paola%andreani,edwin%retana1montenegro, zhi1yu%zhang ... · gravitational lenses paola%andreani...
Embed Size (px)
TRANSCRIPT
-
Paola Andreani, Edwin Retana-‐Montenegro,Zhi-‐Yu Zhang, Padelis Papadopoulos, Chentao Yang, Simona Vegetti
Paola AndreaniAPEX Band5, ESO, Feb 1-‐3
-
Gravitational Lenses
Paola Andreani
HATLAS SDP FIELD
Negrello et al., 2007, 2010
-
Gravitational Lenses
Paola Andreani
HATLAS SDP FIELD
Canalog+, 2015
Keck K-‐band
Ma+,2015Keck K-‐band + IRAC
-
A zoomed view on G12v2.43
Paola Andreani
11h35m20s24s28s32s
RA (J2000)
4800000
4700000
4600000
4500000
�1�4400000
Dec
(J20
00)
APEX Band5, ESO, Feb 1-‐3
-
Paola AndreaniAPEX Band5, ESO, Feb 1-‐311h45m40s46m00s20s40s47m00s20s
RA (J2000)
2400000
1800000
1200000
�0�0600000
+0�0000000
Dec
(J20
00)
Zooming into G12v2.30
H2O1mm
-
13h29m30s30m00s30s31m00s
RA (J2000)
+24�4800000
5400000
+25�0000000
0600000
1200000
Dec
(J20
00)
Zooming into NBv1.78
Paola AndreaniAPEX Band5, ESO, Feb 1-‐3
H2O1mm
-
APEX Band5, ESO, Feb 1-‐3 Paola Andreani
-
• 3P fine structure [CI] lines • @ 492.2 and 809.3 GHz • nc ~ 500 and 103 cm-‐3 • Optical thin
• well mixed with all the CO-‐rich H2 à a good H2 bulk mass tracer (Papadopoulos et al. 2004)
• positive K correction at high z's over the low-‐J CO lines • Trace the CO invisible H2 gas where Cosmic Rays from SN destroy CO and leave behind C (Bisbas et al. 2015) • less affected by the CMB effect
APEX Band5, ESO, Feb 1-‐3 Paola Andreani
-
• 3P fine structure [CI] lines • @ 492.2 and 809.3 GHz • nc ~ 500 and 103 cm-‐3 • Optical thin
• well mixed with all the CO-‐rich H2 à a good H2 bulk mass tracer (Papadopoulos et al. 2004)
• positive K correction at high z's over the low-‐J CO lines • Trace the CO invisible H2 gas where Cosmic Rays from SN destroy CO and leave behind C (Bisbas et al. 2015) • less affected by the CMB effect
APEX Band5, ESO, Feb 1-‐3 Paola Andreani
Zhang et al., 2016
-
• ISM energy supply : few CO lines (high-‐J CO lines as CO 7-‐6, and low-‐J ones like CO 1-‐0, 2-‐1)• Comparison CO J=7-‐6 luminosity vs CO 1=1-‐0 or vs CI(1-‐0) CI(2-‐1)• insights on whether FUV-‐photons from SF regions power the molecular gas• whether other, more powerful and global heating mechanisms of H2 are needed (Cosmic rays and/or strong turbulence).
• CO(7-‐6)/CI(2-‐1) ratio àMdense,warm(H2)/M_total(H2) tracer• Caveats: CI 2-‐1 (or CI 1-‐0) to be calibrated as H2 global mass tracers
APEX Band5, ESO, Feb 1-‐3 Paola Andreani
-
APEX Band5, ESO, Feb 1-‐3 Paola Andreani
G12v2.30H-ATLAS J114637.9−001132z= 3.2592
-
NBv1.78H-ATLAS J133008.4+245900z=3.1112
G12v2.43 (H-ATLAS J113526.3−014605Z=3.1276)
Paola AndreaniAPEX Band5, ESO, Feb 1-‐3
-
0
1
2
3
4
5
6
7
8
9
10
11
12
13
0 5 10 15 20 25 30 35 40 45 50CO76/CO10
Count
G12v2.30
NBv1.78
G12v2.43
Mrk1014IRAS03521IRAS03158Mrk231M82
Mrk273, Arp193, Arp220NGC1266, NGC253, NGC24NGC1614, IRASF01417
IC1623MGC-‐03-‐04ESO244
NGC1068MGC+12IC10, NGC232
NGC828NGC891NGC23
detectionsupper limitsLenses z~3
6.2: MW: Centre
infer the global excitation drivers of the ISM in lenses
Lenses stand in a non-‐FUV territory
CO(7-‐6)CO(1-‐0)
Paola AndreaniAPEX Band5, ESO, Feb 1-‐3Data from Kamenetzky et al., 2014; Israel et al. 2015
SDP.9
SMGs
-
02
4
6
8
10
12
14
16
18
20
0 1 2 3 4 5 6 7 8 9 10 11 12CO76/CI21
Count
G12v2.30
G12v2.43
MCG+12
M82, Mrk231, Mrk273, Arp220NGC253, IRASF01417, NGC0958NGC1614, NGC1614
NGC1377, UGC02608, UGC03094UGC02238, NGC891, NGC8773C84, ESO353, ESO420, NGC1961NGC1068, NGC1482, NGC1052
NGC1222, MCG-‐02, IC10, Mrk1014UGC01845, Arp193, NGC23, I-‐Zw-‐1NGC232, NGC4051, NGC0695, NGC1572
Cen ANGC1097NGC205
detectionsupper limitslenses z~3
M 17
NBv1.78
CO(7-‐6)CI(2-‐1)
Paola AndreaniAPEX Band5, ESO, Feb 1-‐30.9: MW: Centre
-
APEX Band5, ESO, Feb 1-‐3 Paola Andreani
Atomic C column density
CO column density
Constant flux ratio CO(7-‐6)/CI(2-‐1)
Tk = 25 Klog(nc) = 4.5 cm-3
Israel+, 2015
[CI] emission arises from a dense and warm gas,~10-‐20% of the C in gas phase
-
0
2
4
6
8
10
12
14
16
18
-6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5LCO76/LFIR
Count
G12v2.43
G12v2.30NBv1.78
L CO(7-‐6) (L ⦿) / L (FIR) (L ⦿)
NGC1097
NGC891Cen A
UGC02238UGC02608UGC030094
NGC1222NGC1377
Arp220NGC1056NGC23
NGC1266
M82NGC4051Mrk231Mrk2733C84NGC253NGC232IRAS03158NGC1068
NGC1572Arp193ESO353
LCO(7-‐6)L(FIR)
Paola AndreaniAPEX Band5, ESO, Feb 1-‐3
-
APEX Band5, ESO, Feb 1-‐3 Paola Andreani
Rosenberg et al., 2015
A single component theoretical PDR modelcannot match these flat SLED shapes
Additional heating mechanism necessaryto explain the observed molecular emission
-
APEX Band5, ESO, Feb 1-‐3 Paola Andreani
Rosenberg et al., 2015
A single component theoretical PDR modelcannot match these flat SLED shapes
Additional heating mechanism necessaryto explain the observed molecular emission
Oteo et al., 2017
-
• 3 lensed z~3 galaxies observed and detected with APEX/SEPIA 5• CO(7-‐6) has been detected in all 3 objects• CI[2-‐1] in 2 out of 3
• The analysis of the ratios CO(7-‐6)/CI[2-‐1], CO(7-‐6)/CO(1-‐0) and CO(7-‐6)/L(FIR) shows:• These 3 objects locate far away from FUV dominated excitation and other excitation mechanism need to be acting.
• Differential lensing magnification needs to be investigated if the distribution of the warm and cold dust is different
• Consequences• If strong turbulence and/or high CR energy densities responsible for the large amounts of very warm and dense gas initial conditions of SF may change.
• the wide range of average ISM conditions will strongly impact the so-‐called Xcofactor and the determination of the amount of molecular gas
APEX Band5, ESO, Feb 1-‐3 Paola Andreani