outline - university of california, davisbbaas/dissertation/orals...source: sia roadmap year 1995...

23
1 An Approach to Low-power, High-performance, Fast Fourier Transform Processor Design Bevan Baas Department of Electrical Engineering [email protected] http://nova.stanford.edu/~bbaas/ May 23, 1997 Outline l Motivation and Introduction Motivation and Introduction l Energy-Efficient VLSI Processing l Fast Fourier Transform Overview l FFT Chip Architectures l The Spiffee Processor l Conclusion

Upload: others

Post on 19-Dec-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

1

An Approach to Low-power, High-performance,

Fast Fourier Transform Processor Design

Bevan BaasDepartment of Electrical Engineering

[email protected]

http://nova.stanford.edu/~bbaas/

May 23, 1997

Outline

ll Motivation and IntroductionMotivation and Introductionl Energy-Efficient VLSI Processing

l Fast Fourier Transform Overview

l FFT Chip Architectures

l The Spiffee Processor

l Conclusion

Page 2: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

2

The Fast Fourier Transform (FFT)

l One of the most widely used digital signal processing algorithms

l Used in:u Communicationsu Radaru Instrumentationu Medical imaging

Low Power

l As semiconductor processing technology advances....u Clock speeds increase

u Integration increases Power increases

l More and more applications are power-limitedSource: SIA Roadmap

Year 1995 1998 2001 2004 2007Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µmVdd 3.3 V 2.5 V 1.8 V 1.5 V 1.2 VClock 300 MHz 450 MHz 600 MHz 800 MHz 1000 MHzPower 80 W 100 W 120 W 140 W 160 W

Page 3: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

3

Areas of Contribution

l FFT algorithm and architecture for high energy-efficiency and high-performance

l Circuits for low voltage operation

l Design of a single-chip, 1024-point, FFT processor

Outline

l Motivation and Introduction

ll Energy-Efficient VLSI ProcessingEnergy-Efficient VLSI Processingl Fast Fourier Transform Overview

l FFT Chip Architectures

l The Spiffee Processor

l Conclusion

Page 4: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

4

CMOS Power Consumption

l Power = Pactive + Pleakage + Pshort-circuit

l Pactive = ∑ activity * C * V2 * frequencyall nodes

Active

Short-circuit

Leakage

C LOAD

Energy-Efficiency

l Goal is energy-efficiency with good performanceu Not just low-power, which can be easily obtained by

reducing performance

l For DSP, high energy-efficiency is keyu Algorithms are often easily parallelizedu Often insensitive to latencyu Therefore, high-performance can usually be obtained

through parallel processors

Page 5: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

5

Ultra Low Power (ULP) Overview

l Key idea: Biggest gain by lowering supply voltageu Switching energy is a strong function of V2

l To maintain performance, must also lower Vt

u Lowering Vt significantly requires a process change

l Adjust Vt by biasing substrate/wellsu Substrate/well nodes

routed to padsVnwellVpsub

0 0.25 0.5 0.75 1 1.25 1.50

0.25

0.5

0.75

1

1.25

1.5

Ids

(uA

/um

)

Vgs (V)

0 0.25 0.5 0.75 1 1.25 1.50

0.1

0.2

0.3

0.4

-Ids

(uA

/um

)

-Vgs (V)

Measured Vt Adjustments

l Vt shifted by adjusting nwell/p-substrate bias

PMOS FET

NMOS FET

Bias reduces Vt

Well / Substrate NMOS PMOSBias Vt Vt

(Volts) (Volts) (Volts)0.0 V 0.63 -0.880.5 V 0.43 -0.77

Page 6: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

6

ULP Implications

l Circuits operate with ÒleakyÓ transistors (low ratio)

l Static circuits generally ok

l No pure dynamic circuits, nmos pass gates,....

l Redesign high fan-in circuits

IoffIon

IonIoff

Low Vt Design

l Nodes with high fan-in require re-design

l Memory bitline is a common structure with high fan-in

l Worst case: Reading a Ô0Õ in a column with M-1 Ô1Õs

0

1

1

SA

wordlineon

1

Page 7: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

7

Hierarchical-Bitline SRAM

l 2-level hierarchical bitlinesu Reduces cell leakage on

bitlinesu Reduces bitline capac-

itance by almost 50%

l 8 Local-bitlines x 16 cells each

l 3 Separate nwell biases

gbl

lbl lbl_gbl_

wordlinelbl_sel_

lbl_sel

keeper_

prechg_

Vbp_sanwell

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

000.

0E+

0

2.0E

-9

4.0E

-9

6.0E

-9

8.0E

-9

10.0

E-9

12.0

E-9

14.0

E-9

16.0

E-9

18.0

E-9

20.0

E-9

22.0

E-9

24.0

E-9

26.0

E-9

Time

Vol

tage

wordline

Simulation Results

l 128 word memory, Vdd=300mV, parasitics included

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

000.

0E+

0

2.0E

-9

4.0E

-9

6.0E

-9

8.0E

-9

10.0

E-9

12.0

E-9

14.0

E-9

16.0

E-9

18.0

E-9

20.0

E-9

22.0

E-9

24.0

E-9

26.0

E-9

Time

Vol

tage

wordline

Non-hierarchical bitlineread failure

Hierarchical bitlineread

prechg_ prechg_

bl

bl_

gbl_

gbl

Page 8: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

8

Outline

l Motivation and Introduction

l Energy-Efficient VLSI Processing

ll Fast Fourier Transform OverviewFast Fourier Transform Overviewl FFT Chip Architectures

l The Spiffee Processor

l Conclusion

The Fast Fourier Transform (FFT)

l Efficient method of calculating the Discrete Fourier Transform (DFT)

l Believed discovered by Gauss in 1805

l Re-discovered by Cooley and Tukey in 1965

l N = length of transform, must be compositeu N = N1 * N2 * ... * Nm

Transform DFT FFT DFT ops /Length Operations Operations FFT ops

64 4,096 384 11256 65,536 2,048 32

1,024 1,048,576 10,240 10265,536 4,294,967,296 1,048,576 4,096

Page 9: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

9

FFT Notation

l Butterfly

l Dataflow diagram

X

Y

A

B

stage0 stage1 stage2 stage3 stage4 stage5

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60 63

FFT Hardware Algorithms

l Simple, compact design more important than the number of operations

l Nearly all modern FFT processors use common-factor, radix-2m processors

Processor ArchitectureLSI, L64280 radix-2Plessey, PDSP16510A radix-4 Dassault Electronique radix-4Cobra, Colorado State radix-4 CNET, E. Bidet radix-2,4

Page 10: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

10

Outline

l Motivation and Introduction

l Energy-Efficient VLSI Processing

l Fast Fourier Transform Overview

ll FFT Chip ArchitecturesFFT Chip Architecturesl The Spiffee Processor

l Conclusion

Common FFT Architectures

l Single memory

l Dual memory (ping-pong)

l Pipelinedu Logr N stages

l Array

P M

P PB PB....B

P MM

P,B

P,B

P,B

P,B

Page 11: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

11

Cached Memory

l Small cache used to hold frequently-used data

l Cache sizeu E = Number of ÒEpochsÓ or passes through the data

l Partition processor based on activityu High activity: processor, cacheu Low activity: main memoryu Reduce leakage in low activity portion by increasing Vt

CNE

=

2 2

log

P MC

Cached Memory Algorithm

l Previous Caching algorithmsu Gentleman and Sande, 1966u Singleton, 1967u Brenner, 1969u Rabiner and Gold, 1975u Bailey, 1990u Carlson, 1990

l ProcessorÕs view: Fast, large memory

l MemoryÕs view: Very large radix processoru Similar to Radix N1/E

l Especially good algorithm for large N

Page 12: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

12

Radix-2 Decimation-in-time Dataflow

MemoryLocations

stage0 stage1 stage2 stage3 stage4 stage5

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60 63

Radix-2 Decimation-in-time Cached FFT Dataflow Diagram

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60 63

C = 8 words

Page 13: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

13

Outline

l Motivation and Introduction

l Energy-Efficient VLSI Processing

l Fast Fourier Transform Overview

l FFT Chip Architectures

ll The Spiffee ProcessorThe Spiffee Processorl Conclusion

Design Goals

l 1024 complex point FFT processor

l Single-chip

l Deep pipelining

l Functional and good performance at low Vdd (400mV), low Vt (0V)

l Robust circuits to operate in a possibly noisy environment

Page 14: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

14

Algorithm

l Radix-2u One butterfly / cycle

n 1 complex multiply and 2 complex add/subtracts 4 multiplies and 6 adds

l Cached FFT Algorithmu Mem = 1024 words x 36 bitsu C = 10241/2 = 32 words x 40 bits

l Non-iterative datapathu High usage good area efficiency

X = A + BW

Y = A - BW

A

B W

Block Diagram

l SRAM Arrays (8)u Hierarchical bitlines, 6T cells,

128 x 36-bit

l Caches (4)u Dual-ported, 10T cells,

16 x 40-bit

l Multipliers (4)u 20-bit x 20-bit, 24-bit product

2Õs complement

l Adder/Subtractors (6)u 24-bit, CLA-Ripple

l ROMs (2)u Hierarchical bitlines, 256 x 40-bit

ChipController

16 x 40-bitCache

Clock

20-bit Multiplier

24-bit Adder

256 x 40-bit ROM

8 bank x 128 x 36-bitSRAM

I/O Interface

16 x 40-bitCache

16 x 40-bitCache

16 x 40-bitCache

20-bit Multiplier

20-bit Multiplier

20-bit Multiplier

24-bit Adder

24-bit Adder

24-bit Adder

24-bit Adder

24-bit Adder

256 x 40-bit ROM

Note: For clarity, not all buses shown.

= Crossbar or Mux

Page 15: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

15

Pipeline Diagram

l 9-stage pipeline

l Throughput of one complex butterfly per cycle

l Stall 1 out of every 80 cycles due to Read-after-Write hazard

MEM CROSSB MULT1 MULT2 MULT3 ADD/SUBCMULT

ADD/SUBXY

CROSSB MEMRD RD WR WR

ABW

B x WX = A+BW

Y = A-BW

X

Y

Clocking

l Single-phase clock

l Each flip-flop contains minimum-size local clock buffers

l Selectable on-chip programmable oscillator or external clock

f

f

f

f

f

Clock

DataIn DataOut

f

f

f

f

f

Page 16: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

16

Spiffee

l 460,000 transistors

l 5.985mm x 8.204mm (0.7mm design rules, Lpoly=0.6mm)

l Vtn = 0.63V, Vtp = -0.88V

l 1 poly, 3 metal layers

l Full custom

l 650-element scan path

Energy-Efficiency Comparison

l 17 times more efficient @ 1.1VYear CMOS Datapath Supply 1024-pt Power Clock Number Adjusted

Processor Tech width Voltage Exec Time of chips transforms(mm) (bits) (V) (msec) (mW) (MHz) / mJ *

LSI, L64280 1990 1.5 20 5 26 20,000 40 20 11Plessey, PDSP16510A 1989 1.4 16 5 96 3,000 40 1 12Dassault Electronique 1990 1 12 5 128 12,000 20 6 1Texas Mem Sys, TM-66 - 0.8 32 5 65 7,000 50 3 16Cobra, Colorado State 1994 0.75 23 5 9.5 7,700 40 16 49Sicom, SNC960A 1996 0.6 16 5 20 2,500 65 1 29CNET, E. Bidet 1994 0.5 10 3.3 51 330 20 1 30Spiffee1 1995 0.7 20 1.1 330 9.5 16 1 819Spiffee1 1995 0.7 20 3.3 30 845 173 1 101

Power * Exec_Time* Adjusted_transforms_per_mJ =

Tech * ( (DPath*2/3) + (DPath2*1/3) )10

Page 17: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

17

0.5 0.6 0.8 1 1.2 1.4 1.50

25

50

75

100

125

150

175

200

Technology (um)

Clo

ck F

requ

ency

(M

Hz)

Clock Speed Comparison

l Caching algorithm allows deep pipelining and high performance

Spiffee @ 3.3V

Energy x Time

No Bias 0.5V Bias

1 1.5 2 2.5 3 3.30

0.02

0.04

0.06

0.08

0.1

Supply Voltage (V)

Ene

rgy

x T

ime

(fJ-

sec)

Page 18: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

18

Improvements Using Well/Substrate Biasing

FrequencyEnergy

0.5 1 1.5 2 2.50.75

1

1.25

1.5

1.75

2

Supply Voltage (V)

Rat

io:

with

Bia

s / n

oBia

s

Estimated Performance in a Low-Vt Process

l Portions of Spiffee were fabricated in a low-Vt 0.8mm process with Lpoly=0.26mm and included an identical programmable oscillator

l Measurements predict at Vdd=0.4V:u 57MHz @ less than 9.7mWu 1024-pt FFT in 93msecu More than 66 times more efficient than previously best known

OSC

OSC

High Vt

Low Vt

Page 19: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

19

Example Input - Output

l Input = cos(2p*23/N) + sin(2p*83/N) + cos(2p*211/N) - j sin(2p*211/N)

-512 -384 -256 -128 0 128 256 384 512-1

0

1x 10

5

Inpu

t

-512 -384 -256 -128 0 128 256 384 512-2

0

2

x 107

FF

T -

Mat

lab

-512 -384 -256 -128 0 128 256 384 512-2

0

2

x 104

FF

T -

Spi

ffee

Outline

l Motivation and Introduction

l Energy-Efficient VLSI Processing

l Fast Fourier Transform Overview

l FFT Chip Architectures

l The Spiffee Processor

ll ConclusionConclusion

Page 20: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

20

Contributions

l FFT caching algorithm for high energy-efficiency

l Hierarchical-bitline SRAM and ROM memories for low-Vt operation

l Design of a 1024-point, single-chip, full-custom, FFT processoru Fabricated and fully functional on first-pass siliconu 17 times more efficient than the previously most

efficient knownu Functional at 173MHz @ 3.3V

ULPAcc

l 16-word x 24-bit dual-ported memory

l 24-bit accumulator

l On-chip controller and oscillator

l 11,700 transistors

Page 21: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

21

Srambb

l 128-word x 36-bit array

l On-chip controller, buffers, and oscillator

l 46,200 transistors

Multbb

l 20-bit x 20-bit multiplier

l On-chip controller, buffers, and oscillator

l 28,500 transistors

Page 22: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

22

Other Projects and Publications

l Memory optimizing simulator

l MCM Test Chip

l Publicationsu B. M. Baas, ÒAn Energy-Efficient Single-Chip FFT Processor,Ó Proceedings of the

1996 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 13-15 June 1996.u J. B. Burr, Z. Chen, B. M. Baas; ÒStanford Ultra-Low-Power CMOS Technology and

Applications,Ó in Low-power HF Microelectronics, a Unified Approach. Stevage, UK: The Institution of Electrical Engineers, 1996.

u B. M. Baas, ÒAn Energy-Efficient FFT Processor Architecture,Ó StarLab Technical Report NGT-70340-1994-1, January 25, 1994.

u B. M. Baas, ÒA Pipelined Memory System For an Interleaved Processor,Ó StarLab Technical Report NSF-GF-1992-1, June 18, 1992.

Future Work

l Investigate multiple datapath/cache pair systems

l Investigate multiple processor systems

l Modify Spiffee to be usable in a system

l Possible commercialization

Page 23: Outline - University of California, Davisbbaas/dissertation/Orals...Source: SIA Roadmap Year 1995 1998 2001 2004 2007 Technology 0.35µm 0.25µm 0.18µm 0.13µm 0.10µm Vdd 3.3 V 2.5

23

Acknowledgements

u Parents and familyu Advisors and mentors

n Prof. Len Tyler, Prof. Kunle Olukotun, Prof. Allen Peterson,Jim Burr, Masataka Matsui

u Other facultyn Prof. Don Cox, Prof. Thomas Cover, Prof. Teresa Meng

u Colleaguesn Vjekoslav Svilan, Yenwen Lu, Gerard Yeh, Ely Tsern, Jim Burnham,

Birdy Amrutur, Gu-Yeon Wei, Dan Weinlade, STARLab members

u Supportn Michael Godfrey, Marli Williams, Doris Reedn NSF, NASA, MOSIS, AISES-GE, Texas Instruments, Sun