particle accelerator physics1.5.7 chargedparticles in anelectromagneticfield 33 1.5.8...

14
Helmut Wiedemann Particle Accelerator Physics Fourth Edition ^ Springer

Upload: others

Post on 15-Aug-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

Helmut Wiedemann

Particle Accelerator Physics

Fourth Edition

^ Springer

Page 2: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

Contents

Part I Introduction

1 Introduction to Accelerator Physics 3

1.1 Short Historical Overview 3

1.2 Particle Accelerator Systems 7

1.2.1 Main Components of Accelerator Facilities 7

1.2.2 Applications of Particle Accelerators 10

1.3 Definitions and Formulas 11

1.3.1 Units and Dimensions 11

1.3.2 Maxwell's Equations 13

1.4 Primer in Special Relativity 14

1.4.1 Lorentz Transformation 15

1.4.2 Lorentz Invariance 18

1.4.3 Spatial and Spectral Distribution of Radiation 22

1.4.4 Particle Collisions at High Energies 24

1.5 Principles of Particle-Beam Dynamics 26

1.5.1 Electromagnetic Fields of Charged Particles 26

1.5.2 Vector and Scalar Potential 27

1.5.3 Wave Equation 28

1.5.4 Induction 30

1.5.5 Lorentz Force 30

1.5.6 Equation of Motion 31

1.5.7 Charged Particles in an Electromagnetic Field 33

1.5.8 Linear Equation of Motion 34

1.5.9 Energy Conservation 35

1.5.10 Stability of a Charged-Particle Beam 37

References 41

2 Linear Accelerators 43

2.1 Principles of Linear Accelerators 43

2.1.1 Charged Particles in Electric Fields 44

2.1.2 Electrostatic Accelerators 45

xvii

Page 3: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

xviii Contents

2.2 Electric Field Components 48

2.2.1 Electrostatic Deflectors 48

2.2.2 Electrostatic Focusing Devices 49

2.2.3 Iris Doublet 51

2.2.4 Einzellens 52

2.3 Acceleration by rf Fields 54

2.3.1 Basic Principle of Microwave Linear Accelerators .... 54

References 57

3 Circular Accelerators 59

3.1 Betatron 60

3.2 Weak Focusing 63

3.3 Adiabatic Damping 66

3.4 Acceleration by rf Fields 68

3.4.1 Microtron 68

3.4.2 Cyclotron 70

3.4.3 Synchro-Cyclotron 73

3.4.4 Isochron Cyclotron 74

3.4.5 Synchrotron 75

3.4.6 Storage Ring 77

3.4.7 Summary of Characteristic Parameters 77

References 79

Part II Tools We Need

4 Elements of Classical Mechanics 83

4.1 How to Formulate a Lagrangian? 85

4.1.1 The Lagrangian for a Charged Particle

in an EM-Field 85

4.2 Lorentz Force 86

4.3 Frenet-Serret Coordinates 87

4.4 Hamiltonian Formulation 88

4.4.1 Cyclic Variables 90

4.4.2 Canonical Transformations 90

4.4.3 Curvilinear Coordinates 93

4.4.4 Extended Hamiltonian 95

4.4.5 Change of Independent Variable 96

References 98

5 Particle Dynamics in Electro-Magnetic Fields 99

5.1 The Lorentz Force 99

5.2 Fundamentals of Charged Particle Beam Optics 100

5.2.1 Particle Beam Guidance 100

5.2.2 Particle Beam Focusing 102

5.3 Equation of Motion 106

Page 4: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

Contents xix

5.4 Equations of Motion from the Lagrangian and Hamiltonian 109

5.4.1 Equations of Motion from Lagrangian 110

5.4.2 Canonical Momenta 112

5.4.3 Equation of Motion from Hamiltonian 112

5.4.4 Harmonic Oscillator 114

5.4.5 Action-Angle Variables 115

5.5 Solutions of the Linear Equations of Motion 116

5.5.1 Linear Unperturbed Equation of Motion 117

5.5.2 Matrix Formulation 118

5.5.3 Wronskian 119

5.5.4 Perturbation Terms 120References 123

6 Electromagnetic Fields 125

6.1 Pure Multipole Field Expansion 125

6.1.1 Electromagnetic Potentials and Fields

for Beam Dynamics 126

6.1.2 Fields, Gradients and Multipole Strength Parameter... 128

6.1.3 Main Magnets for Beam Dynamics 131

6.1.4 Multipole Misalignment and "Spill-down" 1376.2 Main Magnet Design Criteria 138

6.2.1 Design Characteristics of Dipole Magnets 138

6.2.2 Quadrupole Design Concepts 140

6.3 Magnetic Field Measurement 145

6.3.1 Hall Probe 147

6.3.2 Rotating Coil 148

6.4 General Transverse Magnetic-Field Expansion 152

6.4.1 Pure Multipole Magnets 153

6.4.2 Kinematic Terms 155

6.5 Third-Order Differential Equation of Motion 160

6.6 Longitudinal Field Devices 165

6.7 Periodic Wiggler Magnets 167

6.7.1 Wiggler Field Configuration 168

6.8 Electrostatic Quadrupole 172

References 174

Part III Beam Dynamics

7 Single Particle Dynamics 177

7.1 Linear Beam Transport Systems 178

7.1.1 Nomenclature 179

7.2 Matrix Formalism in Linear Beam Dynamics 180

7.2.1 Driftspace 182

7.2.2 Quadrupole Magnet 182

7.2.3 Thin Lens Approximation 184

7.2.4 Quadrupole End Field Effects 187

Page 5: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

xx Contents

7.3 Focusing in Bending Magnets 190

7.3.1 Sector Magnets 191

7.3.2 Fringe Field Effects 193

7.3.3 Finite Pole Gap 195

7.3.4 Wedge Magnets 196

7.3.5 Rectangular Magnet 198

7.3.6 Focusing in a Wiggler Magnet 200

7.3.7 Hard-Edge Model of Wiggler Magnets 203

7.4 Elements of Beam Dynamics 205

7.4.1 Building Blocks for Beam Transport Lines 205

7.4.2 Isochronous Systems 208

References 211

8 Particle Beams and Phase Space 213

8.1 Beam Emittance 214

8.1.1 Liouville's Theorem 215

8.1.2 Transformation in Phase Space 218

8.1.3 Beam Matrix 222

8.2 Betatron Functions 227

8.2.1 Beam Envelope 230

8.3 Beam Dynamics in Terms of Betatron Functions 231

8.3.1 Beam Dynamics in Normalized Coordinates 233

8.4 Dispersive Systems 236

8.4.1 Analytical Solution 237

8.4.2 3 x 3-Transformation Matrices 238

8.4.3 Linear Achromat 240

8.4.4 Spectrometer 244

8.4.5 Measurement of Beam Energy Spectrum 245

8.4.6 Path Length and Momentum Compaction 248

References 251

9 Longitudinal Beam Dynamics 253

9.1 Longitudinal Particle Motion 254

9.1.1 Longitudinal Phase Space Dynamics 256

9.2 Equation of Motion in Phase Space 259

9.2.1 Small Oscillation Amplitudes 262

9.2.2 Phase Stability 266

9.2.3 Acceleration of Charged Particles 270

9.3 Longitudinal Phase Space Parameters 274

9.3.1 Separatri x Parameters 274

9.3.2 Momentum Acceptance 275

9.3.3 Bunch Length 278

9.3.4 Longitudinal Beam Emittance 280

9.3.5 Phase Space Matching 282

Page 6: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

Contents xxi

9.4 Higher-Order Phase Focusing 286

9.4.1 Dispersion Function in Higher Order 287

9.4.2 Path Length in Higher Order 289

9.4.3 Higher Order Momentum Compaction Factor 291

9.4.4 Higher-Order Phase Space Motion 292

9.4.5 Stability Criteria 296

References 302

10 Periodic Focusing Systems 303

10.1 FODO Lattice 304

10.1.1 Scaling of FODO Parameters 305

10.1.2 Betatron Motion in Periodic Structures 309

10.1.3 General FODO Lattice 311

10.2 Beam Dynamics in Periodic Closed Lattices 315

10.2.1 Hill's Equation 315

10.2.2 Periodic Betatron Functions 318

10.2.3 Periodic Dispersion Function 321

10.2.4 Periodic Lattices in Circular Accelerators 329

10.3 FODO Lattice and Acceleration 339

10.3.1 Lattice Structure 339

10.3.2 Transverse Beam Dynamics and Acceleration 341

References 349

Part IV Beam Parameters

11 Particle Beam Parameters 353

11.1 Definition of Beam Parameters 353

11.1.1 Beam Energy 353

11.1.2 Time Structure 354

11.1.3 Beam Current 354

11.1.4 Beam Dimensions 356

11.2 Damping 358

11.2.1 Robinson Criterion 358

11.3 Particle Distribution in Longitudinal Phase Space 365

11.3.1 Energy Spread 366

11.3.2 Bunch Length 368

11.4 Transverse Beam Emittance 368

11.4.1 Equilibrium Beam Emittance 369

11.4.2 Emittance Increase in a Beam Transport Line 371

11.4.3 Vertical Beam Emittance 371

11.4.4 Beam Sizes 373

11.4.5 Beam Divergence 375

11.5 Variation of the Damping Distribution 375

11.5.1 Damping Partition and Rf-Frequency 375

Page 7: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

xxii Contents

11.6 Variation of the Equilibrium Beam Emittance 377

11.6.1 Beam Emittance and Wiggler Magnets 377

11.6.2 Damping Wigglers 380

11.7 Robinson Wiggler 382

11.7.1 Damping Partition and Synchrotron Oscillation 382

11.7.2 Can We Eliminate the Beam Energy Spread? 384

11.8 Beam Life Time 385

11.8.1 Beam Lifetime and Vacuum 386

11.8.2 Ultra High Vacuum System 395

References 399

12 Vlasov and Fokker-Planck Equations 401

12.1 The Vlasov Equation 402

12.1.1 Betatron Oscillations and Perturbations 408

12.1.2 Damping 410

12.2 Damping of Oscillations in Electron Accelerators 411

12.2.1 Damping of Synchrotron Oscillations 412

12.2.2 Damping of Vertical Betatron Oscillations 416

12.2.3 Robinson's Damping Criterion 419

12.2.4 Damping of Horizontal Betatron Oscillations 422

12.3 The Fokker-Planck Equation 422

12.3.1 Stationary Solution of the Fokker-Planck Equation ...425

12.3.2 Particle Distribution within a Finite Aperture 430

12.3.3 Particle Distribution in the Absence of Damping 432

References 435

13 Equilibrium Particle Distribution 437

13.1 Particle Distribution in Phase Space 437

13.1.1 Diffusion Coefficient and Synchrotron Radiation 438

13.1.2 Quantum Excitation of Beam Emittance 440

13.2 Equilibrium Beam Emittance 441

13.2.1 Horizontal Equilibrium Beam Emittance 441

13.2.2 Vertical Equilibrium Beam Emittance 442

13.3 Equilibrium Energy Spread and Bunch Length 444

13.3.1 Equilibrium Beam Energy Spread 444

13.3.2 Equilibrium Bunch Length 444

13.4 Phase-Space Manipulation 446

13.4.1 Exchange of Transverse Phase-Space Parameters 446

13.4.2 Bunch Compression 446

13.4.3 Alpha Magnet 449

13.5 Polarization of a Particle Beam 453

References 457

Page 8: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

Contents xxiii

14 Beam Emittance and Lattice Design 459

14.1 Equilibrium Beam Emittance in Storage Rings 461

14.1.1 FODO Lattice 461

14.1.2 Minimum Beam Emittance 462

14.2 Absolute Minimum Emittance 465

14.3 Beam Emittance in Periodic Lattices 468

14.3.1 The Double Bend Achromat Lattice (DBA) 469

14.3.2 The FODO Lattice 470

14.3.3 Optimum Emittance for Colliding Beam

Storage Rings 472

References 472

Part V Perturbations

15 Perturbations in Beam Dynamics 477

15.1 Magnet Field and Alignment Errors 478

15.1.1 Self Compensation of Perturbations 479

15.2 Dipole Field Perturbations 480

15.2.1 Dipole Field Errors and Dispersion Function 482

15.2.2 Perturbations in Open Transport Lines 482

15.2.3 Existence of Equilibrium Orbits 484

15.2.4 Closed Orbit Distortion 486

15.2.5 Statistical Distribution of Dipole Field

and Alignment Errors 490

15.2.6 Dipole Field Errors in Insertion Devices 492

15.2.7 Closed Orbit Correction 494

15.2.8 Response Matrix 496

15.2.9 Orbit Correction with Single Value

Decomposition (SVD) 497

15.3 Quadrupole Field Perturbations 499

15.3.1 Betatron Tune Shift 500

15.3.2 Optics Perturbation Due to Insertion Devices 502

15.3.3 Resonances and Stop Band Width 503

15.3.4 Perturbation of Betatron Function 506

15.4 Chromatic Effects in a Circular Accelerator 509

15.4.1 Chromaticity 509

15.4.2 Chromaticity Correction 513

15.4.3 Chromaticity in Higher Approximation 514

15.4.4 Non-linear Chromaticity 517

15.5 Kinematic Perturbation Terms 522

15.6 Perturbation Methods in Beam Dynamics 524

15.6.1 Periodic Distribution of Statistical Perturbations 525

15.6.2 Periodic Perturbations in Circular Accelerators 528

15.6.3 Statistical Methods to Evaluate Perturbations 530

Page 9: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

xxjv Contents

15.7 Control of Beam Size in Transport Lines 531

References 538

16 Resonances 539

16.1 Lattice Resonances 539

16.1.1 Resonance Conditions 540

16.1.2 Coupling Resonances 544

16.1.3 Resonance Diagram 545

16.2 Hamiltonian Resonance Theory 547

16.2.1 Non-linear Hamiltonian 547

16.2.2 Resonant Terms 550

16.2.3 Resonance Patterns and Stop-Band Width 553

16.2.4 Half-Integer Stop-Band 555

16.2.5 Separatrices 556

16.2.6 General Stop-Band Width 558

16.3 Third-Order Resonance 560

16.3.1 Particle Motion in Phase Space 563

References 564

17 Hamiltonian Nonlinear Beam Dynamics 565

17.1 Higher-Order Beam Dynamics 565

17.1.1 Multipole Errors 565

17.1.2 Non-linear Matrix Formalism 569

17.2 Aberrations 573

17.2.1 Geometric Aberrations 575

17.2.2 Filamentation of Phase Space 581

17.2.3 Chromatic Aberrations 584

17.2.4 Particle Tracking 587

17.3 Hamiltonian Perturbation Theory 588

17.3.1 Tune Shift in Higher Order 595

References 599

Part VI Acceleration

18 Charged Particle Acceleration 603

18.1 Rf-Waveguides and Cavities 603

18.1.1 Wave Equation 604

18.1.2 Rectangular Waveguide Modes 605

18.1.3 Cylindrical Waveguide Modes 610

18.2 Rf-Cavities 614

18.2.1 Square Cavities 614

18.2.2 Cylindrical Cavity 614

18.2.3 Energy Gain 616

18.2.4 Rf-Cavity as an Oscillator 617

18.2.5 Cavity Losses and Shunt Impedance 619

Page 10: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

Contents xxv

18.3 Rf-Parameters 623

18.3.1 Synchronous Phase and Rf-voltage 62518.4 Linear Accelerator 625

18.4.1 Basic Waveguide Parameters 626

18.4.2 Particle Capture in a Linear Accelerator Field 632

18.5 Preinjector and Beam Preparation 634

18.5.1 Prebuncher 634

18.5.2 Beam Chopper 636

18.5.3 Buncher Section 638

References 640

19 Beam-Cavity Interaction 641

19.1 Coupling Between rf-Field and Particles 641

19.1.1 Network Modelling of an Accelerating Cavity 642

19.2 Beam Loading and Rf-System 645

19.3 Higher-Order Mode Losses in an Rf-Cavity 650

19.3.1 Efficiency of Energy Transfer from Cavity to Beam...

653

19.4 Beam Loading 654

19.5 Phase Oscillation and Stability 656

19.5.1 Robinson Damping 657

19-5.2 Potential Well Distortion 662

References 665

Part VII Coupled Motion

20 Dynamics of Coupled Motion 669

20.1 Equations of Motion in Coupled Systems 669

20.1.1 Coupled Beam Dynamics in Skew Quadrupoles 670

20.1.2 Particle Motion in a Solenoidal Field 672

20.1.3 Transformation Matrix for a Solenoid Magnet 675

20.2 Betatron Functions for Coupled Motion 678

20.3 Conjugate Trajectories 679

20.4 Hamiltonian and Coupling 685

20.4.1 Linearly Coupled Motion 686

20.4.2 Higher-Order Coupling Resonances 695

20.4.3 Multiple Resonances 695

References 697

Part VIII Intense Beams

21 Statistical and Collective Effects 701

21.1 Statistical Effects 702

21.1.1 Schottky Noise 702

21.1.2 Stochastic Cooling 704

21.1.3 Touschek Effect 705

21.1.4 Intra-Beam Scattering 706

Page 11: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

xxvi Contents

21.2 Collective Self Fields 708

21.2.1 Self Field for Elliptical Particle Beams 709

21.2.2 Beam-Beam Effect 712

21.2.3 Transverse Self Fields 715

21.2.4 Fields from Image Charges 715

21.2.5 Space-Charge Effects 720

21.2.6 Longitudinal Space-Charge Field 725

21.3 Beam-Current Spectrum 727

21.3.1 Longitudinal Beam Spectrum 727

21.3.2 Transverse Beam Spectrum 730

References 734

22 Wake Fields and Instabilities 737

22.1 Definitions of Wake Field and Impedance 738

22.1.1 Parasitic Mode Losses and Impedances 739

22.1.2 Longitudinal Wake Fields 743

22.1.3 Transverse Wake Fields 749

22.1.4 Panofsky-Wenzel Theorem 750

22.2 Impedances in an Accelerator Environment 751

22.2.1 Space-Charge Impedance 751

22.2.2 Resistive-Wall Impedance 752

22.2.3 Cavity-Like Structure Impedance 753

22.2.4 Overall Accelerator Impedance 754

22.2.5 Broad-Band Wake Fields in a Linear Accelerator 756

22.3 Coasting-Beam Instabilities 756

22.3.1 Negative-Mass Instability 757

22.3.2 Dispersion Relation 760

22.3.3 Landau Damping 767

22.3.4 Transverse Coasting-Beam Instability 769

22.4 Longitudinal Single-Bunch Effects 771

22.4.1 Potential-Well Distortion 771

22.5 Transverse Single-Bunch Instabilities 779

22.5.1 Beam Break-Up in Linear Accelerators 779

22.5.2 Fast Head-Tail Effect 781

22.5.3 Head-Tail Instability 786

22.6 Multi-Bunch Instabilities 789

References 795

Part IX Synchrotron Radiation

23 Fundamental Processes 799

23.1 Radiation from Moving Charges 799

23.1.1 Why Do Charged Particles Radiate? 800

23.1.2 Spontaneous Synchrotron Radiation 801

23.1.3 Stimulated Radiation 802

23.1.4 Electron Beam 803

Page 12: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

Contents xxvii

23.2 Conservation Laws and Radiation 804

23.2.1 Cherenkov Radiation 805

23.2.2 Compton Radiation 806

23.3 Electromagnetic Radiation 807

23.3.1 Coulomb Regime 808

23.3.2 Radiation Regime 809

References 813

24 Overview of Synchrotron Radiation 815

24.1 Radiation Sources 816

24.1.1 Bending Magnet Radiation 816

24.1.2 Superbends 817

24.1.3 Wavelength Shifter 818

24.1.4 Wiggler Magnet Radiation 819

24.1.5 Undulator Radiation 822

24.2 Radiation Power 830

24.3 Spectrum 834

24.4 Spatial Photon Distribution 839

24.5 Fraunhofer Diffraction 840

24.6 Spatial Coherence 843

24.7 Temporal Coherence 846

24.8 Spectral Brightness 848

24.8.1 Matching 849

24.9 Photon Source Parameters 851

References 854

25 Theory of Synchrotron Radiation 857

25.1 Radiation Field 857

25.2 Total Radiation Power and Energy Loss 864

25.2.1 Transition Radiation 865

25.3 Spatial Radiation Distribution 868

25.3.1 Radiation Lobes 868

25.4 Radiation Field in the Frequency Domain 873

25.4.1 Spectral Distribution in Space and Polarization 877

25.4.2 Spectral and Spatial Photon Flux 879

25.4.3 Harmonic Representation 880

25.4.4 Spatial Radiation Power Distribution 881

25.5 Asymptotic Solutions 883

25.5.1 Low Frequencies and Small Observation Angles 884

25.5.2 High Frequencies or Large Observation Angles 884

25.6 Angle-Integrated Spectrum 885

25.7 Statistical Radiation Parameters 891

References 893

Page 13: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

xxviii Contents

26 Insertion Device Radiation 895

26.1 Particle Dynamics in a Periodic Field Magnet 896

26.2 Undulator Radiation 899

26.2.1 Fundamental Wavelength 899

26.2.2 Radiation Power 900

26.2.3 Spatial and Spectral Distribution 901

26.2.4 Line Spectrum 914

26.2.5 Spectral Undulator Brightness 917

26.3 Elliptical Polarization 918

26.3.1 Elliptical Polarization from Bending Magnet

Radiation 918

26.3.2 Elliptical Polarization from Periodic Insertion

Devices 921

References 927

27 Free Electron Lasers 929

27.1 Small Gain Regime 930

27.1.1 Energy Transfer 932

27.1.2 Equation of Motion 934

27.1.3 FEL-Gain 937

27.2 High Gain Free Electron Laser 942

27.2.1 Electron Dynamics in a SASE FEL 942

27.2.2 Electron Source 945

27.2.3 Beam Dynamics 945

27.2.4 Undulator 947

References 947

Solutions 949

A Useful Mathematical Formulae 983

A.l Vector Algebra 983

A.1.1 Differential Vector Expressions 984

A.1.2 Algebraic Relations 984

A. 1.3 Differential Relations 985

A. 1.4 Partial Integration 985

A. 1.5 Trigonometric and Exponential Functions 985

A. 1.6 Integral Relations 986

A.l .7 Dirac's Delta Function 986

A. 1.8 Bessel's Functions 986

A. 1.9 Series Expansions 987

A. 1.10 Fourier Series 987

A. 1.11 Coordinate Transformations 988

Page 14: Particle accelerator physics1.5.7 ChargedParticles in anElectromagneticField 33 1.5.8 LinearEquationofMotion 34 1.5.9 EnergyConservation 35 1.5.10 Stability ofaCharged-ParticleBeam

Contents xx'x

B Physical Formulae and Parameters 993

B.l Physical Constants 993

B.2 Relations ofFundamental Parameters 994

B.3 Unit Conversions 994

B.4 Maxwell's Equations 995

B.5 Wave and Field Equations 995

B.6 Relativistic Relations 996

B.6.1 Lorentz Transformation 996

B.6.2 Four-Vectors 997

B.6.3 Square of the 4-Acceleration 998

B.6.4 Miscellaneous 4-Vectors and Lorentz

Invariant Properties 998

B.7 Transformation Matrices in Beam Dynamics 998

B.8 General Transformation Matrix 999

B.8.1 Symmetric Magnet Arrangement 999

B.8.2 Inverse Transformation Matrix 1000

B.9 Specific Transformation Matrices 1000

B.9.1 Drift Space 1000

B.9.2 Bending Magnets 1000

B.9.3 Quadrupole 1003

Index 1005