on the numerics of 3d kohn-sham system · physical system analytical results numerics outline 1...

59
Physical System Analytical Results Numerics On the Numerics of 3D Kohn-Sham System Kurt Hoke Weierstrass Institute for Applied Analysis and Stochastics Workshop: Mathematical Models for Transport in Macroscopic and Mesoscopic Systems, Feb. 2008 Kurt Hoke On the Numerics of 3D Kohn-Sham System

Upload: others

Post on 18-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

On the Numerics of 3D Kohn-Sham System

Kurt Hoke

Weierstrass Institute forApplied Analysis and Stochastics

Workshop:Mathematical Models for Transport in Macroscopic and

Mesoscopic Systems, Feb. 2008

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 2: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

Outline

1 Physical SystemThe Kohn-Sham System

2 Analytical ResultsExistence and Uniqueness of Solutions

3 NumericsThe Kerkhoven SchemeResults

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 3: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsThe Kohn-Sham System

Outline

1 Physical SystemThe Kohn-Sham System

2 Analytical ResultsExistence and Uniqueness of Solutions

3 NumericsThe Kerkhoven SchemeResults

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 4: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsThe Kohn-Sham System

The System

Poisson equation:

−∇ · (ε∇ϕ) = q(

NA − ND +∑

eξuξ

)on Ω + mixed b.c.

Schrödinger equation:[−~2

2∇(m−1

ξ ∇) + Vξ

]ψl,ξ = El,ξψl,ξ on Ω + hom. Dirichl. b.c.

with carrier density u = (u1, . . . ,uσ), σ ∈ N

uξ(x) =∞∑

l=1

Nl,ξ(Vξ)|ψl,ξ(Vξ)(x)|2

and effective potential

Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕ(u)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 5: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsThe Kohn-Sham System

The System

Poisson equation:

−∇ · (ε∇ϕ) = q(

NA − ND +∑

eξuξ

)on Ω + mixed b.c.

Schrödinger equation:[−~2

2∇(m−1

ξ ∇) + Vξ

]ψl,ξ = El,ξψl,ξ on Ω + hom. Dirichl. b.c.

with carrier density u = (u1, . . . ,uσ), σ ∈ N

uξ(x) =∞∑

l=1

Nl,ξ(Vξ)|ψl,ξ(Vξ)(x)|2

and effective potential

Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕ(u)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 6: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsThe Kohn-Sham System

The System

Poisson equation:

−∇ · (ε∇ϕ) = q(

NA − ND +∑

eξuξ

)on Ω + mixed b.c.

Schrödinger equation:[−~2

2∇(m−1

ξ ∇) + Vξ

]ψl,ξ = El,ξψl,ξ on Ω + hom. Dirichl. b.c.

with carrier density u = (u1, . . . ,uσ), σ ∈ N

uξ(x) =∞∑

l=1

Nl,ξ(Vξ)|ψl,ξ(Vξ)(x)|2

and effective potential

Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕ(u)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 7: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsThe Kohn-Sham System

The System

Poisson equation:

−∇ · (ε∇ϕ) = q(

NA − ND +∑

eξuξ

)on Ω + mixed b.c.

Schrödinger equation:[−~2

2∇(m−1

ξ ∇) + Vξ

]ψl,ξ = El,ξψl,ξ on Ω + hom. Dirichl. b.c.

with carrier density u = (u1, . . . ,uσ), σ ∈ N

uξ(x) =∞∑

l=1

Nl,ξ(Vξ)|ψl,ξ(Vξ)(x)|2

and effective potential

Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕ(u)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 8: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsThe Kohn-Sham System

quasi Fermi-Level and Fermi-Function

occupation factor Nl,ξ(Vξ) given by

Nl,ξ(Vξ) = fξ(El,ξ(Vξ)− EF ,ξ(Vξ))

fξ a distribution function, i.e. Fermi’s function (3D)

f (s) =1

1 + es/kBT

and quasi Fermi-level EF ,ξ(Veff ,ξ) defined∫Ω

uξ(Veff ,ξ(x))dx =∞∑

l=1

Nl,ξ(Veff ,ξ) = Nξ

Nξ being the fixed total number of ξ-type carriers.

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 9: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsThe Kohn-Sham System

quasi Fermi-Level and Fermi-Function

occupation factor Nl,ξ(Vξ) given by

Nl,ξ(Vξ) = fξ(El,ξ(Vξ)− EF ,ξ(Vξ))

fξ a distribution function, i.e. Fermi’s function (3D)

f (s) =1

1 + es/kBT

and quasi Fermi-level EF ,ξ(Veff ,ξ) defined∫Ω

uξ(Veff ,ξ(x))dx =∞∑

l=1

Nl,ξ(Veff ,ξ) = Nξ

Nξ being the fixed total number of ξ-type carriers.

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 10: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

Outline

1 Physical SystemThe Kohn-Sham System

2 Analytical ResultsExistence and Uniqueness of Solutions

3 NumericsThe Kerkhoven SchemeResults

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 11: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

The Particle Density Operator

DefinitionDefine the carrier density operator corresponding to f and m by

N (V )(x) =∞∑

l=1

f (El(V )−EF (V ))|ψl(V )(x)|2 , V ∈ L2(Ω) x ∈ Ω .

El(V ) and ψl(V ) are EV and L2-normalized EF of HV

EF (V ) defined by∫N (V)dx =

∑f (El(V )− EF (V )) = N .

eigenvlue asymptotics of HV and properties of f ensurewell-definedness of EF→ right-hand side series absolutely converges

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 12: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

The Particle Density Operator

DefinitionDefine the carrier density operator corresponding to f and m by

N (V )(x) =∞∑

l=1

f (El(V )−EF (V ))|ψl(V )(x)|2 , V ∈ L2(Ω) x ∈ Ω .

El(V ) and ψl(V ) are EV and L2-normalized EF of HV

EF (V ) defined by∫N (V)dx =

∑f (El(V )− EF (V )) = N .

eigenvlue asymptotics of HV and properties of f ensurewell-definedness of EF→ right-hand side series absolutely converges

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 13: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

The Particle Density Operator

DefinitionDefine the carrier density operator corresponding to f and m by

N (V )(x) =∞∑

l=1

f (El(V )−EF (V ))|ψl(V )(x)|2 , V ∈ L2(Ω) x ∈ Ω .

El(V ) and ψl(V ) are EV and L2-normalized EF of HV

EF (V ) defined by∫N (V)dx =

∑f (El(V )− EF (V )) = N .

eigenvlue asymptotics of HV and properties of f ensurewell-definedness of EF→ right-hand side series absolutely converges

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 14: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

Solution of the Kohn-Sham System

DefinitionSuppose

NA − ND ∈ W−1,2Γ (Ω) , 4Eξ ∈ L2(Ω) , ξ ∈ 1, . . . , σ .

Let ε,m1, . . . ,mσ, f1, . . . , fσ be from L∞(Ω,B(R3,R3)) and ϕΓ

given. Define the external potentials Vξ and the effective dopingD byD = q(NA − ND)− ϕΓ , Vξ = eξqϕΓ − eξ4Eξ , ξ ∈ 1, . . . , σ .

(V ,u1, . . . ,uσ) ∈ W 1,2Γ × (L2(Ω)σ) is a solution of the

Kohn-Sham system, ifAV = D + q

∑ξ

eξuξ ,

uξ = Nξ(Vξ + Vxc,ξ(u) + eξqV ) .

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 15: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

Existence and Uniqueness of Solution without Vxc

Monotonicity and Lipschitz continuity of the Operator A yield theresult:

TheoremThe Schrödinger-Poisson system without exchange-correlationpotential has the unique solution

(V ,N1(V1 + V ), . . . ,Nσ(Vσ + V )) .

the operator assigning the solution V to V = (V1, . . . ,Vσ) is

L : (L2(Ω))σ 7→ W 1,2Γ (Ω) , L(V) = V

L is boundedly Lipschitz continuous

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 16: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

Existence and Uniqueness of Solution without Vxc

Monotonicity and Lipschitz continuity of the Operator A yield theresult:

TheoremThe Schrödinger-Poisson system without exchange-correlationpotential has the unique solution

(V ,N1(V1 + V ), . . . ,Nσ(Vσ + V )) .

the operator assigning the solution V to V = (V1, . . . ,Vσ) is

L : (L2(Ω))σ 7→ W 1,2Γ (Ω) , L(V) = V

L is boundedly Lipschitz continuous

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 17: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

Existence of Solution to the Kohn-Sham System

Definition (Fixed Point Mapping)

Let V = (V1, . . . ,Vσ) ∈ (L2(Ω))σ be a given tupel of externalpotentials and N1 . . . ,Nσ the fixed number of carriers. Define

L1N = u = (u1, . . . ,uσ) : uξ ≥ 0,

∫uξ(x)dx = Nξ

and Φ : L1N 7→ L1

N asΦξ(u) =

(Vξ + Vxc,ξ(u) + eξqL(V1 + Vxc,1(u), . . . ,Vσ + Vxc,σ(u))

)Theorem (Existence of Fixed Point)

If Vxc,ξ is for any ξ ∈ 1, . . . , σ a bounded and continuousmapping from (L1(Ω))σ into L2(Ω), then the mapping Φ has afixed point.

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 18: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

Existence of Solution to the Kohn-Sham System

Definition (Fixed Point Mapping)

Let V = (V1, . . . ,Vσ) ∈ (L2(Ω))σ be a given tupel of externalpotentials and N1 . . . ,Nσ the fixed number of carriers. Define

L1N = u = (u1, . . . ,uσ) : uξ ≥ 0,

∫uξ(x)dx = Nξ

and Φ : L1N 7→ L1

N asΦξ(u) =

(Vξ + Vxc,ξ(u) + eξqL(V1 + Vxc,1(u), . . . ,Vσ + Vxc,σ(u))

)Theorem (Existence of Fixed Point)

If Vxc,ξ is for any ξ ∈ 1, . . . , σ a bounded and continuousmapping from (L1(Ω))σ into L2(Ω), then the mapping Φ has afixed point.

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 19: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

NumericsExistence and Uniqueness of Solutions

Existence of Solution to the Kohn-Sham System

Theorem (Equivalence of Solutions)

u = (u1, . . . ,uσ) is a fixed point of Φ if and only if

(V ,u1, . . . ,uσ) =(

A−1(

D + q∑

eξuξ

),u1, . . . ,uσ

)is a solution of the Kohn-Sham system.

⇒ the Kohn-Sham system always admits a solution.

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 20: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Outline

1 Physical SystemThe Kohn-Sham System

2 Analytical ResultsExistence and Uniqueness of Solutions

3 NumericsThe Kerkhoven SchemeResults

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 21: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

The Mapping T (η) 7→ η

η = (η1, . . . , ησ)

u = eη − δ , δ > 0 constantsolve Poisson’s equation for potential ϕ(u,NA − ND)

obtain Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕsolve EVP for Schrödinger’s equation

[−(~2/2)∇ · (1/mξ∇) + Veff ,ξ]ψl,ξ = El,ξψl,ξ

compute carrier densities

uξ(x) =∑

l

Nl,ξ|ψl,ξ(x)|2

η = log(u + δ)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 22: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

The Mapping T (η) 7→ η

η = (η1, . . . , ησ)

u = eη − δ , δ > 0 constantsolve Poisson’s equation for potential ϕ(u,NA − ND)

obtain Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕsolve EVP for Schrödinger’s equation

[−(~2/2)∇ · (1/mξ∇) + Veff ,ξ]ψl,ξ = El,ξψl,ξ

compute carrier densities

uξ(x) =∑

l

Nl,ξ|ψl,ξ(x)|2

η = log(u + δ)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 23: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

The Mapping T (η) 7→ η

η = (η1, . . . , ησ)

u = eη − δ , δ > 0 constantsolve Poisson’s equation for potential ϕ(u,NA − ND)

obtain Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕsolve EVP for Schrödinger’s equation

[−(~2/2)∇ · (1/mξ∇) + Veff ,ξ]ψl,ξ = El,ξψl,ξ

compute carrier densities

uξ(x) =∑

l

Nl,ξ|ψl,ξ(x)|2

η = log(u + δ)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 24: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

The Mapping T (η) 7→ η

η = (η1, . . . , ησ)

u = eη − δ , δ > 0 constantsolve Poisson’s equation for potential ϕ(u,NA − ND)

obtain Vξ(u) = −eξ4Eξ + Vxc,ξ(u) + eξqϕsolve EVP for Schrödinger’s equation

[−(~2/2)∇ · (1/mξ∇) + Veff ,ξ]ψl,ξ = El,ξψl,ξ

compute carrier densities

uξ(x) =∑

l

Nl,ξ|ψl,ξ(x)|2

η = log(u + δ)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 25: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Properties of T (η)

Solution of Kohn-Sham system is a fixed point of T (η)

δ = 10−14 added to avoid singularity of logarithm at zeroadditional smoothness of logarithm improves convergencepure iteration scheme may or may not convergestabilization and acceleration needed

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 26: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Properties of T (η)

Solution of Kohn-Sham system is a fixed point of T (η)

δ = 10−14 added to avoid singularity of logarithm at zeroadditional smoothness of logarithm improves convergencepure iteration scheme may or may not convergestabilization and acceleration needed

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 27: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Properties of T (η)

Solution of Kohn-Sham system is a fixed point of T (η)

δ = 10−14 added to avoid singularity of logarithm at zeroadditional smoothness of logarithm improves convergencepure iteration scheme may or may not convergestabilization and acceleration needed

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 28: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Heuristic Motivation via Gummel’s Method

Gummel’s method→ originally for the drift-diffusion modelKerkhoven analyzed qualitative behavior→ converges while sufficiently far away from solution→ slows down when approaching to the solutionopposite to Newton’s methodthis behavior is due to the ellipticity of the involvedequations→ true for the quantum-mechanical system as well

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 29: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Heuristic Motivation via Gummel’s Method

Gummel’s method→ originally for the drift-diffusion modelKerkhoven analyzed qualitative behavior→ converges while sufficiently far away from solution→ slows down when approaching to the solutionopposite to Newton’s methodthis behavior is due to the ellipticity of the involvedequations→ true for the quantum-mechanical system as well

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 30: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Heuristic Motivation via Gummel’s Method

Gummel’s method→ originally for the drift-diffusion modelKerkhoven analyzed qualitative behavior→ converges while sufficiently far away from solution→ slows down when approaching to the solutionopposite to Newton’s methodthis behavior is due to the ellipticity of the involvedequations→ true for the quantum-mechanical system as well

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 31: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Stabilization and Acceleration of T (η)

Stabilization:pure appliance of T (η) causes convergence instabilitiesstabilize through adaptive underrelaxation→ fixed point iteration T (η) = η

until ’close’ to the solutionAcceleration:

accelerate convergence by employing Newton’s method→ root-finding problem T (η)− η = 0Jacobian-free version based on GMRESuntil convergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 32: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Stabilization and Acceleration of T (η)

Stabilization:pure appliance of T (η) causes convergence instabilitiesstabilize through adaptive underrelaxation→ fixed point iteration T (η) = η

until ’close’ to the solutionAcceleration:

accelerate convergence by employing Newton’s method→ root-finding problem T (η)− η = 0Jacobian-free version based on GMRESuntil convergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 33: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Adaptive Underrelaxation

initialize: ω = 1, choose η0, set η−1 = 0 and η−2 = η0

Iterate on i : if

‖T (ηi)− ηi‖‖T (ηi−1)− ηi−1‖

>‖T (ηi−1)− ηi−1‖‖T (ηi−2)− ηi−2‖

then

ω := ω ∗ 0.8 , ω′ := min(ω,‖T (ηi−1)− ηi−1‖‖T (ηi)− ηi‖

)

ηi+1 = ω′T (ηi) + (1− ω′)ηi

until convergence→ or ω decreases 5 times in a row→ or ω remains constant 10 times in a row

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 34: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Adaptive Underrelaxation

initialize: ω = 1, choose η0, set η−1 = 0 and η−2 = η0

Iterate on i : if

‖T (ηi)− ηi‖‖T (ηi−1)− ηi−1‖

>‖T (ηi−1)− ηi−1‖‖T (ηi−2)− ηi−2‖

then

ω := ω ∗ 0.8 , ω′ := min(ω,‖T (ηi−1)− ηi−1‖‖T (ηi)− ηi‖

)

ηi+1 = ω′T (ηi) + (1− ω′)ηi

until convergence→ or ω decreases 5 times in a row→ or ω remains constant 10 times in a row

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 35: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Adaptive Underrelaxation

initialize: ω = 1, choose η0, set η−1 = 0 and η−2 = η0

Iterate on i : if

‖T (ηi)− ηi‖‖T (ηi−1)− ηi−1‖

>‖T (ηi−1)− ηi−1‖‖T (ηi−2)− ηi−2‖

then

ω := ω ∗ 0.8 , ω′ := min(ω,‖T (ηi−1)− ηi−1‖‖T (ηi)− ηi‖

)

ηi+1 = ω′T (ηi) + (1− ω′)ηi

until convergence→ or ω decreases 5 times in a row→ or ω remains constant 10 times in a row

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 36: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Acceleration by Newton’s Method

Reformulation: ηi+1 = T (ηi) η − T (η) = 0Newton:→ requires solution of linear system

[I −∇ηT (ηi)]dη = −[ηi − T (ηi)]

∇ηT (ηi) is the Jacobian matrix of T at ηi→ not known explicitlysolve system without generating the Jacobian→ nonlinear version of GMRES (NLGMR)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 37: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Acceleration by Newton’s Method

Reformulation: ηi+1 = T (ηi) η − T (η) = 0Newton:→ requires solution of linear system

[I −∇ηT (ηi)]dη = −[ηi − T (ηi)]

∇ηT (ηi) is the Jacobian matrix of T at ηi→ not known explicitlysolve system without generating the Jacobian→ nonlinear version of GMRES (NLGMR)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 38: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Acceleration by Newton’s Method

Reformulation: ηi+1 = T (ηi) η − T (η) = 0Newton:→ requires solution of linear system

[I −∇ηT (ηi)]dη = −[ηi − T (ηi)]

∇ηT (ηi) is the Jacobian matrix of T at ηi→ not known explicitlysolve system without generating the Jacobian→ nonlinear version of GMRES (NLGMR)

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 39: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Derivative-free GMRES

Solution of Newton’s equation equivalent to minimizationover dη of

‖(I − T )(ηi) + [I −∇ηT (ηi)]dη‖2

GMRES: find approximate solution in Krylov subspace

Km = spanv1, [I −∇ηT (ηi)]v1, . . . , [I −∇ηT (ηi)]m−1v1

ONB of Km easily gained by Arnoldi process, providedv 7→ [I −∇ηT (ηi)]v is available∇ηT (ηi) never needed explicitly→ only matrix-vector multiplication ∇ηT (ηi)vapproximate by:

∇ηT (ηi)v ≈T (ηi + hv)− T (ηi)

h

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 40: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Derivative-free GMRES

Solution of Newton’s equation equivalent to minimizationover dη of

‖(I − T )(ηi) + [I −∇ηT (ηi)]dη‖2

GMRES: find approximate solution in Krylov subspace

Km = spanv1, [I −∇ηT (ηi)]v1, . . . , [I −∇ηT (ηi)]m−1v1

ONB of Km easily gained by Arnoldi process, providedv 7→ [I −∇ηT (ηi)]v is available∇ηT (ηi) never needed explicitly→ only matrix-vector multiplication ∇ηT (ηi)vapproximate by:

∇ηT (ηi)v ≈T (ηi + hv)− T (ηi)

h

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 41: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Derivative-free GMRES

Solution of Newton’s equation equivalent to minimizationover dη of

‖(I − T )(ηi) + [I −∇ηT (ηi)]dη‖2

GMRES: find approximate solution in Krylov subspace

Km = spanv1, [I −∇ηT (ηi)]v1, . . . , [I −∇ηT (ηi)]m−1v1

ONB of Km easily gained by Arnoldi process, providedv 7→ [I −∇ηT (ηi)]v is available∇ηT (ηi) never needed explicitly→ only matrix-vector multiplication ∇ηT (ηi)vapproximate by:

∇ηT (ηi)v ≈T (ηi + hv)− T (ηi)

h

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 42: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Adaption of NLGMR

adjust accuracy of solution to Newton’s method adaptively→ vary number m of steps in NLGMRη0 : current approximate solution to η − T (η) = 0ηm : solution after m steps of GMRESnonlinear residual:

resnl = ηm − T (ηm)

linear residual:

reslin = η0 − T (η0) + [I −∇ηT (η0)](ηm − η0)

nonlinearity mild ⇒ ‖resnl‖ ≈ ‖reslin‖‖resnl‖ 6 ≈‖reslin‖→ linearized model not good→ accurate solution of Newton’s method wasteful

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 43: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Adaption of NLGMR

adjust accuracy of solution to Newton’s method adaptively→ vary number m of steps in NLGMRη0 : current approximate solution to η − T (η) = 0ηm : solution after m steps of GMRESnonlinear residual:

resnl = ηm − T (ηm)

linear residual:

reslin = η0 − T (η0) + [I −∇ηT (η0)](ηm − η0)

nonlinearity mild ⇒ ‖resnl‖ ≈ ‖reslin‖‖resnl‖ 6 ≈‖reslin‖→ linearized model not good→ accurate solution of Newton’s method wasteful

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 44: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Adaption of NLGMR

adjust accuracy of solution to Newton’s method adaptively→ vary number m of steps in NLGMRη0 : current approximate solution to η − T (η) = 0ηm : solution after m steps of GMRESnonlinear residual:

resnl = ηm − T (ηm)

linear residual:

reslin = η0 − T (η0) + [I −∇ηT (η0)](ηm − η0)

nonlinearity mild ⇒ ‖resnl‖ ≈ ‖reslin‖‖resnl‖ 6 ≈‖reslin‖→ linearized model not good→ accurate solution of Newton’s method wasteful

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 45: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Adaption of NLGMR

adjust accuracy of solution to Newton’s method adaptively→ vary number m of steps in NLGMRη0 : current approximate solution to η − T (η) = 0ηm : solution after m steps of GMRESnonlinear residual:

resnl = ηm − T (ηm)

linear residual:

reslin = η0 − T (η0) + [I −∇ηT (η0)](ηm − η0)

nonlinearity mild ⇒ ‖resnl‖ ≈ ‖reslin‖‖resnl‖ 6 ≈‖reslin‖→ linearized model not good→ accurate solution of Newton’s method wasteful

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 46: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Resulting NLGMR Iteration

set m = 2get initial guess η0 for carrier densityemploy m steps of GMRES:→ yields ηm

adapt m:→ 2

3 ≤ ‖resnl‖/‖reslin‖ ≤ 32 ⇒ m := min(2m,25)

→ 32 ≤ ‖resnl‖/‖reslin‖ ≤ 5 ⇒ m := m

→ else m := max(2,m/2)

perform linesearch for stepsize τ→ guarantee decrease of ‖(η0 + τdη)− T (η0 + τdη)‖until convergence→ form of Newton’s method ⇒ quadratic rate ofconvergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 47: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Resulting NLGMR Iteration

set m = 2get initial guess η0 for carrier densityemploy m steps of GMRES:→ yields ηm

adapt m:→ 2

3 ≤ ‖resnl‖/‖reslin‖ ≤ 32 ⇒ m := min(2m,25)

→ 32 ≤ ‖resnl‖/‖reslin‖ ≤ 5 ⇒ m := m

→ else m := max(2,m/2)

perform linesearch for stepsize τ→ guarantee decrease of ‖(η0 + τdη)− T (η0 + τdη)‖until convergence→ form of Newton’s method ⇒ quadratic rate ofconvergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 48: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Resulting NLGMR Iteration

set m = 2get initial guess η0 for carrier densityemploy m steps of GMRES:→ yields ηm

adapt m:→ 2

3 ≤ ‖resnl‖/‖reslin‖ ≤ 32 ⇒ m := min(2m,25)

→ 32 ≤ ‖resnl‖/‖reslin‖ ≤ 5 ⇒ m := m

→ else m := max(2,m/2)

perform linesearch for stepsize τ→ guarantee decrease of ‖(η0 + τdη)− T (η0 + τdη)‖until convergence→ form of Newton’s method ⇒ quadratic rate ofconvergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 49: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Resulting NLGMR Iteration

set m = 2get initial guess η0 for carrier densityemploy m steps of GMRES:→ yields ηm

adapt m:→ 2

3 ≤ ‖resnl‖/‖reslin‖ ≤ 32 ⇒ m := min(2m,25)

→ 32 ≤ ‖resnl‖/‖reslin‖ ≤ 5 ⇒ m := m

→ else m := max(2,m/2)

perform linesearch for stepsize τ→ guarantee decrease of ‖(η0 + τdη)− T (η0 + τdη)‖until convergence→ form of Newton’s method ⇒ quadratic rate ofconvergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 50: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Resulting NLGMR Iteration

set m = 2get initial guess η0 for carrier densityemploy m steps of GMRES:→ yields ηm

adapt m:→ 2

3 ≤ ‖resnl‖/‖reslin‖ ≤ 32 ⇒ m := min(2m,25)

→ 32 ≤ ‖resnl‖/‖reslin‖ ≤ 5 ⇒ m := m

→ else m := max(2,m/2)

perform linesearch for stepsize τ→ guarantee decrease of ‖(η0 + τdη)− T (η0 + τdη)‖until convergence→ form of Newton’s method ⇒ quadratic rate ofconvergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 51: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Summary of the Algorithm

take initial guessperform adaptive underrelaxationuntil ’close’ to the solutionperform NLGMR method→ Newton’s method; derivative-free GMRESuntil convergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 52: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Summary of the Algorithm

take initial guessperform adaptive underrelaxationuntil ’close’ to the solutionperform NLGMR method→ Newton’s method; derivative-free GMRESuntil convergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 53: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Summary of the Algorithm

take initial guessperform adaptive underrelaxationuntil ’close’ to the solutionperform NLGMR method→ Newton’s method; derivative-free GMRESuntil convergence

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 54: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Outline

1 Physical SystemThe Kohn-Sham System

2 Analytical ResultsExistence and Uniqueness of Solutions

3 NumericsThe Kerkhoven SchemeResults

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 55: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

General

Implementation:

in the Framework of WIAS-pdelib2 (C++)→ www.wias-berlin.de/software/pdelib

Discretization:

Finite Volume Method→ TetGen: Tetrahedral Mesh Generator and 3D DelaunayTriangulator (tetgen.berlios.de)

Eigenvalues:

ARPACK: Large Scale Eigenvalue Solver→ www.caam.rice.edu/software/ARPACK

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 56: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Grid

4 regions, 70230 cells, 6 bregions 9905 bfaces

Input: 320 points, 172 faces, 4 regions, 6 bregionsOutput: 4 regions, 12381 points, 70230 cells, 6 bregions,9905 bfaces

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 57: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Single Electron

f

-8.52e-26

+0.243

+0.487

+0.73

+0.973

+1.22

+1.46

+1.7

+1.95

+2.19

+2.43f

-8.52e-26

+0.243

+0.973

+1.22

+1.46

+1.7

+1.95

+2.19

+2.43

+0.496

cpu seconds stepstotal 1410 17underrelaxed 100 9Newton 1310 8

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 58: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

Residual Evolution

0 2 4 6 8 10 12 14 16 1810

−12

10−10

10−8

10−6

10−4

10−2

100

102

104

106

iteration steps

resi

dual

||

.||1

Kurt Hoke On the Numerics of 3D Kohn-Sham System

Page 59: On the Numerics of 3D Kohn-Sham System · Physical System Analytical Results Numerics Outline 1 Physical System The Kohn-Sham System 2 Analytical Results Existence and Uniqueness

Physical SystemAnalytical Results

Numerics

The Kerkhoven SchemeResults

A.T. Galick, T. Kerkhoven, U. Ravaioli, J.H. Arends, Y. SaadEfficient numerical simulation of electron states in quantumwires.J. Appl. Phys., 68(7):3461-3469, 1990

Kurt Hoke On the Numerics of 3D Kohn-Sham System