(6, 3, 4) ,

в =(4, 5, 4), с =(7, 8, 5)

Page 8: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

10

3.7 А(3, 1, 7), В(2, -3, 9),

в =(9, 1, 4), с =(8, 2, -3)

3.8 А(2, 1, -6), В(1, 4, 9) ,

в =(1, 1, 8), с =(5, -3, 9)

3.9 А(2, -4, 8), В(5, 4, 7),

в =(6, 3, 4), с =(7, 2, -2)

3.10 А(3, 2, 5), В(4, 0, -3) ,

в =(7, 2, 4), с =(5, 8, 4)

3.11 А(2, 3, -1),В(-6, 4, 2),

в =(2, 9, 6), с =(0, 6, 4)

3.12 А(-4, 2, 3), В(8, 7, -2),

в =(5, 3, 4), с =(5, 3, 4)

3.13 А(5, 3, 6), В(-2, 3, 5),

в =(6, 2, 4), с =(7, 2, -7)

3.14 А(0, 6, 0), В(5, 3, -4),

в =(8, 5, 3), с =(7, 8, 7)

3.15 А(4, 2, 0), В(1, -7, 8),

в =(2, 8, 6), с =(0, 6, 3)

3.16 А(4, 2, 5), В(-1, 0, 6),

в =(2, 1, 8), с =(5, 9, 9)

3.17 А(3,-5, 8), В(6, 3, 9),

в =(7, 3, 4), с =(3, 2, -2)

3.18 А(7, 2, 2), В(-5, 7, -7) ,

в =(6, 1, 3), с =(1, 8, 7)

3.19 А(5, -3, 1), В(2, 3, 7),

в =(2, 7, 6), с =(7, 6, 4)

3.20 А(8, -6, 4), В(10, 5, 1),

в =(9, 1, 8), с =(4, 9, 1)

3.21 А(5, 6,-8), В(8, 10,7),

в =(1, 3, 4), с =(3, 6, -2)

3.22 А(1, -1, 3), В(6, 5, 8),

в =(7, 8, 3), с =(1, 8, 9)

3.23 А(3, 5,-7), В(8, 4, 1),

в =(2, 5, 6), с =(7, 6, 8)

3.24 А(6, -6, 5), В(4, 9, 5),

в =( 6, 1, 4), с =(0, 9, 1)

3.25 А(4,6,11), В(9,3,-4),

в =(3, 7, 6), с =(8, 6, 4)

3.26 А(5, 7, 4),В(4,-10, 9),

в =(8, 1, 7), с =(4, 5, 1)

3.27 А(-9, 8, 9), В(7, 1,-2),

в =(7, 2, 4), с =(5, 2, -1)

3.28 А(5, 2, 6), В(1, 8, -2),

в =(4, 2, 3), с =(2, 3, 7)

3.29 А(2, 8, -9), В(7, 5,-5),

в =(8, 1, 6), с =(6, 1, 4)

3.30 А(-2, 7, 0), В(6, 3, 5),

в =(2, -3, 8), с =(3, 9, 2)

Task 4. Given points A1, A2 on a plane and the equation of the line L1.

Write the equation of a straight line:

a) )( 212 AAL – passing through these points;

b) 2L – as a general equation of straight line;

c) 2L – in the form of equation of straight line with slope;

d) 2L – in the form of equation of straight line in segments;

e) 3L , passing through the point 2A and perpendicular to 1L .

4.1 045:),3,2(),1,3( 121 yxLAA 4.2 0132:),2,6(),1,4( 121 yxLAA

4.3 0253:),13,2(),7,4( 121 yxLAA 4.4 013:),2,4(),1,5( 121 yxLAA

4.5 0154:),3,6(),1,2( 121 yxLAA 4.6 0922:),2,1(),3,8( 121 yxLAA

4.7 0243:),1,3(),7,1( 121 yxLAA 4.8 0138:),3,7(),1,2( 121 yxLAA

4.9 047:),3,5(),1,6( 121 yxLAA 4.10 0452:),1,6(),2,4( 121 yxLAA

4.11 023:),2,2(),3,4( 121 yxLAA 4.12 04:),2,4(),1,7( 121 yxLAA

Page 9: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

11

4.13 015:),3,1(),1,9( 121 yxLAA 4.14 0852:),3,1(),1,8( 121 yxLAA

4.15 0253:),1,3(),7,5( 121 yxLAA 4.16 0167:),3,7(),7,2( 121 yxLAA

4.17 057:),3,7(),1,5( 121 yxLAA 4.18 0642:),1,2(),8,4( 121 yxLAA

4.19 02:),2,9(),4,4( 121 yxLAA 4.20 012:),1,4(),6,7( 121 yxLAA

4.21 0152:),7,1(),1,8( 121 yxLAA 4.22 0942:),3,1(),1,3( 121 yxLAA

4.23 025:),1,6(),1,5( 121 yxLAA 4.24 047:),4,1(),8,2( 121 yxLAA

4.25 029:),2,9(),2,4( 121 yxLAA 4.26 0455:),1,2(),6,2( 121 yxLAA

4.27 0452:),9,1(),1,6( 121 yxLAA 4.28 094:),5,1(),1,10( 121 yxLAA

4.29 085:),1,1(),1,3( 121 yxLAA 4.30 0127:),5,1(),8,1( 121 yxLAA

Task 5. Given points 321 ,, AAA . It is required to:

a) write the equation of the plane );( 3211 AAAP

b) write 1P as a general equation of a plane;

c) write 1P as equation of a plane in segments;

d) write 1P in a general equation of a plane, passing through the point 1A ;

e) make a canonical equation of the straight line )( 321 AAL ;

f) write a parametric equation of the straight line 1L ;

g) write the equation of the straight line )( 12 NAL perpendicular to the

plane 1P .

5.1 )2,6,4(),1,3,2(),5,1,3( 321 AAA 5.2 )7,2,1(),2,4,1(),1,4,7( 321 AAA

5.3 )7,5,4(),1,9,3(),5,4,3( 321 AAA 5.4 )1,3,4(),1,5,9(),2,4,3( 321 AAA

5.5 )6,5,2(),4,2,3(),5,8,0( 321 AAA 5.6 )2,4,5(),8,7,3(),6,5,2( 321 AAA

5.7 )7,4,4(),1,9,1(),2,4,1( 321 AAA 5.8 )6,8,2(),1,6,2(),1,9,1( 321 AAA

5.9 )2,5,4(),1,5,3(),5,4,1( 321 AAA 5.10 )2,2,5(),8,7,4(),1,5,9( 321 AAA

5.11 )7,5,1(),2,9,3(),5,7,3( 321 AAA 5.12 )6,3,2(),1,7,2(),1,6,1( 321 AAA

5.13 )6,7,2(),4,2,4(),5,9,0( 321 AAA 5.14 )7,2,3(),1,4,2(),1,5,7( 321 AAA

5.15 )7,3,4(),1,7,1(),1,4,3( 321 AAA 5.16 )1,3,4(),1,5,8(),2,4,4( 321 AAA

5.17 )6,3,4(),1,8,1(),1,4,1( 321 AAA 5.18 )2,4,5(),7,2,3(),6,5,2( 321 AAA

5.19 )7,3,5(),1,7,3(),1,4,2( 321 AAA 5.20 )5,8,2(),1,6,2(),2.9,3( 321 AAA

5.21 )6,3,6(),1,8,2(),3,8,1( 321 AAA 5.22 )6,3,1(),1,7,4(),5,6,1( 321 AAA

5.23 )7,2,4(),1,9,1(),1,4,8( 321 AAA 5.24 )7,1,3(),2,3,2(),1,5,8( 321 AAA

5.25 )6,3,4(),1,8,9(),2,4,1( 321 AAA 5.26 )5,3,4(),9,5,8(),2,3,4( 321 AAA

5.27 )2,3,5(),8,7,3(),1,5,2( 321 AAA 5.28 )2,1,5(),7,2,3(),6,5,9( 321 AAA

5.29 )6,3,2(),1,6,2(),1,8,1( 321 AAA 5.30 )5,7,2(),1,6,4(),1,9,3( 321 AAA

Page 10: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

12

Task 6. Solve the system

a) by Cramer’s method;

b) by matrix method (using the inverse matrix).

6.1

13

72

yx

yx

6.2

12

34

yx

yx

6.3

32

25

yx

yx

6.4

132

3

yx

yx

6.5

12

38

yx

yx

6.6

42

26

yx

yx

6.7

132

13

yx

yx

6.8

1126

34

yx

yx

6.9

33

29

yx

yx

6.10

13

752

yx

yx

6.11

17

34

yx

yx

6.12

43

27

yx

yx

6.13

13

72

yx

yx

6.14

126

72

yx

yx

6.15

33

265

yx

yx

6.16

132

38

yx

yx

6.17

12

78

yx

yx

6.18

42

66

yx

yx

6.19

13

734

yx

yx

6.20

1136

73

yx

yx

6.21

32

27

yx

yx

6.21

13

132

yx

yx

6.23

62

123

yx

yx

6.24

42

27

yx

yx

6.23

13

72

yx

yx

6.26

62

27

yx

yx

6.27

6

74

yx

yx

6.28

126

32

yx

yx

6.29

62

12

yx

yx

6.30

52

2

yx

yx

Task 7. Solve the system of equations.

a) by Cramer’s method;

b) by matrix method (using the inverse matrix).

7.1

2323

932

732

321

321

321

xxx

xxx

xxx

7.2

1643

62

1022

321

321

321

xxx

xxx

xxx

7.3

1725

1342

123

321

321

321

xxx

xxx

xxx

Page 11: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

13

7.4

222

93

332

321

321

321

xxx

xxx

xxx

7.5

152

3243

3423

321

321

321

xxx

xxx

xxx

7.6

934

93

13632

321

321

321

xxx

xxx

xxx

7.7

4342

1657

9432

321

321

321

xxx

xxx

xxx

7.8

7632

4

1134

321

321

321

xxx

xxx

xxx

7.9

114

457

2432

321

321

321

xxx

xxx

xxx

7.10

8523

6452

84

321

321

321

xxx

xxx

xxx

7.11

52

1243

3423

321

321

321

xxx

xxx

xxx

7.12

332

7432

752

321

321

321

xxx

xxx

xxx

7.13

1023

922

1544

321

321

321

xxx

xхx

xxx

7.14

72

6434

332

321

321

321

xxx

xxx

xxx

7.15

234

523

622

321

321

321

xxx

xxx

xxx

7.16

423

95

432

321

321

321

xxx

xxx

xxx

7.17

035

6243

232

321

321

321

xxx

xxx

xxx

7.18

524

523

7453

321

321

321

xxx

xxx

xxx

7.19

224

853

53

321

321

321

xxx

xxx

xxx

7.20

842

125

63

321

321

321

xxx

xxx

xxx

7.21

142

13225

93

321

321

321

xxx

xxx

xxx

7.22

1123

7332

332

321

321

321

xxx

xxx

xxx

7.23

1123

743

854

321

321

321

xxx

xxx

xxx

7.24

2523

14432

852

321

321

321

xxx

xxx

xxx

7.25

63

1432

532

321

321

321

xxx

xxx

xxx

7.26

832

543

162

321

321

321

xxx

xxx

xxx

7.27

13

1652

5782

321

321

321

xxx

xxx

xxx

Page 12: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

14

7.28

332

432

4425

321

321

321

xxx

xxx

xxx

7.29

955

6743

9232

321

321

321

xxx

xxx

xxx

7.30

132

3323

3347

321

321

321

xxx

xxx

xxx

Task 8. Given point А; radius of the circle R; a, b – semiaxes of curves;

equation of the straight line D. It is required to:

а) write the equation of a circle with center A and radius R;

б) write the canonical equation of an ellipse with semiaxes a and b. Find the

coordinates of it’s foci and the eccentricity;

c) write the canonical equation of the hyperbola with the real semiaxis a and

imaginary semiaxis b. Find the coordinates of its foci, eccentricity, equations of the

asymptotes;

d) write the canonical equation of the parabola with vertex at the origin and if

D is its directrix. Find the coordinates of its focus, eccentricity;

e) make the drawing of ellipse, hyperbola, parabola.

8.1 A(2,-4), R=4, a=1, b=3, D: x=-5 8.2 A(-8,2), R=1, a=6, b=5, D: x=-5

8.3 A(1,-4), R=5, a=8, b=3, D: y=-6 8.4 A(5,-4), R=2, a=6, b=4, D: y=-2

8.5 A(2,-5), R=7, a=3, b=2, D: x=4 8.6 A(1,8), R=5 , a=3, b=2, D: x=-3

8.7 A(3,-4), R=9, a=7, b=6, D: y=-2 8.8 A(10,1), R=8, a=1, b=6, D: y=-4

8.9 A(5,-4), R=1, a=6, b=4, D: x=-5 8.10 A(6,3), R=8 , a=2, b=3, D: x=-5

8.11 A(1,-3), R=5 , a=8, b=2, D: y=6 8.12 A(5,5), R=2, a=1, b=3, D: y=-7

8.13 A(2,-6), R=7, a=3, b=4, D: x=5 8.14 A(12,6), R=7, a=6, b=2, D: x=-5

8.15 A(3,4), R=9 , a=2, b=6, D: y=-8 8.16 A(0,5), R=4, a=6, b=4, D: y=8

8.17 A(2,-9), R=7, a=5, b=2, D: x=6 8.18 A(-5,0), R=7, a=4, b=5, D: x=1

8.19 A(8,4), R=6 , a=8, b=5, D: y=2 8.20 A(5,1), R=2, a=9, b=1, D: x=-1

8.21 A(5,-4), R=4, a=6, b=4, D: x=1 8.22 A(-3,2), R=4, a=8, b=4, D: y=1

8.23 A(1,8), R=5, a=9, b=4, D: y=-6 8.24 A(9,1), R=6, a=4, b=7, D: x=-3

8.25 A(2,-5), R=7, a=7, b=4, D: x=9 8.26 A(-9,2), R=7, a=1, b=8, D: y=7

8.27 A(7,4), R=5, a=1, b=7, D: y=8 8.28 A(11,-4), R=2, a=2, b=4, D: x=8

8.29 A(-2,5), R=5, a=7, b=1, D: x=8 8.30 A(12,4), R=7, a=3, b=5, D: y=-9

Task 9. Determine the type (name) of the second order surface and make a

schematic drawing:

9.1 y

zxb

zyxa 3

63);1

443)

22222

9.2

133

);141616

)22222

zx

bzyx

a

9.3 y

zxb

zyxa

43);1

1163)

22222

9.4

163

);1101010

)22222

zx

bzyx

a

9.5 z

yxb

zyxa 5

91);1

443)

22222

9.6

zyx

bzyx

a 53

);1111

)22222

Page 13: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

15

9.7 1

43);1

4925)

22222

zy

bzyx

a 9.8

zzy

bzyx

a 6916

);1444

)22222

9.9 1

63);1

1912)

22222

zx

bzyx

a 9.10

yzx

bzyx

a 249

);11169

)22222

9.11 y

zxb

zyxa 4

49);1

16169)

22222

9.12

zyx

bzyx

a 463

);14912

)22222

9.13 x

zyb

zyxa 2

610);1

483)

22222

9.14

044

);11162

)22222

zx

bzyx

a

9.15 y

zxb

zyxa 2

43);1

1164)

22222

9.16

063

);1493

)22222

yx

bzyx

a

9.17 y

xb

zyxa 3

3);1

543)

2222

9.18

048

);11164

)22222

zx

bzyx

a

9.19 y

zxb

zyxa

49);1

1614)

22222

9.20

163

);1449

)22222

zx

bzyx

a

9.21 z

yxb

zyxa 2

53);1

9163)

22222

9.22

yx

bzyx

a 83

);164169

)2222

9.23 y

zxb

zyxa 2

412);1

4169)

22222

9.24

yz

bzyx

a 46

);14412

)2222

9.25 1

93);1

4259)

22222

zx

bzyx

a 9.26

yzx

bzyx

a 21616

);1161616

)22222

9.27 1

44);1

11625)

22222

zx

bzyx

a 9.28

yzx

bzyx

a 244

);1444

)22222

9.29 z

xyb

zyxa 4

63);1

2519)

22222

9.30

144

);111616

)22222

zx

bzyx

a

Task 10. Lead to the canonical form the equation of the second order,

construct this curve.

10.1 020282 yxx 10.2 0109325449 22 yxyx

10.3 016282 yxx 10.4 0222 22 xyx

10.5 07822 22 yxyx 10.6 06205 2 yxy

10.7 028684 2 yxx 10.8 05262 yxx

10.9 010036409 22 yxyx 10.10 01991864916 22 yxyx

10.11 028824 2 yxy 10.12 05040109 22 yyx

10.13 0201843 22 xyx 10.14 030262 yxx

10.15 016842 yxy 10.16 0101284 2 yxy

Page 14: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

16

10.17 030284 2 yxx 10.18 0642424 22 yxyx

10.19 032882 yxy 10.20 098222 yxyx

10.21 09183095 22 yxyx 10.22 0301684 2 yxy

10.23 09282 yxy 10.24 0106189 22 yxyx

10.25 01276436169 22 yxyx 10.26 0301223 2 yxy

10.27 0252122 yxy 10.28 04422 yyx

10.29 02012822 yxyx 10.30 06464416 2 yxy

Task 11. Given complex numbers z1 and z2.

It is required to find:

а) the module of the complex numbers z1;

b) the argument of the complex number z1;

c) the representation of the complex number z1 in the trigonometric and

exponential forms;

d) the sum of complex numbers z1 and z2 analytically and graphically;

e) (z2)5;

f) multiplication of z1z2 in trigonometric form;

g) all complex roots 32z (for versions with even numbers) and 4

2z (for

versions with odd numbers). Show the solution in the drawing.

11.1

)2

sin2

(cos28

;88

2

1

iz

iz

11.2

)3

2sin

3

2(cos5

;355

2

1

iz

iz

11.3

)2

3sin

2

3(cos27

;77

2

1

iz

iz

11.4

)4

sin4

(cos16

;10

2

1

iz

z

11.5

)4

5sin

4

5(cos18

;399

2

1

iz

iz

11.6

)4

6sin

4

6(cos23

;33

2

1

iz

iz

11.7

)sin(cos4

;322

2

1

iz

iz

11.8

)6

5sin

6

5(cos27

;2727

2

1

iz

iz

11.9

))4

3sin()

4

3(cos(24

;44

2

1

iz

iz

11.10

)6

2sin

6

2(cos12

;366

2

1

iz

iz

Page 15: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

17

11.11

)4

7sin

4

7(cos18

;939

2

1

iz

iz

11.12

)3

5sin

3

5(cos8

;344

2

1

iz

iz

11.13

))3

sin()3

(cos(8

;434

2

1

iz

iz

11.14

)4

7sin

4

7(cos25

;55

2

1

iz

iz

11.15

)4

sin4

(cos9

;9

2

1

iz

iz

11.16

)6

5sin

6

5(cos3

;3

2

1

iz

iz

11.17

)4

7sin

4

7(cos32

;33

2

1

iz

iz

11.18

)3

6sin

3

6(cos2

;22

2

1

iz

iz

11.19

)6

9sin

6

9(cos32

;33

2

1

iz

iz

11.20

))3

sin()3

(cos(28

;88

2

1

iz

iz

11.21

)6

5sin

6

5(cos3

;3

2

1

iz

iz

11.22

)sin(cos64

;64

2

1

iz

z

11.23

)3

5sin

3

5(cos64

;64

2

1

iz

iz

11.24

)8

6sin

8

6(cos6

;333

2

1

iz

iz

11.25

)6

7sin

6

7(cos26

;66

2

1

iz

iz

11.26

)3

2sin

3

2(cos5

;5

2

1

iz

iz

11.27

)6

8sin

6

8(cos32

;33

2

1

iz

iz

11.28

))4

sin()4

(cos(28

;88

2

1

iz

iz

11.29

)4

5sin

4

5(cos2

;3

2

1

iz

iz

11.30

)6

10sin

6

10(cos3

;13

2

1

iz

iz

Page 16: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

18

Solution of an exemplary embodiment

Task1. The third order determinant is given 3,2,

251

820

143

ji .

It is required to calculate:

a) the minor 23M and the algebraic complement 23A of the element 23a ;

b) the determinant by the triangle rule (rule of Sarrus);

c) the determinant by the method of expansion along the 2-nd row and the 3-

rd column.

Solution:

a) the minor M ij of the element aij equals to the determinant, obtained from

given by deleting the i-th row and j-th column. Thus cross out second row and the

third column in our determinant, we obtain 11415351

4323 M . The

algebraic complement of the element is calculated by formula Aij=(–1) ji M

ij.

So, 23A =(–1) 32 11= –11;

b) the triangle rule: the third order determinant is the sum of six terms; terms

with a plus sign are obtained by multiplication of three elements of the determinant

taken by the scheme , terms with a negative sign – by the scheme .

So,

3 4 1

0 2 8 3 2 ( 2) 4 8 1 0 5 ( 1) 1 2 ( 1)

1 5 2

;9812023212)2(04583

c) expansion formula along the third column has the form:

333323231313

333231

232221

131211

AaAaAa

aaa

aaa

aaa

,

20

43)1()2(

51

43)1(8

51

20)1()1(

251

820

143333231

= 2 – 88 – 12= – 98;

similarly calculate the determinant expanding along the second row:

Page 17: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

19

51

43)1(8

21

13)1(2

25

14)1(0

251

820

143322212

.9888100

Task 2. Given matrices А =

123

432

321

, В =

3333

1111, С =

4

3

2

1

.

Find:

а) the product of matrices АВ or ВС, or СВ (if possible). Explain why if it is

impossible;

b) the matrix 1A , the inverse matrix for A.

Solution:

а) the product of matrices AB is possible if the number of columns of matrix

A equals the number of rows of the matrix В. Matrix sizes: А 33 , В 42 , С 14 . So,

А 33 В 42 = 23 – multiplication is impossible. В 42 С 14 = 44 –

multiplication is possible. С 14 В 42 = 21 – multiplication is impossible. Matrix

multiplication BC is a matrix E, the number of rows is equal to the number of rows

of the matrix B, the number of columns equals the number of columns of the matrix

C: nmnkkm EСВ . Element ije of the matrix E is equal to the sum of products

of i-th row of the matrix B for the j-th column of the matrix C.

So, ВС=

3333

1111

4

3

2

1

=

30

10

43332313

41312111,

where 121442 ECB .

And ECB

30

10;

b) an inverse matrix exists for a square matrix A, if the determinant of the

matrix is not equal to zero; and an inverse matrix does not exist if A =0.

Page 18: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

20

The inverse matrix А 1 for matrix А =

333231

232221

131211

aaa

aaa

aaa

is obtained by the

formula

332313

322212

312111

1 1

AAA

AAA

AAA

AA , where A – the determinant of the matrix А;

ijA – the algebraic complement of the elements ija .

Let us find the determinant of the matrix А:

A =

123

432

321

= –30 0, so, А 1 exists.

Let us find the algebraic complements of all elements of the matrix А:

;1013

42)1(;11

12

43)1( 21

12

11

11

АА

;423

21)1(;10

13

31)1(

;812

32)1(;13

23

32)1(

32

23

22

22

12

21

31

13

АА

АА

.732

21)1(

;1042

31)1(;1

43

32)1(

33

33

23

32

13

31

А

АА

Let us form А 1 by the above formula

А 1 = ;

7413

101010

1811

30

1

and then it is need to check:

.

100

010

00111

EAAAA

Task 3. Given points А(7, –9, 3) and В(1, 0, –5); and vectors

)2,1,6(),5,0,1( cb .

Find:

Page 19: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

21

a) the module (length) of the vector ABa and the midpoint of the

segment AB;

b) the projection of the vector a on c ;

c) the area of the parallelogram, obtained from the vectors b and c ;

d) volume of the pyramid constructed from the vectors cba ,, .

Solution:

а) for points A ( 111 ,, zyx ) and B( 222 ,, zyx ) coordinates of the vector a AB

are obtained by the formula a AB = ( 121212 zzyyxx ,, ).

So, a (1–7, 0– (–9), –5–3) = (–6, 9, –8);

The module (length) of the vector а : 2

1

2

1

2

1 zyха .

So, AB =222 )8(9)6( = 181 ;

the midpoint of the segment AB has coordinates

С

222

212121 zzyyxx,, = C

2

35,

2

90,

2

17= С(4, –9/2, –1);

b) the projection of the vector a on c is с

саас

Pr ;

where 313131 zzyyxxсa – scalar product of vectors ),,(),,,( 333111 zyxczyxa .

If vectors a and c are orthogonal, then 0сa .

In our case 43281966 )()(сa , as 0сa , so the

vectors а and с are not orthogonal; calculate more

049,141

43

)2(16

43Pr

222

с

саас

;

c) the area of the parallelogram, obtained from the vectors

),,(),,,( 333222 zyxczyxb , is the module of the vector, received from their

vector product: cbd

; at first find the coordinates:

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3

, ,

i j ky z x z x y y z x z x y

b c x y z i j ky z x z x y y z x z x y

x y z

;

0 5 1 5 1 0

1 0 5 5,32,11 2 6 2 6 1

6 1 2

i j k

b c i j k

;

Page 20: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

22

further find module of the vector:

1050132)5()1,32,5( 222 cbd

;

d) the volume of pyramid constructed from vectors а , b , c , can be found

from a module of their mixed product

333

222

111

6

1

6

1

zyx

zyx

zyx

cbaV

.3

154326

6

1)1830082700(

6

1

216

501

896

6

1

As 0cba , these vectors are not coplanar.

Task 4. Given points А 1 (4, –2), А 2 (8, 1) on a plane and the equation of the

line L 1 : –x + 4y + 5 = 0.

Write the equation of a straight line:

a) )( 212 AAL – passing through these points;

b) 2L – as a general equation of straight line;

c) 2L – in the form of equation of straight line with slope;

d) 2L – in the form of equation of straight line in segments;

e) 3L , passing through the point 2A and perpendicular to 1L .

Solution:

a) the equation of the straight line passing through two points ),( 111 yxМ ,

),( 222 yxМ , is obtained by the formula 12

1

12

1

yy

yy

xx

xx

.

So, equation of the straight line L 2 is )2(1

)2(

48

4

yx or

3

2

4

4

yx;

b) let us write the equation of the straight line L in the general form

Ax + By + C = 0:

3

2

4

4

yx 0204384123 yxyx , (A = 3, B = –4, C = –20).

The geometric meaning of the coefficients: А, В – are coordinates of the

normal (perpendicular) vector of the straight line L , ie 243 L),()В,А(N ;

c) 2L in the form of equation of straight line with slope y = kx + m:

Page 21: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

23

3

2

4

4

yx5

4

32)4(

4

3 xyyx , (k =

4

3, m = –5);

d) 2L in the form of equation of straight line in segments 1b

y

a

x:

1

53/202043

yxyx , ( a = 20/3, b = –5 );

e) the equation of the straight line passing through the point ( 11 , yx ) and

parallel to the vector ),( nmb , has the form: n

yy

m

xx 11

.

If vector 1N = (A;B) = (–1;4) is perpendicular to the straight line 1L and the

straight line 3L is also perpendicular to 1L , then we find in our case that the

directional vector for the straight line 3L is )4;1(),( 1 Nnmb and the

equation has the form 4

1

1

813

yx:LL .

Task 5. Given points А 1 (1, 2, –1), А 2 (3, 3, 2), А 3 (2, –3, 7). It is required to:

a) write the equation of the plane );( 3211 AAAP

b) write 1P as a general equation of a plane;

c) write 1P as equation of a plane in segments;

d) write 1P in a general equation of a plane, passing through the point 1A ;

e) make a canonical equation of the straight line )( 321 AAL ;

f) write a parametric equation of the straight line 1L ;

g) write the equation of the straight line )( 12 NAL perpendicular to the

plane 1P .

Solution:

а) the equation of the plane passing through the points ),,( 1111 zyxМ ,

),,( 2222 zyxМ , ),,( 3333 zyxМ has the form: 0

131313

121212

111

zzyyxx

zzyyxx

zzyyxx

.

Here Р1: 0

851

312

121

0

172312

122313

121

zyxzyx

(*);

b) expanding the determinant in the right-hand side of (*), we obtain the

equation of the plane P1 in the general form Ax + By + Cz + D = 0:

23x – 13y – 11z – 8 = 0, (A = 23, B = –13, C = –11, D = –8).

Page 22: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

24

The geometrical sense of coefficients: А, В, С – are coordinates of a normal

(perpendicular) vector of the plane, ie vector 1111323 P),,(N ;

c) let us move free term –8 in the general equation of plane on the right side

and divide both sides by 8. Obtain the equation of the plane in segments

1c

z

b

y

a

x:

18/ 23 8/13 8/11

x y z

,

where а = 8/23, b= –8/13, с = –8/11 – are sizes of the segments cut off by the plane

on coordinate axes, considering from the origin of coordinates;

d) let us expand the determinant on the left side of (*) along the first row

.0)1(11)2(13)1(23

051

12)1(

81

32)2(

85

31)1(

zyx

zyx

We obtain the equation of plane in the form A(x-x 0 ) + B(y-y 0 ) + C(z-z 0 ) = 0

)1,2,1( 000 zyx ;

e) the canonical equation of the straight line passing through two points

),,( 1111 zyxМ and ),,( 2222 zyxМ , has the form 12

1

12

1

12

1

zz

zz

yy

yy

xx

xx

. So, the

equation of the straight line L 1 has the form 27

2

33

3

32

3

zyx or

5

2

6

3

1

3

zyx;

f) the equation of the straight line in the form p

zz

n

yy

m

xx 000

is

called canonical, where a = (m, n, p) – is the direction vector. In the previous

section we have already found the canonical equations of straight lines. The

equations of the straight line in the form

0

0

0

zptz

ynty

xmtx

are called parametric. To get

the parametric equations of the straight line, we equate the canonical equations to

the parameter t, and from these equalities we find x, y, z.

L 1 : 5

2

6

3

1

3

zyx=

255

2

366

3

31

3

tztz

tyty

txtx

t.

Page 23: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

25

So, the parametric equations of L 1 :

25

326

3

tz

ty

tx

;

g) as 11 )( PNA , so vector 1)11,13,23( PN is the direction vector of

the straight line )( 12 NAL . Then the canonical equation of the straight line

)( 12 NAL has the form:11

1

13

2

23

1

zyx.

Task 6. Solve the system :343

12

yx

yx

a) by Cramer’s method;

b) by matrix method (using the inverse matrix).

Solution:

а) the solution of the system

22221

11211

byaxa

byaxa by Cramer's rule has the form

21 , yx , where

2221

1211

aa

aa – determinant of the system,

222

121

1ab

ab ,

221

111

2ba

ba – auxiliary determinants obtained from the determinant of the system

by replacing the first and second columns by column of free terms.

In this case 1043

21

, 2

43

211

, 633

112

.

So, х = –1/5, у =3/5.

The answer can be written as a vector:

53

51

X ;

b) in matrix form solution of the system

22221

11211

byaxa

byaxa is written as:

BAX 1, where

y

xX – column matrix of unknowns,

2

1

b

bB – column

matrix of free terms, 1A – inverse matrix for the matrix of the system

2221

1211

aa

aaA .

Page 24: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

26

Let us find the inverse matrix (look example 2b) for the matrix of the system

43

21A . As the determinant of the system 010 А , then the inverse

matrix exists and is equal to

13

24

10

11A .

Then

5/3

5/1

3

1

13

24

10

11 BAXy

x. Or the answer in the

usual form: х = –1/5, у = 3/5.

Task 7. Solve the system of equations. :

733

2432

35

321

321

321

xxx

xxx

xxx

a) by Cramer’s method;

b) by matrix method (using the inverse matrix).

Solution:

а) the coefficient matrix of the system is

133

432

511

A , column of free

terms –

7

2

3

В .

Then the solution of the system by Cramer's rule has the form:

3

32

21

1 ,, xxx ,

where 162124530123

133

432

511

is the determinant of the

system,

16

733

232

311

,32

173

422

531

,64

137

432

513

321

auxiliary determinants obtained from the determinant of the system by replacing the

first, second and third column by column of free terms. Finally, we obtain the

solution by Cramer’s method:

Page 25: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

27

116

16,2

16

32,4

16

64 33

22

11

xxx or

1

2

4

3

2

1

х

х

х

X ;

b) in matrix form the solution of the system is written:

7

2

3

133

432

5111

3

2

1

х

х

х

X .

Let us find the inverse matrix (see example 2b) , as 016 А , the

inverse matrix exists and has the form

103

61614

111615

16

1

133

432

5111

1A .

So,

1

2

4

16

32

64

16

1

79

423242

773245

16

1

7

2

3

103

61614

111615

16

11

3

2

1

BA

х

х

х

.

Task 8. Given point А(3, –7); radius of the circle R = 6; a = 2; b = 3 – semi-

axes of curves; D: у = –3 – equation of the straight line. It is required to:

а) write the equation of a circle with center A and radius R;

b) write the canonical equation of an ellipse with semiaxes a = 2 and b = 3.

Find the coordinates of it’s foci and the eccentricity;

c) write the canonical equation of the hyperbola with the real semiaxis a = 2

and imaginary semiaxis b = 3. Find the coordinates of it’s foci, eccentricity,

equations of the asymptotes;

d) write the canonical equation of the parabola with vertex at the origin and if

D: y = –3 is its directrix. Find the coordinates of its focus, eccentricity;

e) make the drawing of ellipse, hyperbola, parabola.

Solution:

а) the equation of a circle centered at 0 0( , )x y with the radius R has the form 22

0

2

0 )()( Ryyxx , So, in our version: 36)7()3( 22 yx ;

b) the canonical equation of an ellipse with semiaxes a and b has the form

12

2

2

2

b

y

a

x; So, in our version: 1

94

22

yx

.

Page 26: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

28

If ba , then 22 bac and points )0,(),0,( 21 cFcF are foci of the

ellipse, and the eccentricity of the ellipse is а

c .

If ab , then 22 abc and ),0(),,0( 21 cFcF ,

b

c .

Since ab in our version then 54922 abc and the

eccentricity equals 3

5

b

c , ( 1 ). Foci lie on the y-axis:

)5,0(),5,0( 21 FF .

Let us draw the ellipse on the coordinate plane (see Figure 1), where

2121 ,,, BBAA – vertices of the ellipse.

Figure 1

c) the canonical equation of hyperbola with real semiaxis a , imaginary

semiaxis b has the form 12

2

2

2

b

y

a

x; with the real semiaxis b and the imaginary

semiaxis a: 12

2

2

2

b

y

a

x or 1

2

2

2

2

b

y

a

x. For hyperbola with real semiaxis a,

eccentricity equals a

c , where

22 bac ; asymptotes of the hyperbola

equation have the form xa

by ; foci are points )0,(),0,( 21 cFcF , located on the

real axis.

By hypothesis a =2, b =3, so the canonical equation of the hyperbola with the

real semiaxis a is 194

22

yx

. For it half-foci distance 1394 c ;

Page 27: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

29

eccentricity equals )1(,2

13

a

c; foci: )0,13(),0,13( 21 FF ; equations

of the asymptotes: xy2

3 .

It is easy to construct a hyperbola as follows: construct a rectangle with sides

byax , (in our case 3,2 yx ). The diagonals of a rectangle are the

asymptotes of the hyperbola, the point of intersection of the rectangle with the real

axis of the hyperbola – vertices of the hyperbola (see Figure 2):

Figure 2

d) by hypothesis, if the directrix of the parabola y = –p/2, then the axis of

symmetry of the parabola with vertex at the origin is the y-axis. Hence, its canonical

equation is pyx 22 ; if the directrix of the parabola x = –p/2, then the axis of

symmetry of the parabola with vertex at the origin is the x-axis. Hence, its canonical

equation has the form pxy 22 . As the directrix of the parabola has the equation у

= –3, then 632

pp

and the equation of the parabola is:

yxyx 1262 22 . The focus of the parabola is the point )2,0(p

F , lying on

the axis of symmetry. In our case, the focus is )3,0(F . Let us construct the parabola

(see Figure 3).

Page 28: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

30

Figure 3

Task 9. Determine the type (name) of the second order surface and make a

schematic drawing:

a) 14212

222

zyx

; b) 0423

222

zyx

.

Solution:

а) 14212

222

zyx

is the canonical equation of one-sheeted hyperboloid

with the symmetry axis Ox. Here its schematic drawing (see Figure 4);

Figure 4

b) 0423

222

zyx

is the canonical equation of the cone of the second

order with the symmetry axis Oz and vertex at the origin. Here its schematic

drawing (see Figure 5);

Page 29: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

31

Figure 5

Task 10. Lead to the canonical form the equation of the second order

0196418169 22 yxyx and construct this curve.

Solution: the equation of the form

1)()(

2

2

0

2

2

0

b

yy

а

xx

defines, respectively, the ellipse or the hyperbola.

The equation of the form: 2

0

2

00

2

0 )(2)(),(2)( xxpyyyypxx

defines the parabola. These curves have symmetry center (for the ellipse and

hyperbola) or vertex of the parabola at the point ),( 00 yxC . To determine the type

of the curve, we apply the method of allocating of perfect squares:

.019)4(16)2(9019)6416()189( 2222 yyxxyyxx

Supplement the terms containing x, and the terms containing y, to complete

the squares:

019)444(16)112(9 22 yyxx ,

0)4(161919)44(16)12(9 22 yyxx ,

36)2(16)1(9 22 yx ,

1)16/(36

)2(

9/36

)1( 22

yx, 1

4/9

)2(

4

)1( 22

yx

,

so we have the hyperbola with center С(–1; –2), real semi-axis b = 3/2 (along the

axis Oy) and the imaginary semi-axis a = 2. Let us construct its schematic drawing

(see Figure 6)

Page 30: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

32

Figure 6

Task 11. Given complex numbers:

).4

sin4

(cos9;99 21

iziz

It is required to find:

а) the module of the complex numbers z1;

b) the argument of the complex number z1;

c) the representation of the complex number z1 in the trigonometric and

exponential forms;

d) the sum of complex numbers z1 and z2 analytically and graphically;

e) (z2)5;

f) multiplication of z1z2 in trigonometric form;

g) all complex roots 32z using De Moivre formula.

Solution:

а) if the complex number in algebraic form is:

,9;9,)9,9(99),( 1 whereiziz

then the module of the complex number z1:

;29)9(9 22

1

22 zorz

b) the argument of the complex number z1:

);09;09(4

19

9)arg()arg( 11

arctgarctgzarctgz

c) in the trigonometric and exponential form complex number has the form:

;)sin(cos iezziz

;29))

4sin()

4(cos(2999 4

1

i

eiiz

Page 31: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

33

d) addition of complex numbers z1 и z2:

;63,236,15)92

29()

2

299()

2

2

2

2(999

),2

2

2

2(9)

4sin

4(cos9

21

2

iiiizz

iiz

e) for calculating (z2)5 we use De Moivre formula:

);2

2

2

2(29))

4

5sin()

4

5(cos(29

;)sin(cos

555

2 iiz

eznnzz ninnn

f) the multiplication of z1z2 in algebraic form is:

;2812

281)1(

2

281

2

281

2

281

2

281

2

281)

2

2

2

2(9)99(

2

2

21

iiiiizz

but multiplication z1z2 in trigonometric form is easily calculated:

;281)0sin0(cos281))

44sin()

44(cos(929

)),sin()(cos(

21

21212121

iizz

izzzz

g) all complex roots of the n-th degree are calculated by De Moivre formula:

.2,1,0,3

24sin

3

24cos29

,1,,3,2,1,0,2

sin2

cos

332

k

k

i

k

z

nkn

ki

n

kzz nn

Write all the roots obtained for all k:

));12

sin12

(cos29))3

4sin3

4(cos29:0 33

1

iizk

));12

9sin

12

9(cos29))

3

24sin

3

24(cos29:1 33

1

iizk

)).

12

17sin

12

17(cos29))

3

44sin

3

44(cos29:2 33

1

iizk

On the graph all the cube roots are located at the vertices of an equilateral

triangle.

Page 32: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

34

Bibliography

1. Khasseinov K.A. Canons of Mathematics. – Moscow: Nauka, 2007. –

592 p. – Almaty, Akbar, 2011 – 592 p., 2nd

edition.

2. Индивидуальные задания по высшей математике: Ч.1 Линейная и

векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление

функции одной переменной/под ред. А.П. Рябушко. – Мн.: Выш. шк., 2007. –

304 с.

3. Индивидуальные задания по высшей математике: Ч.2 Комплексные

числа. Неопределенный и определенный интегралы. Функции нескольких

переменных Обыкновенные дифференциальные уравнения /под ред. А.П.

Рябушко – Мн.: Выш. шк., 2007. – 304 с.

Contents

Introduction 3

Calculation-graphical work. Elements of linear algebra,

analytic geometry and complex numbers 3

Theoretical questions 3

Calculated tasks 3

Solution of an exemplary embodiment 16

Bibliography 32

Page 33: Non-Profit Joint Stock Company ALMATY UNIVERSITY OF …

35

Summary plan 2014, pos.226

Kim Regina Evgenievna

MATHEMATICS 1

Methodological Guidelines and Tasks

for carrying out the calculation-graphical work for students of specialties

5В071700 «Heat power engineering»,

5В071800 «Electrical power engineering»,

5В071900 «Radio engineering, electronics and telecommunications»

Part 1

Editor V.S. Kozlov

Specialist on standardization N.K. Moldabekova

Signed in print _______ Format 60х84 1/16

Circulation 25 copies Typographical paper

Volume 2,1 ed. sheets Ordering_____ Price 1050

Multiple copying Office of

Non-Profit Joint Stock Company

"Almaty University of Power Engineering and Telecommunications"

050013, Almaty, 126 Baytursynov st