niklas wahlstrom novmber 13, 2017 - it.uu.se thesis and my work at uppsala three areas: i magnetic...

65
Pose tracking of magnetic objects Niklas Wahlstr¨ om Department of Information Technology, Uppsala University, Sweden Novmber 13, 2017 [email protected] Seminar Vi2

Upload: nguyenkiet

Post on 07-Mar-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Pose tracking of magnetic objects

Niklas Wahlstrom

Department of Information Technology, Uppsala University, Sweden

Novmber 13, 2017

[email protected] Seminar Vi2

Page 2: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Short about me

I 2005 - 2010: Applied Physics and Electrical Engineering -International, Linkoping University.

I 2007-2008: Exchange student, ETH Zurich, Swizerland

I 2010-2015 : PhD student in Automatic Control, LinkopingUniversity

I Spring 2014, Research visit, Imperial College, London, UK

I 2016- : Researcher at Department of Information Technology,Uppsala University

1 / 17 [email protected] Seminar Vi2

Page 3: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

My thesis and my work at Uppsala

Three areas:

I Magnetic tracking and mapping

I Extended target tracking

I Deep dynamical models for control

Two areas:

I Constrained Gaussian processes

I Deep learning and systemidentification

2 / 17 [email protected] Seminar Vi2

Page 4: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

My thesis and my work at Uppsala

Three areas:

I Magnetic tracking and mapping

I Extended target tracking

I Deep dynamical models for control

Two areas:

I Constrained Gaussian processes

I Deep learning and systemidentification

2 / 17 [email protected] Seminar Vi2

Page 5: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetometer measurement models

1. Common use: Magnetometer provides orientation headinginformation.

Assume that the magnetometer (almost) only measures thelocal (earth) magnetic field.

2. My use: Magnetometer(s) to provide position andorientation information.

I Magnetic tracking: Measure the position and orientation of aknown magnetic source.

I Magnetic mapping: Build a map of the (indoor) magneticfield.

3 / 17 [email protected] Seminar Vi2

Page 6: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetometer measurement models

1. Common use: Magnetometer provides orientation headinginformation.

Assume that the magnetometer (almost) only measures thelocal (earth) magnetic field.

2. My use: Magnetometer(s) to provide position andorientation information.

I Magnetic tracking: Measure the position and orientation of aknown magnetic source.

I Magnetic mapping: Build a map of the (indoor) magneticfield.

3 / 17 [email protected] Seminar Vi2

Page 7: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetometer measurement models

1. Common use: Magnetometer provides orientation headinginformation.

Assume that the magnetometer (almost) only measures thelocal (earth) magnetic field.

2. My use: Magnetometer(s) to provide position andorientation information.

I Magnetic tracking: Measure the position and orientation of aknown magnetic source.

I Magnetic mapping: Build a map of the (indoor) magneticfield.

3 / 17 [email protected] Seminar Vi2

Page 8: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Sensor setup

We use a sensor network with four three-axis magnetometers todetermine the position and orientation of a magnet.

4 / 17 [email protected] Seminar Vi2

Page 9: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetic tracking

Advantages

I Cheap sensors

I Small sensors

I Low energy consumption

I No weather dependency

I Passive unit, requires nobatteries

5 / 17 [email protected] Seminar Vi2

Page 10: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetic tracking

Advantages

I Cheap sensors

I Small sensors

I Low energy consumption

I No weather dependency

I Passive unit, requires nobatteries

5 / 17 [email protected] Seminar Vi2

Page 11: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetic tracking

Advantages

I Cheap sensors

I Small sensors

I Low energy consumption

I No weather dependency

I Passive unit, requires nobatteries

5 / 17 [email protected] Seminar Vi2

Page 12: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetic tracking

Advantages

I Cheap sensors

I Small sensors

I Low energy consumption

I No weather dependency

I Passive unit, requires nobatteries

5 / 17 [email protected] Seminar Vi2

Page 13: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetic tracking

Advantages

I Cheap sensors

I Small sensors

I Low energy consumption

I No weather dependency

I Passive unit, requires nobatteries

5 / 17 [email protected] Seminar Vi2

Page 14: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Mathematical model - dipole field

The magnetic field can be described with a dipole field.

J(r′)

mr

B(r)

B(r) =µ0

4π‖r‖5(

3r · rT − ‖r‖2I3)

︸ ︷︷ ︸=C(r)

m

m ,1

2

∫r′ × J(r′)d3r′

6 / 17 [email protected] Seminar Vi2

Page 15: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Sensor model - single dipole

The measurements can be described with a state-space model

xk+1 = Fkxk +Gkwk, wk ∼ N (0, Q),

yk,j = hj(xk) + ek, ek ∼ N (0, R)

Point target sensor model (one dipole)

hj(xk) = C(rk − θj)mk, xk = [rTk vTk mT

k ωTk ]T

C(r) =µ0

4π‖r‖5 (3rrT − ‖r‖2I3),

Measurement from a sensor network ofmagnetometers positioned at {θj}Jj=1.

Degrees of freedom

I 3D position

I 2D orientation

7 / 17 [email protected] Seminar Vi2

Page 16: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Experiment 1

0.2

0.1-0.1

-0.2

-0.05

y-coordinate [m]

0

Trajectory

0

-0.1

0.05

x-coordinate [m]

0.1

z-co

ordi

nate

[m]

0 -0.1

0.15

0.2

0.1

0.25

-0.20.2

0.3

Trajectory

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2y-coordinate [m]

-0.1

-0.05

0

0.05

z-co

ordi

nate

[m]

0.1

0.15

0.2

0.25

0.3

Theaccuracy is

8 / 17 [email protected] Seminar Vi2

Page 17: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Experiment 2 - setup

9 / 17 [email protected] Seminar Vi2

Page 18: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Experiment 2 - results - position

20 25 30 35 40 45 50

−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

Posi

tion

[m]

Black: Ground truth position. Color: Estimated position

10 / 17 [email protected] Seminar Vi2

Page 19: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Experiment - results - orientation

20 25 30 35 40 45 50−200

−100

0

100

Time [s]

Ori

enta

tion

[deg

ree]

Black: Ground truth orientation. Color: Estimated orientation

11 / 17 [email protected] Seminar Vi2

Page 20: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Application 1: 3D painting book

12 / 17 [email protected] Seminar Vi2

Page 21: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Application 2: Digital water colors

13 / 17 [email protected] Seminar Vi2

Page 22: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Application 3: Digital table hockey

14 / 17 [email protected] Seminar Vi2

Page 23: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Application 4: Digital pathology

15 / 17 [email protected] Seminar Vi2

Page 24: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Stylaero AB

I In February in this year acompany was startedaround this technology

I The areas the companyhas so far one employee.

I Collaborations withgaming companied andindustrial partners havebeen initiated.

16 / 17 [email protected] Seminar Vi2

Page 25: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Thank you!

17 / 17 [email protected] Seminar Vi2

Page 26: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetometer measurement models

1. Common use: Magnetometer provides orientation headinginformation.

Assume that the magnetometer (almost) only measures thelocal (earth) magnetic field.

2. My use: Magnetometer(s) to provide position andorientation information.

I Magnetic tracking: Measure the position and orientation of aknown magnetic source.

I Magnetic mapping: Build a map of the (indoor) magneticfield.

18 / 17 [email protected] Seminar Vi2

Page 27: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Sensor model - multi-dipole

The measurements can be described with a state-space model

xk+1 = Fkxk +Gkwk, wk ∼ N (0, Q),

yk,j = hj(xk) + ek, ek ∼ N (0, R)

Extended target sensor model (a structure of dipoles)

hj(xk) =

L∑l=1

C(rk +Rk(qk)sl − θj)mlRk(qk)bl,

xk = [rTk vTk qT

k ωTk ]T

b1

b2

s1 s2

x

y

z

Degrees of freedom

I 3D position

I 3D orientation

19 / 17 [email protected] Seminar Vi2

Page 28: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetic mapping

Build a map of the indoor magnetic field. This map can be usedfor localization.

We want a statistical model of the magnetic field - Gaussianprocesses!

20 / 17 [email protected] Seminar Vi2

Page 29: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian processes

Gaussian processes can be seed as a distribution over functions

f(u) ∼ GP(µ(u),K(u,u′)

),

Mean function ↑ ↑ Covariance function

It is a generalization of the multivariate Gaussian distribution f(u1)...

f(uN )

∼ N (µ,K), where µ =

µ(u1)...

µ(uN )

,K =

K(u1,u1) · · · K(u1,uN )...

...K(uN ,u1) · · · K(uN ,uN )

.

21 / 17 [email protected] Seminar Vi2

Page 30: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process regression

Objective: Estimate f(u) from noisy observations yk = f(uk) + ek

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

u

f(u)

22 / 17 [email protected] Seminar Vi2

Page 31: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process regression

Objective: Estimate f(u) from noisy observations yk = f(uk) + ek

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

u

f(u)

22 / 17 [email protected] Seminar Vi2

Page 32: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process regression

Objective: Estimate f(u) from noisy observations yk = f(uk) + ek

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

u

f(u)

22 / 17 [email protected] Seminar Vi2

Page 33: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process regression

Objective: Estimate f(u) from noisy observations yk = f(uk) + ek

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

u

f(u)

22 / 17 [email protected] Seminar Vi2

Page 34: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process regression

Objective: Estimate f(u) from noisy observations yk = f(uk) + ek

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

u

f(u)

22 / 17 [email protected] Seminar Vi2

Page 35: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Modeling the magnetic field

I The magnetic field H is curl-free, i.e. ∇×H = 0 [1]

yk = f(xk) + εk

f(x) ∼ GP(0, σ2const.I3 +Kcurl(x,x′))

I If a vector-field is curl-free, a scalar potential ϕ existsH = −∇ϕ [2]

yk = −∇ϕ(x)∣∣x=xi

+ εk

ϕ(x) ∼ GP(0, klin.(x,x

′) + kSE(x,x′))

[1] Niklas Wahlstrom, Manon Kok, Thomas B. Schon and Fredrik Gustafsson, Modeling magnetic fields usingGaussian processes The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP),Vancouver, Canada, May 2013.

[2] Arno Solin, Manon Kok, Niklas Wahlstrom, Thomas B. Schon and Simo Sarkka, Modeling and interpolation ofthe ambient magnetic field by Gaussian processes IEEE Transactions on Robotics, 2017. Accepted.

23 / 17 [email protected] Seminar Vi2

Page 36: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Modeling the magnetic field

I The magnetic field H is curl-free, i.e. ∇×H = 0 [1]

yk = f(xk) + εk

f(x) ∼ GP(0, σ2const.I3 +Kcurl(x,x′))

I If a vector-field is curl-free, a scalar potential ϕ existsH = −∇ϕ [2]

yk = −∇ϕ(x)∣∣x=xi

+ εk

ϕ(x) ∼ GP(0, klin.(x,x

′) + kSE(x,x′))

[1] Niklas Wahlstrom, Manon Kok, Thomas B. Schon and Fredrik Gustafsson, Modeling magnetic fields usingGaussian processes The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP),Vancouver, Canada, May 2013.[2] Arno Solin, Manon Kok, Niklas Wahlstrom, Thomas B. Schon and Simo Sarkka, Modeling and interpolation ofthe ambient magnetic field by Gaussian processes IEEE Transactions on Robotics, 2017. Accepted.

23 / 17 [email protected] Seminar Vi2

Page 37: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Experiment

Build a map of the indoor magnetic field using Gaussian processes.

https://www.youtube.com/watch?v=enlMiUqPVJo

24 / 17 [email protected] Seminar Vi2

Page 38: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Experiment

Build a map of the indoor magnetic field using Gaussian processes.

Optical marker Smartphone

Trivisio IMUInvensense IMU

DiddyBorg robot board

24 / 17 [email protected] Seminar Vi2

Page 39: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Experiment

Build a map of the indoor magnetic field using Gaussian processes.

https://www.youtube.com/watch?v=enlMiUqPVJo

24 / 17 [email protected] Seminar Vi2

Page 40: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Reduced-Rank GPR

Hilbert-space approximation of the covariance operator in terms ofan eigenfunction expansion of the Laplace operator in a compactsubset of Rd.

I Assume that the measurements are confined to a certaindomain.

I Approximate the covariance using the spectral density and anumber of eigenvalues and eigenfunctions. For d = 1:

k(x, x′) ≈m∑j=1

S(λj)φj(x)φj(x′)

φj(x) = 1√L

sin(πnj(x+L)

2L

), λj = πj

2L ,

I Converges to the true GP when the number of basis functionsand the size of the domain goes to infinity.

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression – Arno Solin and Simo Sarkka(http://arxiv.org/pdf/1401.5508v1.pdf)

25 / 17 [email protected] Seminar Vi2

Page 41: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Reduced-Rank GPR

Consequences for our problem:

Original formulation:50 or 100 Hz magnetometer data (in 3D)⇒ Size of the matrix to invert grows very quickly

with each additional second of data⇒ Downsampling needed and large buildings

become infeasible

Reduced-rank formulation:Possible to use all data⇒ Size of the problem does not grow for longer

data sets

26 / 17 [email protected] Seminar Vi2

Page 42: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Sequential updating

Initialize µ0 = 0 and Σ0 = Λθ (from the GP prior). For each newobservation i = 1, 2, . . . , n update the estimate according to

Si = ∇ΦiΣi−1[∇Φi]T + σ2noise I3,

Ki = Σi−1[∇Φi]TS−1i ,

µi = µi−1 +Ki(yi −∇Φiµi−1),

Σi = Σi−1 −KiSiKTi .

27 / 17 [email protected] Seminar Vi2

Page 43: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Spatio-temporal modeling

Model the scalar potential magnetic field instead as

ϕ(x, t) ∼ GP(0, κlin.(x, x′) + κSE(x, x′)κexp(t, t′)),

with

κexp(t, t′) = exp

(− |t− t

′|`time

).

The scalar potential can then sequentially be estimated by addinga time update to the measurement update from before as

µi = Ai−1µi−1,

Σi = Ai−1Σi−1ATi−1 +Qi−1.

28 / 17 [email protected] Seminar Vi2

Page 44: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Problem formulation

We want to finda magnetic map ofthis object!

How should the map be modeled?

I

I

I Use a continuum of dipoles!

I Spatial correlation

29 / 17 [email protected] Seminar Vi2

Page 45: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Problem formulation

We want to finda magnetic map ofthis object!

How should the map be modeled?

I Use the dipole model?

I Use multiple dipoles?

I Use a continuum of dipoles!

I Spatial correlation

29 / 17 [email protected] Seminar Vi2

Page 46: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Problem formulation

We want to finda magnetic map ofthis object!

How should the map be modeled?

I Use the dipole model?

I Use multiple dipoles?

I Use a continuum of dipoles!

I Spatial correlation

← Parametric models

29 / 17 [email protected] Seminar Vi2

Page 47: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Problem formulation

We want to finda magnetic map ofthis object!

How should the map be modeled?

I Use the dipole model?

I Use multiple dipoles?

I Use a continuum of dipoles!

I Spatial correlation

← Parametric models

29 / 17 [email protected] Seminar Vi2

Page 48: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Problem formulation

We want to finda magnetic map ofthis object!

How should the map be modeled?

I Use the dipole model?

I Use multiple dipoles?

I Use a continuum of dipoles!

I Spatial correlation

← Parametric models

← Nonparametric models!

29 / 17 [email protected] Seminar Vi2

Page 49: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Problem formulation

We want to finda magnetic map ofthis object!

How should the map be modeled?

I Use the dipole model?

I Use multiple dipoles?

I Use a continuum of dipoles!

I Spatial correlation

← Parametric models

← Nonparametric models!

29 / 17 [email protected] Seminar Vi2

Page 50: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Problem formulation

We want to finda magnetic map ofthis object!

How should the map be modeled?

I Use the dipole model?

I Use multiple dipoles?

I Use a continuum of dipoles!

I Spatial correlation

← Parametric models

← Nonparametric models!

← Gaussian processes!

29 / 17 [email protected] Seminar Vi2

Page 51: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Real world experiment

I Measurements have been collected with a magnetometer

I An optical reference system (Vicon) has been used fordetermining the position and orientation of the sensor

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

00.511.5

x−ax

is [m

]

y−axis [m]

The magnetic environment Training data

30 / 17 [email protected] Seminar Vi2

Page 52: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Real world experiment

I Measurements have been collected with a magnetometer

I An optical reference system (Vicon) has been used fordetermining the position and orientation of the sensor

The magnetic environment Estimated magnetic content

30 / 17 [email protected] Seminar Vi2

Page 53: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Modeling the magnetic field

I The magnetic field H is curl-free, i.e. ∇×H = 0 [1]

yk = f(xk) + εk

f(x) ∼ GP(0, σ2const.I3 +Kcurl(x,x′))

I If a vector-field is curl-free, a scalar potential ϕ existsH = −∇ϕ [2]

yk = −∇ϕ(x)∣∣x=xi

+ εk

ϕ(x) ∼ GP(0, klin.(x,x

′) + kSE(x,x′))

[1] Niklas Wahlstrom, Manon Kok, Thomas B. Schon and Fredrik Gustafsson, Modeling magnetic fields usingGaussian processes The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP),Vancouver, Canada, May 2013.

[2] Arno Solin, Manon Kok, Niklas Wahlstrom, Thomas B. Schon and Simo Sarkka, Modeling and interpolation ofthe ambient magnetic field by Gaussian processes ArXiv e-prints, September 2015. arXiv:1509.04634.

31 / 17 [email protected] Seminar Vi2

Page 54: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Modeling the magnetic field

I The magnetic field H is curl-free, i.e. ∇×H = 0 [1]

yk = f(xk) + εk

f(x) ∼ GP(0, σ2const.I3 +Kcurl(x,x′))

I If a vector-field is curl-free, a scalar potential ϕ existsH = −∇ϕ [2]

yk = −∇ϕ(x)∣∣x=xi

+ εk

ϕ(x) ∼ GP(0, klin.(x,x

′) + kSE(x,x′))

[1] Niklas Wahlstrom, Manon Kok, Thomas B. Schon and Fredrik Gustafsson, Modeling magnetic fields usingGaussian processes The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP),Vancouver, Canada, May 2013.[2] Arno Solin, Manon Kok, Niklas Wahlstrom, Thomas B. Schon and Simo Sarkka, Modeling and interpolation ofthe ambient magnetic field by Gaussian processes ArXiv e-prints, September 2015. arXiv:1509.04634.

31 / 17 [email protected] Seminar Vi2

Page 55: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Building magnetic field maps (2)

I Encode physical knowledge in the kernel.

I Use reduced-rank GP regression based onthe method from [1].

I Use a Kalman filter formulation to allowfor sequential updating.

I Use a spatio-temporal model to allow forchanges in the magnetic field.

x-component

y-component

z-component

−40

−20

0

20

[1] Hilbert Space Methods for Reduced-Rank Gaussian Process Regression – A. Solin, S. Sarkka.

32 / 17 [email protected] Seminar Vi2

Page 56: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Building magnetic field maps (2)

I Encode physical knowledge in the kernel.

I Use reduced-rank GP regression based onthe method from [1].

I Use a Kalman filter formulation to allowfor sequential updating.

I Use a spatio-temporal model to allow forchanges in the magnetic field.

x-component

y-component

z-component

−40

−20

0

20

[1] Hilbert Space Methods for Reduced-Rank Gaussian Process Regression – A. Solin, S. Sarkka.

32 / 17 [email protected] Seminar Vi2

Page 57: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Building magnetic field maps (2)

I Encode physical knowledge in the kernel.

I Use reduced-rank GP regression based onthe method from [1].

I Use a Kalman filter formulation to allowfor sequential updating.

I Use a spatio-temporal model to allow forchanges in the magnetic field.

x-component

y-component

z-component

−40

−20

0

20

[1] Hilbert Space Methods for Reduced-Rank Gaussian Process Regression – A. Solin, S. Sarkka.

32 / 17 [email protected] Seminar Vi2

Page 58: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Building magnetic field maps (2)

I Encode physical knowledge in the kernel.

I Use reduced-rank GP regression based onthe method from [1].

I Use a Kalman filter formulation to allowfor sequential updating.

I Use a spatio-temporal model to allow forchanges in the magnetic field.

x-component

y-component

z-component

−40

−20

0

20

[1] Hilbert Space Methods for Reduced-Rank Gaussian Process Regression – A. Solin, S. Sarkka.

32 / 17 [email protected] Seminar Vi2

Page 59: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Magnetic fields

We use a slightly different version of the magnetostatic equations

∇ ·B = 0,1

µ0B−H = M,

∇×H = 0

Example

- =

1µ0B - H = M

33 / 17 [email protected] Seminar Vi2

Page 60: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process + magnetic fields

I The animation illustrated regression for one scalar functionf : R→ R

I We want to learn three different vector fields f : R3 → R3 Inaddition, these fields should obey

I

I

I 1µ0B−H = M

34 / 17 [email protected] Seminar Vi2

Page 61: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process + magnetic fields

I The animation illustrated regression for one scalar functionf : R→ R

I We want to learn three different vector fields f : R3 → R3 Inaddition, these fields should obey

I

I

I 1µ0B−H = M

34 / 17 [email protected] Seminar Vi2

Page 62: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process + magnetic fields

I The animation illustrated regression for one scalar functionf : R→ R

I We want to learn three different vector fields f : R3 → R3 Inaddition, these fields should obey

I ∇ ·B = 0 (divergence free)

I ∇×H = 0 (curl free)

I 1µ0B−H = M

34 / 17 [email protected] Seminar Vi2

Page 63: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process + magnetic fields

I The animation illustrated regression for one scalar functionf : R→ R

I We want to learn three different vector fields f : R3 → R3 Inaddition, these fields should obey

I ∇ ·B = 0 (divergence free)

I ∇×H = 0 (curl free)

I 1µ0B−H = M

← There exist covariancefunctions for this!

34 / 17 [email protected] Seminar Vi2

Page 64: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Gaussian process + magnetic fields

I The animation illustrated regression for one scalar functionf : R→ R

I We want to learn three different vector fields f : R3 → R3 Inaddition, these fields should obey

I ∇ ·B = 0 (divergence free)

I ∇×H = 0 (curl free)

I 1µ0B−H = M

← There exist covariancefunctions for this!

34 / 17 [email protected] Seminar Vi2

Page 65: Niklas Wahlstrom Novmber 13, 2017 - it.uu.se thesis and my work at Uppsala Three areas: I Magnetic tracking and mapping I Extended target tracking I Deep dynamical models for control

Simulation

Tra

inin

gd

ata

Pre

dic

tion

s

Divergence free Curl free

- =

1µ0B - H = M

35 / 17 [email protected] Seminar Vi2