physics of flat‐panel detectors - pusan national...

23
Physics of Flat‐panel Detectors Ho Kyung Kim [email protected] Pusan National University Detector Physics Intermediate General concepts Digitization Sampling in space => pixels checkboard artifacts Quantization in intensity => bits contouring artifacts 2

Upload: others

Post on 16-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Physics of Flat‐panel Detectors

Ho Kyung [email protected]

Pusan National University

Detector Physics

Intermediate

General concepts

Digitization

• Sampling in space => pixels checkboard artifacts

• Quantization in intensity => bits contouring artifacts

2

Page 2: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Dynamic range

• Ratio between x‐ray attenuation of the most radiolucent & the most radio‐opaque paths

‒ 𝑒

• Precision of the x‐ray signal measured in the most radio‐opaque anatomy

‒ e.g., 1% precision in the signal attenuated by a factor of 50 results in the dynamic range of 5000

‒ Chest: 

500, mammography: 

4000, & fluoroscopy: 

. 100

‒ Corresponding to 54 dB, 72 dB, & 40 dB or 10 bits, 12 bits, & 7 bits with the noise level of 1 LSB

3

Imaging field (or field of view, FOV)

• Scanning

‒ Scanning with a 1D array detector

‒ Scanning with a multi‐line array (slot) detector

‒ Excellent scatter rejection

‒ Heavy load of x‐ray tube

• Optical coupling

‒ Lens, tapered fiber‐optic bundles

‒ Secondary quantum noise: secondary quantum sink (𝑁 𝑁 ) due to optical inefficiency

• Mosaic

‒ Fixed pattern noise, high dark current

‒ Stitching problems

4

Page 3: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Flat‐panel detectors

Traditional x‐ray detection materials + large‐area active matrix readout structure

• X‐ray interactions with phosphors & photoconductors to generate a measurable response

• Storage of the response with a recording device

• The measurement of the stored response

Integrating the incoming signal over a finite period of time

• X‐ray fluence detector or charge‐integration detector

• Not a photon‐counting detector

Pixel = switch + sensor/storage

5

Operation

6

Page 4: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Energy band structures

7

Resolution losses

Main intrinsic causes

• Geometrical blurring

‒ Oblique incidence of x‐ray beam

• Electron‐range blurring

‒ ~1 3 𝜇m at 10‐30 keV

‒ ~10 30 𝜇m at 50‐100 keV

• K‐fluorescence reabsorption

‒ ~50 200 𝜇m

8

Page 5: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

9

Independence of a‐Se thickness on MTF (due to high E‐field)

Mainly due to electron range

Mainly due to K fluorescence

Photoconductors

Typical properties

• 𝐸 ~ 2 eV; insulator with negligible free carriers at room temp.

• Sufficient lifetime of radiation‐induced carriers to reach the surface of the detection vol.

• High E‐field => fast traverse of charges => less time for lateral diffusion => high resolution

• 𝑊~3𝐸 to release an e‐h pair

Amorphous selenium

• 𝑊~ 50 eV at typ. 10 V/m due to (germinate & columnar) recombination of e‐h pairs

• Blocking contact (limited by the field strength)

• Low surface (transverse) conductivity (by introducing a high density of traps)

• a‐Se:0.5%As to prevent from crystallization; adversely, As causes large density of ℎ traps (short 𝜏 )

• a‐Se:0.5%As + 10‐20 ppm Cl (stabilized a‐Se) to reduce ℎ traps

‒ 𝜇 0.13 cm V s ; 𝜇 0.003 0.006 cm V s‒ 𝜏 50 500 𝜇s; 𝜏 100 1000 𝜇s‒ 𝑆 ~6.5 65 mm; 𝑆 ~0.3 3 mm @ 10 V/m (Schubweg, 𝑆 𝜇𝜏𝐸)

• 𝑍 = 34

10

Page 6: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Other possible photoconductors

PbI2 & PbO have been used for nuclear radiation detectors & vidicon

TlBr has a high ionic conductivity, causing large dark current

Further candidates include CdZnTe, CdTe, & HgI2

11

Phosphors

Conversion gain (or quantum amplification)

• Deexcitation of conduction‐band electrons through activators, emitting light (~2‐3 eV)

12

Page 7: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

X‐ray screens

Highly scattering (or turbid) rather than transparent to light

• Phosphor powder (high refractive index) + binder (optically transparent)

• Trade‐off between the phosphor thickness (x‐ray interaction efficiency) & spatial resolution

Factors affecting image quality

• Phosphor grain size, size distribution, bulk absorption, & surface reflectivity

• Back‐screen configuration improves the spatial resolution compared to the front‐screen one

• FPDs are configured in the front‐screen design because of the thickness (~0.7 mm) of glass substrate

Poor light‐collection eff. can limit the overall performance of the complete system

13

14

A. Transparent w/ reflective backingB. Transparent w/ absorptive backingC. Turbid w/ reflective backingD. Turbid w/ 50% abs. in bulkE. Turbid w/ 50% abs. in abs. backingF. Ideal

Swank's model Design C

Page 8: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Structured phosphors

CsI

• Needle‐like closely packed crystallites => pillar‐like (columnar) structure (~10 m, reduced density of ~80‐90% of single crystal)

• Fiber‐optic light guide (𝑛 1.78 𝑛 1): 83% internal reflection• Activator controls the emission spectrum

‒ Na: blue (~450 nm)

‒ Tl: green (~550 nm) well matched to the response of a‐Si:H layers

• Hygroscopic & mechanically weak

Fiber‐optic faceplates with scintillation impurities

Micro‐channel array filled with scintillators

15

16

Higher light output

Page 9: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Noise in x‐ray converters

Mainly related to the x‐ray exposure

Further degraded by

• Lack of x‐ray absorption (quantum‐absorption inefficiency)

‒ 𝛼 𝐸 1 𝑒

• Fluctuations in the detector response to the x‐ray absorption

‒ Gain‐fluctuation noise or the Swank noise factor, 𝐼

• DQE 0 quantum absorption inefficiencygain fluctuation 𝛼 𝐼

17

Measurement of the Swank noise

18

Page 10: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Depth‐dependent signal transfer

• Known as the Lubberts effect

• Decreasing DQE as 𝑓 increases

19

Fabrication

Amorphous Si by PECVD

• 𝜇 ~1 cm V s ; 𝜇 0.003 cm V s• Microcrystalline Si with an order of magnitude higher mobilities

• Polycrystalline Si with an order of magnitude higher again

• Crystalline Si: 𝜇 ~1300 cm V s ; 𝜇 ~500 cm V s

Difference in the pixel design compared to the conventional LCD process

• p+ deposition; thick i layer ( 1 μ𝑚)

Photolithography

20

Page 11: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Indirect‐conversion pixel

Photodiode

• Light absorption coeff. of a‐Si:H (~10 to ~10 cm‐1) > that of c‐Si by an order of magnitude

‒ a‐Si:H 𝐸 ~1.7 eV whereas c‐Si 𝐸 ~1.1 eV

‒ ~0.5 μm‐thick i‐layer is sufficient to absorb most visible photons

‒ 1~2 μm is typical to reduce pixel capacitance

• Photoconductive gain mode with ohmic contacts

‒ Large dark current & low dynamic range

• Blocking contacts preventing the injection current

21

pin photodiode

• ITO (~50 nm + p+ (c‐Si:H alloy) (~10 20 nm + i (~1.5 μm + n+ (~10 50 nm‒ Lower dark current (~10 A cm )

Schottky photodiode

• No p+ layer

‒ Higher quantum efficiency; more compatible with the AMLCD process

‒ Higher dark current (~10 A cm )

MIS photodiode

• Insulator instead of the p+ layer; hence reverse n‐i‐p configuration

‒ Requiring the refresh cycle to remove hole build‐up (switching polarity)

22

Page 12: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Direct‐conversion pixel

Charge storage capacitor (insulator) + collection electrode (metal)

Require an electric field strength ~10 V μm• Additional designs protecting from the high voltage damage

23

~1 pF (~10 V)

~5 pF cm‐2 => 0.002 pF for 200 m pixel (~4990 V)

Switch

Diodes

• Improvement in device yield because of the same as the sensor

• Smaller in area (~5%), increasing pixel fill factor

• Larger resistance at lower on bias voltage, causing image lag

• Large charge transient (i.e., pixel cross‐talk) during switching (due to higher capacitance)

TFT

• Structure

‒ Gate dielectric a‐Si3N4:H/intrinsic a‐Si:H/drain & source n+ a‐Si:H/passivation

‒ Additional metallic light shield

24

Page 13: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

• On (~+10 – 20 V)/off (~‐5 – 10 V)

‒ 𝐼 ~0.1 1 10 A per W in μm‒ 𝑅 ~1 MΩ; independent of 𝑉 in contrast to 

the diode switch

25

• Coupling capacitance due to geometrical overlaps

– Depending on the exact details of the array designs

– Can be a significant contributor to the total data line capacitance (seen by the external electronics)

• Charge is injected into the sensor & onto the data line

– Small changes in the gate voltage along a data line can result in line‐correlated noise

– Fluctuations in the bias voltage are coupled into the data line

– Changes in the threshold voltage, 𝑉

Array design

Aperture: the dimension of active portion of each detector element

• Determine the spatial frequency response of the detector; MTF 𝑢 sinc 𝜋𝑎𝑢

Pitch: the sampling interval of the detector

• Nyquist frequency =  2𝑝• Aliasing

• Pre‐sampling blurring to reduce aliasing

Fill factor

• Geometrical fill factor: the fraction of the pixel area sensitive to the incoming signal

• Effective fill factor

26

Page 14: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

27

28

Page 15: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Noise source intrinsic to array

kTC switching (thermal noise on capacitors)

• 𝜎 2𝑘𝑇𝐶 /𝑒

• 𝜎 ~560 𝑒 if 𝐶 1 pF @ room temp.

TFT channel resistance (related to the bandwidth of the readout circuit)

• Thermal (Johnson) noise

• 1/f flicker noise

Dark current

• Shot noise

• 1/f noise

Distributed resistance of the metallic lines

29

30

Page 16: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

31

Peripheral electronics

Circuitry that supplies the required voltages to the array elements, and amplifies & digitizes the signals from the pixels

Potential noise sources tending to reduce the quality of the final image

Preamplifier

• Charge‐integrating design (CSPA)

• Feedback capacitor determines the electronic gain (mV/pC)

• 𝜎 noise floor 𝑒 slope 𝐶 400 4.5𝐶

Correlated‐double sampling

Bias voltage

• Line‐correlated noise to which human vision is extremely sensitive

32

Page 17: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

33

Image processing

To obtain a diagnostic‐quality radiograph, remove artifacts & adjust the appearance of the raw image information

Flat‐fielding correction

• Correction of variations in pixel sensitivity & offset (due to thickness & quality of layers)

• Dark‐field images for variations in pixel & electronic offsets

• Flood‐field images for variations in pixel sensitivity & electronic gain

Defects

• Thresholding to identify defects

• Difficult to set up the threshold limits for partially functional or nonlinear response pixels

• Median filter

‒ Difficult to correct the clusters of bad pixels/several adjacent bad lines

Image lag & ghosting

34

Page 18: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

35

Performance

Dynamic range

36

𝑆100

𝑋 in mR

Page 19: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Imaging performance

DQE 𝑢

‒ 𝑊 𝑢 = normalized NPS

• A basis to determine the physical principles involved in the detectors

MTF 𝑢 MTF 𝑢 MTF 𝑢• MTF 𝑢 MTF 𝑢

‒ ~60% @ 𝑢

‒ Noise aliasing

‒ 𝛾 𝑢 𝑝 ; 𝑢 = the first zero freq.

• MTF 𝑢 MTF 𝑢‒ ~10% @ 𝑢

NPS 𝑢 const. NPS 𝑢 ~𝑢

37

NPS shows a marked exposure dependence

DQE increases with exposure and a plateau is finally reached where further increase in exposure makes no difference to the DQE

DQE 0 DQE 0 ; DQE 𝑢 DQE 𝑢

38

Page 20: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

System performance modeling

Fill factor

• Sub‐unity 𝛾 reduces DQE(0) of the directdetector by the same factor, whereas no loss in the indirect detector due to sharing of signals from each x‐ray photon with many pixels

Aliasing

• Always present in Se detectors

• Reduction/removal by blurring prior to pixel sampling

‒ Inevitable in reduction of the high‐freq. components of signal

‒ Much more susceptible to external noise (e.g., electronic noise or secondary quantum statistics)

39

DQE 𝑢 losses

• Lubberts effect

‒ Due to the depth‐dependent MTF characteristics in an x‐ray conversion layer (usually phosphors)

‒ Less or none effective in Se & fiber‐optic scintillation layer

‒ Vulnerable to aliasing

‒ Requiring anti‐aliasing blurring layer

• K‐fluorescence reabsorption

‒ Partial energy absorption with K‐fluorescence escape or reabsorption at remote site give rise to substantial blurring & noise

40

Page 21: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Clinical applications

Chest radiography

• Difficult because of necessity of large dynamic range considering very radio‐lucent (lung fields) & very radio‐opaque (mediastinum) regions

• Possible solution with very highly penetrating x‐ray beams (130–150 kVp)

• Dual‐energy imaging to isolate the bony details (i.e., the spine & ribs) from the soft tissues

41

Fluoroscopy

• The most demanding potential application for FPDs

• Must be x‐ray quantum‐limited even at extremely low exposure levels 

• XRII

‒ Bulky nature, veiling glare, geometric distortion

• FPDs

‒ Reduction of noise to permit quantum‐noise limited operation at the low end of fluoroscopic rates (i.e., 0.1 μR s )

‒ Reduction of the image carry over or lag

42

Page 22: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Mammography

• X‐ray projection to visualize soft‐tissue contrast

• Breast compression to equalize the x‐ray path length to the point that the whole breast can be visualized

• Film followed by screen to ensure the highest possible image resolution (back‐screen design)

• FPDs with high dynamic range is compatible to visualize dense breasts

Tomography

• Blurs out the shadows of superimposed structures to allow better isolation of the structures of interest

• Digital tomosynthesis

• Volumetric CT

‒ Improved z‐direction resolution

‒ Problem with the increased level of scatter

43

44

Page 23: Physics of Flat‐panel Detectors - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Industry/7_FPD.pdf · 2019. 4. 24. · Structured phosphors. CsI. • Needle‐like

Portal imaging

• To confirm the correct positioning of the patient in the output portal of the therapy machine

• Not possible to see soft‐tissue contrast & difficult to visualize bones because of inadequate contrast/resolution

• Video‐based systems

‒ Secondary quantum sink where each x‐ray photon is represented by less than a single light photon

‒ Dominance of electronic noise

45

Future prospects

Increased numbers of active elements per pixel, allowing an amplifier at every pixel and integrated readout electronics to make an x‐ray imager on glass

Increased x‐ray to charge conversion gain (lower W or avalanche gain)

More sophisticated switching structures with reduced coupling capacitance, lower leakage current, smaller physical area, & more robust operating characteristics

46