plantingscience!! celery!challengetoolkit! · plantingscience cc by-nc-sa 3.0 | | celery...

22
PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 1 of 22 Last Updated 7/2013 Last Updated 7/2013 BACKGROUND: The PlantingScience Celery Challenge Toolkit provides background, materials lists, detailed procedures, and safety considerations for additional experimental methods related to osmosis, transpiration, and visualizing plant cells. These tools can provide students the opportunity to ask a wider range of research questions during the Celery Challenge inquiries than would otherwise be possible. Alternatively, teachers may select one or more of these methods as the basis for classroom demonstrations of plant physiology or morphology. CONTENTS: Page Cutting Transverse Sections of Plant Tissues for Microscopy....................................................................... 2 Making Epidermal Peels for Microscopy ...................................................................................................... 4 Visualizing & Counting Stomata Using the Impression Method ................................................................... 6 Visualizing Plant Cells Using a Microscope ................................................................................................... 9 Determining the Electrical Conductance of a Solution ............................................................................... 12 Measuring Transpiration Using a Simple Potometer .................................................................................. 14 Quantifying Water Mass in Celery .............................................................................................................. 17 Plant Cell Staining Techniques .................................................................................................................... 19 . PlantingScience Celery Challenge Toolkit Image: findingthenow (Flickr)

Upload: others

Post on 23-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 1 of 22  Last Updated 7/2013 Last Updated 7/2013

 

                       BACKGROUND:    

The  PlantingScience  Celery  Challenge  Toolkit  provides  background,  materials  lists,  detailed  procedures,  and  safety  considerations  for  additional  experimental  methods  related  to  osmosis,  transpiration,  and  visualizing  plant  cells.    These  tools  can  provide  students  the  opportunity  to  ask  a  wider  range  of  research  questions  during  the  Celery  Challenge  inquiries  than  would  otherwise  be  possible.    Alternatively,  teachers  may  select  one  or  more  of  these  methods  as  the  basis  for  classroom  demonstrations  of  plant  physiology  or  morphology.    CONTENTS:  

Page  Cutting  Transverse  Sections  of  Plant  Tissues  for  Microscopy  .......................................................................  2  Making  Epidermal  Peels  for  Microscopy  ......................................................................................................  4  Visualizing  &  Counting  Stomata  Using  the  Impression  Method  ...................................................................  6  Visualizing  Plant  Cells  Using  a  Microscope  ...................................................................................................  9  Determining  the  Electrical  Conductance  of  a  Solution  ...............................................................................  12  Measuring  Transpiration  Using  a  Simple  Potometer  ..................................................................................  14  Quantifying  Water  Mass  in  Celery  ..............................................................................................................  17  Plant  Cell  Staining  Techniques  ....................................................................................................................  19  

.      

   

PlantingScience    

Celery  Challenge  Toolkit  

   

Image:    findingthenow  (Flickr)  

 

Page 2: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 2 of 22  Last Updated 7/2013 Last Updated 7/2013

 

CUTTING  TRANSVERSE  SECTIONS  OF  PLANT  TISSUES  FOR  MICROSCOPY  

 Purpose:    To  create  thin  cross-­‐sections  of  celery  tissue  for  microscopic  visualization.    

How  the  Method  Works:    Transverse  sections  are  samples  of  plant  tissue  cut  perpendicular  to  the  long  axis  of  the  organ.    For  example,  leaf  transverse  sections  allow  the  visualization  of  a  thin  slice  of  internal  tissues  from  the  leaf’s  upper  surface  to  its  lower  surface.    Here,  the  focus  is  on  celery  petioles  and  the  visualization  of  internal  structures  such  as  vascular  bundles  and  pith.    The  first  method,  hand  sectioning,  is  fast  and  simple,  but  requires  more  skill.    The  second  method  describes  how  to  build  a  “poor  man’s  microtome”  –  an  instrument  that  can  be  used  to  cut  very  thin  sections  of  plant  material.    Sections  can  then  be  examined  with  a  microscope.    If  desired,  use  Plant  Cell  Staining  Techniques  (p.  19)  to  identify  cell  types  and  components.    

Technical  Complexity:    Simple  for  hand  sectioning,  moderate  for  the  microtome.    

Time  Required:    5  minutes  for  hand  sectioning;  10  min.  for  building  and  using  the  microtome.      

Materials:  Hand  Sectioning:           Poor  Man’s  Microtome:  Celery  petiole  for  observation         Celery  petiole  for  observation    Single-­‐edged  razor  blade         Nut  and  bolt  of  compatible  sizes  Small  dish  of  tap  water           Wax,  in  a  small  microwaveable  container  Toothpick             Microwave  Microscope  slide           Utility  knife  (Optional)    Potato  or  carrot         Microscope  slide    

Hand  Sectioning:  Hand  sectioning  is  best  used  on  relatively  firm  tissues  and  may  be  difficult  if  celery  is  limp.    This  method  takes  practice  but  can  produce  excellent  results.  

1. Prepare  a  small  dish  of  water,  then  select  the  desired  plant  specimen  and  a  new  razor  blade.  

2. Hold  the  part  to  be  sectioned  firmly  between  your  thumb  and  index  finger  (see  image).    Sandwich  small  or  fragile  parts  between  pieces  of  potato  or  carrot.  

3. Taking  care  to  avoid  cutting  yourself,  make  a  preliminary  cut  in  the  plane  of  tissue  you  eventually  want  to  examine.  

Make a Hand Section

Make an Epidermal Peel

Page 3: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 3 of 22  Last Updated 7/2013 Last Updated 7/2013

 

• Slice  towards  yourself  with  the  razor,  using  as  much  of  the  blade  surface  as  possible.      • This  cut  will  expose  fresh  tissue;  you  can  discard  the  older  piece  it  removes.  

4. Using  the  same  cutting  technique,  quickly  make  a  series  of  sections,  each  as  thin  as  possible.  5. Place  each  section  in  your  dish  of  water  as  it  is  made.  

• Avoid  tearing  the  section  as  you  move  it.    An  ideal  section  includes  the  entire  cross-­‐section  of  tissue.  

• Keep  the  pieces,  however!    These  are  often  the  thinnest.  6. Lay  out  a  glass  slide  and  place  a  drop  of  water  onto  it  using  a  disposable  pipette.  7. Transfer  the  thinnest  section  to  the  slide,  using  the  flat  side  of  a  toothpick  if  needed.  8.  (Optional)    If  you  want  to  stain  the  cells,  use  a  procedure  from  Plant  Cell  Staining  Techniques.  

 

Poor  Man’s  Microtome:  Although  microtomes   can   be   purchased,   they   are   usually   quite   expensive.     This  method   can   be   used  much  more  cheaply  and  will  give  better  results  than  can  be  achieved  by  hand  sectioning  alone.    

     

     Steps  in  Using  a  “Poor  Man’s  Microtome,”  as  Described  in  the  Instructions  Below  

 

1. Cut  a  small,  cubical  piece  of  plant  material,  such  as  from  a  stem.    2. Place  the  plant  piece  into  a  nut  that  is  barely  fastened  to  a  bolt.    3. Melt  a  small  amount  of  wax  in  a  microwave  for  about  2  min,  then  pour  the  melted  wax  onto  the  

plant  material,  filling  the  space  around  it  in  the  nut.      4. After  the  nut  is  filled  completely,  let  it  sit  for  about  2  min  while  the  wax  cools  and  hardens.  5. With  the  bolt  on  its  side,  cut  straight  down  the  nut  with  a  utility  knife  to  make  a  thin  section.  

• In  all  steps  using  the  utility  knife,  take  proper  care  to  avoid  cutting  yourself.  • This  first  segment  of  plant  tissue  plus  wax  can  be  discarded.  

6. Screw  the  nut  slowly  onto  the  bolt  to  raise  a  thin  section  of  fresh  wax  and  tissue,  then  cut  again.  • Repeat  until  you  have  enough  thin  sections  to  work  with.  

7. Discard  the  wax  from  the  section(s),  and  place  the  best  section  on  a  slide.  8. Place  one  drop  of  water  onto  the  plant  section  or  (optionally)  carry  out  a  staining  procedure.    

Step  1                                                                Step  2                                                                Step  3  

 

 

 

Step  5                                                                Step  7                                                                Step  8  

Page 4: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 4 of 22  Last Updated 7/2013 Last Updated 7/2013

 

MAKING  EPIDERMAL  PEELS  FOR  MICROSCOPY    Purpose:    To  remove  samples  of  the  outer  cellular  layer  of  plant  tissue  for  microscopic  visualization.    

How  the  Method  Works:    Epidermal  cells  make  up  the  “skin”  of  a  plant.    The  cells  form  a  distinct  tissue  layer  that  restricts  water  movement  out  of  the  plant;  this  layer  also  contains  specialized  cells  called  stomata  that  regulate  gas  exchange  and  transpiration.    

Quantifying  and  measuring  epidermal  and  stomatal  cells  is  only  possible  with  a  microscope,  and  this  can  provide  information  about  the  plant’s  ability  to  move  water.    Two  methods  for  collecting  epidermal  samples  for  microscopy  are  described  here.    Epidermal  peels  are  fast  and  make  excellent  samples  for  quantification,  but  they  require  some  skill.    Epidermal  scrapes  are  much  easier,  but  they  collect  only  a  few  cells  at  a  time.    If  desired,  use  Plant  Cell  Staining  Techniques  (p.  19)  to  identify  cell  components.    

Technical  Complexity:    Simple.    

Time  Required:    5  minutes.      

Materials:            • Celery  petiole  or  leaf            • Single-­‐edged  razor  blade  or  scalpel          • Toothpick              • Microscope  slide              

Epidermal  Peels:    Single  layers  of  epidermal  cells  can  be  obtained  using  this  procedure.    It  will   likely  be  easier  to  remove  the  epidermis  from  the  smooth,  concave  side  of  the  celery  than  from  the  ridged,  convex  side.      

1. Break  the  petiole  in  half  so  that  only  the  epidermis  connects  the  two  pieces.  o Cutting  partway  through  the  opposite  side  from  the  one  you  are  sampling  will  help,  as  

shown  in  the  figure  above.    Take  care  to  avoid  cutting  yourself.  2. Gently  pull   one  half  of   the  petiole  down   the   side  of   the  other   so   that   the  epidermis   is  pulled  

away  from  the  tissue  of  the  latter.  3. Lay  the  exposed  epidermis  on  a  drop  of  water  and  cut  away  the  remaining  tissue.  4. Use  the  flat  side  of  a  toothpick  to  transfer  the  exposed  epidermis  to  a  microscope  slide.  5. (Optional)    If  you  want  to  stain  the  cells,  use  a  procedure  from  Plant  Cell  Staining  Techniques.  6. (Optional)    Assess  the  density  and  condition  of  stomata  and  epidermal  cells  with  the  last  section  

of  Visualizing  &  Counting  Stomata  Using  the  Impression  Method,  and  quantify  the  sizes  of  cells  and  stomatal  pores  using  Steps  5-­‐7  of  Visualizing  Plant  Cells  Using  a  Microscope.    

Make a Hand Section

Make an Epidermal Peel

Make a Hand Section

Make an Epidermal Peel

Make a Hand Section

Make an Epidermal Peel

Page 5: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 5 of 22  Last Updated 7/2013 Last Updated 7/2013

 

Epidermal  Scrapes:  Individual   cells,   or   small   groups   of   cells,   can   be   obtained   by   scraping   the   celery   surface.     If   you   have  difficulty  getting  epidermal  peels  from  the  ridged  side  of  a  celery  petiole,  this  alternative  may  be  helpful.    Unfortunately,  you  will  not  be  able  to  measure  cell  density  with  this  approach.  

1. Taking  care   to  avoid  cutting  yourself,  use  a  scalpel,   razor,  or  wooden  toothpick   to  scrape   the  epidermal  tissue  you  wish  to  examine.  

2. Rinse  the  scraper  in  a  drop  of  water  on  a  microscope  slide.      3. (Optional)    If  you  want  to  stain  the  cells,  use  a  procedure  from  Plant  Cell  Staining  Techniques.  4. (Optional)    You  can  quantify  the  sizes  of  cells  and  stomatal  pores  using  Steps  5-­‐7  of  Visualizing  

Plant  Cells  Using  a  Microscope.      

Page 6: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 6 of 22  Last Updated 7/2013 Last Updated 7/2013

 

VISUALIZING  &  COUNTING  STOMATA  USING  THE  IMPRESSION  METHOD  

 Purpose:    To  determine  stomatal  density  and  examine  the  state  of  stomata  in  leaves  by  taking  impressions.    

How  the  Method  Works:    Painting  nail  polish  onto  the  surface  of  a  plant  tissue  creates  an  impression  of  its  outer  cellular  structure.    The  impression  is  peeled  from  the  tissue,  then  examined  under  a  microscope  to  view  the  stomata  and  count  how  many  are  present  per  unit  area.    You  may  also  determine  areas  of  guard  cells,  stomatal  pores,  and  epidermal  cells,  or  cell  volumes  before  and  after  an  experiment  using  Steps  5  through  7  from  Visualizing  Plant  Cells  Using  a  Microscope.      

Technical  Complexity:    Moderate.    It  can  take  some  practice  to  learn  how  to  bring  specimens  into  focus  without  damaging  the  lenses.    

Time  Required:      60  minutes  from  set-­‐up  to  completion.    

 

Materials:  • Celery  samples  (1-­‐2  per  treatment)  • Clear  nail  polish  • Compound  light  microscope  • Blank  microscope  slides  • Dissecting  probe  or  other  pointed  instrument  • Forceps  • Distilled  water  and  eyedropper  • Permanent  marker  •  (Optional)    Prepared  slide  containing  a  known  specimen  • (Optional)    Digital  camera  

 

Lab  Safety:  Broken  coverslips  and  broken  slides  are  very  sharp.    Dispose  of  these  materials  in  the  glass  disposal,  NOT  the  regular  trash  can.    Wearing  well-­‐fitting  lab  gloves  is  recommended  to  help  prevent  accidental  cuts.    

Prepare  the  Samples:  1. In  your  notebook,  describe  the  celery  tissues  you  will  sample.      

a. Indicate  for  each  sample  whether  the  impression  is  being  made  before  or  after  experimental  treatment,  and  what  that  treatment  is.  

Page 7: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 7 of 22  Last Updated 7/2013 Last Updated 7/2013

 

b. Identify  whether  you  will  be  sampling  a  leaflet  or  petiole.   Will  leaflets  be  sampled  on  the  underside,  top  side,  or  both?   Will  petioles  be  sampled  on  the  concave  side,  convex  side,  or  both?  

c. Make  digital  photographs  or  sketches,  using  labels  or  file  names  to  keep  track  of  all  samples.  2. Prepare  epidermal  impressions  from  each  sample.  

a. Paint  a  1  cm  x  1  cm  square  (1  cm2)  of  clear  nail  polish  onto  the  tissue  surface.       Make  sure  there  are  no  gaps  in  the  layer  of  nail  polish.     Several  coats  are  okay,  since  you  don’t  want  the  nail  polish  to  tear  as  you  peel  it  off.  

b. Allow  the  nail  polish  to  dry  thoroughly.    

Get  the  Microscope  Ready:  Set  up  the  microscope  while  waiting  for  the  nail  polish  to  dry.    Ask  your  teacher  for  assistance.    You  may  wish  to  learn  more  about  safely  using  the  microscope  or  refresh  your  memory  by  reading  the  Microscopy  Manual.  

1. Turn  the  microscope  light  on.  2. Move  the  stage  far  from  the  objective  using  the  rough  focus  

knob.  3. Push  the  lowest  power  objective  into  place.  4. (Optional)  Practice  with  a  slide  containing  a  known  specimen  to  

help  you  familiarize  yourself  with  the  instrument.    

Set  Up  Slides  of  the  Impressions:  1. Gather  one  microscope  slide  for  each  impression.  2. Lift  off  each  nail  polish  square  –  the  tissue  impression  –  as  one  

piece.    a. Use  a  dissecting  probe  to  gently  tease  the  edge  of  the  nail  

polish  up,  lifting  or  peeling  it  away  from  the  celery  tissue  until  about  halfway  lifted.      

b. Use  forceps  to  finish  peeling  away  the  square.      c. Remember  which  side  of  the  peel  was  facing  the  tissue.  

3. Place  a  drop  of  distilled  water  onto  a  microscope  slide.      4. Put  the  impression  onto  the  surface  of  the  water  with  the  side  that  was  touching  the  tissue  

facing  up,  away  from  the  water.    5. Gently  smooth  out  the  impression  using  the  dissecting  probe  so  that  it  lays  flat  against  the  slide.  6. With  a  permanent  marker,  label  the  slide  to  indicate  basic  information  about  what  tissue  the  

impression  came  from.  o For  example,  you  might  record  a  sample  number  on  both  the  slide  and  the  description  of  

the  sample  in  your  lab  notebook.  7. Repeat  steps  2-­‐6  with  the  remaining  impressions.  

 

Visualize  the  Impressions:  

The  large  donut  shape  above  is  an  impression  of  the  two  cells  that  form  a  stomate.  Stomata  are  openings  through  which  gases  enter  and  leave  the  leaf.    The  cells  around  the  pore,  called  guard  cells,  open  and  close  to  make  it  bigger  or  smaller.  

Page 8: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 8 of 22  Last Updated 7/2013 Last Updated 7/2013

 

Examine  each  impression  under  the  microscope  and  collect  data  on  the  stomata.    Remember  that  you  are  looking  at  a  clear  impression  of  the  tissue  surface,  not  the  tissue  itself!  

1. Take  notes  and  make  sketches  or  digital  photos  of  what  you  see.  2. Find  the  impressions  of  the  stomata.  

a. Are  they  open,  closed,  in  between,  or  a  mix?    Take  notes.  b. Make  a  sketch  or  digital  photo  of  an  average  stomate  in  the  impression.  

3. Count  the  number  of  stomata  in  the  entire  impression  and  record  the  number.  o Have  one  other  teammate  count  all  stomata  in  the  same  slide  to  confirm  the  number.  o Stomatal  density  is  the  number  of  stomates  per  cm2,  so  counting  over  the  1  cm2  impression  

gives  a  direct  estimate  of  this  value.  o Stomatal  number  over  the  whole  tissue  is  stomatal  density  times  tissue  surface  area  in  cm2.  

     

Page 9: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 9 of 22  Last Updated 7/2013 Last Updated 7/2013

 

VISUALIZING  PLANT  CELLS  USING  A  MICROSCOPE    Purpose:    To  use  microscopy  to  quantify  the  size  and  density  of  different  plant  cells.    

How  the  Method  Works:    Wet  mount  slides  of  celery  cells  are  viewed  at  400X  magnification,  with  subsamples  measured  to  calculate  size,  volume,  and  density  of  different  cell  types.  

 

Technical  Complexity:    Moderate.    You  may  need  to  make  several  samples  to  get  a  thin  enough  layer  to  see  individual  cells  clearly.    It  can  take  some  practice  to  learn  how  to  bring  specimens  into  focus  without  damaging  the  lenses  and  to  accurately  measure  cells  using  optical  tools.    

Time  Required:    30  minutes.      

Materials:  • Compound  light  microscope  with  40X  objective  and  at  least  one  lower-­‐powered  objective  • Lens  paper  • Samples  of  treated  celery  tissue  • Scalpel  • Microscope  slides  and  coverslips  • Eyedropper  or  small  pipette  • Water  • Forceps  • Ocular  micrometer  • Stage  micrometer  or  ruler  • (Optional)    Two  dissecting  needles  • (Optional)    Digital  camera  • (Optional)    Polarizing  filters    

Lab  Safety:  Scalpels,  broken  coverslips,  and  broken  slides  are  very  sharp.    Dispose  of  these  materials  in  the  “sharps”  container  or  in  the  glass  disposal,  NOT  the  regular  trash  can.    Wearing  well-­‐fitting  lab  gloves  is  recommended  to  help  prevent  accidental  cuts.    

Procedure:    1. Before  you  begin,  carefully  clean  the  objectives  and  eyepieces  of  your  microscope  with  lens  paper.  

   

2. If  you  have  not  already  done  so  using  one  of  the  previous  three  methods,  prepare  your  specimen(s):  a. Select  a  tissue  of  interest  and  use  a  scalpel  to  slice  a  very  thin  fragment  from  it.      

Page 10: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 10 of 22  Last Updated 7/2013

 

b. Place  a  drop  of  water  into  the  center  of  a  microscope  slide  using  an  eyedropper  or  pipette,  then  transfer  the  fragment  to  the  water  on  the  slide.  

c. Gently  tease  apart  the  tissue  in  the  water  droplet  using  the  scalpel  or  two  dissecting  needles.  

d. Place  one  end  of  a  glass  coverslip  to  the  right  or  left  of  the  specimen  so  that  the  rest  of  the  slip  is  held  at  a  45o  angle  over  the  specimen.    

e. Slowly  lower  the  coverslip  with  a  dissecting  needle  or  forceps,  removing  any  air  bubbles.     The  coverslip  flattens  the  sample,  keeps  it  from  drying  out,  and  protects  the  

objective  lenses.  f. Press  down  very,  very  lightly  on  the  cover  slip  with  the  dissecting  probe  or  forceps.      

This  spreads  and  flattens  the  tissue,  so  that  you  can  better  see  one  layer  of  cells.    

3. Set  up  and  calibrate  an  ocular  micrometer  to  take  accurate  measurements  with  the  microscope:  a. If  you  have  not  used  a  microscope  recently,  make  sure  you  ask  your  teacher  and  read  up  on  

using  them.    b. Insert  the  micrometer  into  the  microscope’s  ocular  lens.  

You  may  need  to  unscrew  the  top  element  of  the  ocular  lens  to  do  this.   If  no  top  element  exists,  you  will  need  to  hold  the  micrometer  in  place  with  a  split  ring.  

c. Place  a  stage  micrometer  or  plastic  ruler  onto  the  stage  for  calibration.  d. Using  the  lowest  power  objective,  bring  the  scale  on  the  stage  micrometer  or  ruler  into  focus.  e. Line  up  one  end  of  the  stage  micrometer  or  ruler  with  one  end  of  the  ocular  micrometer  scale.  f. Read  across  the  scales  until  you  find  two  lines  that  are  exactly  superimposed.  g. Count  the  number  of  scale  units  on  the  ocular  micrometer  needed  to  reach  this  point.    Record  

this  and  the  corresponding  measurement  in  mm  from  the  stage  micrometer  or  ruler.  h. Divide  the  actual  measurement  by  the  number  of  ocular  micrometer  scale  units  to  determine  

the  distance  measured  by  one  ocular  micrometer  scale  unit.  i. Repeat  this  procedure  for  the  other  objectives  you  plan  to  use.    

4. Observe  your  specimen(s)  under  the  microscope:  a. Begin  by  using  the  lowest-­‐power  objective.    b. Locate  the  part  of  the  slide  that  has  seems  to  have  the  fewest  

layers  of  cells.  c. Use  the  focus  to  help  distinguish  among  individual  cells.  

Where  are  the  cell  walls?       What  cell  types  are  present?    What  are  their  distinguishing  features?   Make  a  sketch  of  your  observations,  noting  the  total  magnification  in  each  drawing.   Record  notes  about  the  sample.    For  example,  to  what  treatment  was  it  subjected?   Alternatively,  use  a  digital  camera  to  take  microscope  photos,  writing  the  total  

magnification,  sample  information,  and  photo  file  name  in  your  lab  notebook.   You  may  wish  to  use  a  polarizing  filter  to  distinguish  between  the  evenly  thick  secondary  

cell  walls  of  sclerenchyma  and  the  thinner  primary  cell  walls  of  other  cell  types.  

Page 11: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 11 of 22  Last Updated 7/2013

 

d. Use  the  40X  objective  to  look  at  the  sample.    Again,  make  a  sketch  or  digital  photo  of  your  observations.    Try  to  answer  the  following  questions  in  your  lab  notebook:  

Where  are  the  cell  walls?   What  cell  types  are  present  and  what  are  their  distinguishing  features?   What  details  do  I  see  at  this  scale  that  I  did  not  notice  at  lower  magnification?  

 

5. Determine  cell  area  for  3-­‐5  cells  of  a  given  type:  a. Use  the  objective  lens  that  allows  you  to  take  precise  measurements  of  a  given  cell  type.  b. Measure  width  and  length  of  cells  that  are  typical  of  what  you  see  in  the  sample  using  the  scale  

units  of  the  ocular  micrometer.   You  may  need  to  reposition  the  sample  to  do  this.    Be  sure  you  measure  the  same  cell  

for  both  length  and  width!  c. Record  the  number  of  scale  units  in  your  lab  notebook.  d. Convert  the  scale  units  to  measurements  in  mm  using  the  results  from  your  calibration  in  Step  3.  e. Calculate  the  average  width  and  average  length  of  these  cells.  f. Calculate  average  cell  area  as  average  cell  width  x  average  cell  length.    g.  Direct  measurements  in  different  cell  types  will  be  difficult  to  compare,  so  you  may  calculate  %  

change  in  average  cell  area  before  and  after  an  experiment  as  100%  x   (!"!#!$%  !"#!!!"#$%  !"#!)!"#$%  !"#!

 .    

6. Determine  cell  volume  for  the  same  cells  you  used  for  Step  5:      a. Assume  that  the  cells  are  basically  cubiodal.    Given  the  average  area  of  this  cell  type,  multiply  it  

by  average  length  to  give  one  “endpoint”  estimate  of  the  cell  volume.  b. Multiply  the  average  area  of  the  cell  type  by  average  width  to  give  the  other  “endpoint”  

estimate  of  cell  volume.  c. The  true  average  cell  volume  is  likely  to  fall  between  these  two  values.  d. Direct  measurements  across  cell  types  will  be  difficult  to  compare,  so  you  may  also  calculate  %  

change  in  average  cell  volume  as  100%  x   (!"!#!$%  !"#$%&!!"#$%  !"#$%&)!"#$%  !"#$%&

 .    

7. (Optional)  Using  an  epidermal  sample,  determine  average  stomatal  pore  size  from  3-­‐5  stomates:  a. Use  the  objective  that  allows  you  to  take  precise  measurements  of  a  stomatal  pore.  b. Adjust  the  stage  to  position  a  stomate  so  you  can  measure  its  pore  length  and  width  using  the  

ocular  micrometer.    Record  the  length  and  width  in  your  notebook.  c. The  approximate  stomatal  pore  area  can  be  described  as  pore  length  x  pore  width.  d. Repeat  for  additional  stomata  to  determine  the  average  stomatal  pore  area.  e. The  proportion  of  total  tissue  area  accounted  for  by  stomatal  pore  area  may  also  give  you  an  

idea  of  how  much  of  the  tissue  surface  allows  gas  exchange:    𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑠𝑡𝑜𝑚𝑎𝑡𝑎𝑙  𝑝𝑜𝑟𝑒  𝑎𝑟𝑒𝑎  x  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑠𝑡𝑜𝑚𝑎𝑡𝑎𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦  

You  must  also  determine  stomatal  density  in  your  specimen  using  the  last  section  of  Visualizing  &  Counting  Stomata  Using  the  Impression  Method  to  make  this  estimate.  

You  need  not  calculate  the  total  surface  area  of  the  tissue  from  which  you  took  the  specimen,  because  stomatal  density  is  already  adjusted  per  unit  area.  

   

Page 12: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 12 of 22  Last Updated 7/2013

 

DETERMINING  THE  ELECTRICAL  CONDUCTANCE  OF  A  SOLUTION    

 Purpose:    Use  conductivity  to  quantify  the  amount  of  ions  in  the  salt  solution  you  have  used  or  will  use  to  soak  celery  samples.    

How  the  Method  Works:    Electrical  conductance,  or  conductivity,  is  the  amount  of  electricity  that  can  be  conducted  over  a  given  

distance  in  an  aqueous  solution.    This  measure  is  often  used  to  represent  the  salinity,  or  saltiness,  of  a  liquid  solution.    Handheld  meters  can  be  used  to  accurately  measure  a  solution’s  conductivity,  and  therefore  salinity,  even  after  some  evaporation  has  occurred.    

Technical  Complexity:    Simple.    

Time  Required:    10  minutes  per  reading.      

Materials:  • Aqueous  solution  containing  one  or  more  types  of  ionic  solute  • Handheld  digital  conductivity  meter  • One  or  more  conductivity  standards  • Distilled  water  • Small  containers  for  standards  and  sample    

Calibrating  the  Conductivity  Meter  Conductivity  meters  will  differ  based  on  the  manufacturer.    Be  sure  to  read  the  instructions  that  come  with  the  instrument,  and  use  those  if  they  conflict  with  any  of  the  steps  below.    

1. Turn  on  the  conductivity  meter  and  allow  it  warm  up  for  at  least  five  minutes.  2. If  there  is  one,  adjust  the  temperature  knob  to  match  the  solution  temperature.  3. Calibrate  the  meter  against  one  or  more  standards  having  known  conductivity.      

a. Pour  just  enough  of  a  standard  into  its  own  container  so  that  it  will  immerse  the  meter’s  electrode.  

b. Insert  the  electrode  into  the  standard  and  allow  the  meter  to  reach  a  steady  reading.  c. If  the  meter  does  not  read  the  same  as  the  salinity  of  the  standard  you  used,  adjust  the  

meter  to  set  it  to  the  proper  salinity.    Follow  the  manufacturer’s  instructions  as  needed.  d. Rinse  the  meter  with  distilled  water,  collecting  the  rinse  water  in  another  container.  e. Hold  the  tip  of  the  electrode  against  the  outside  of  the  container  to  allow  any  large  drops  of  

water  to  flow  off  the  electrode.  f. If  desired,  repeat  steps  a-­‐e  with  additional  standards  to  calibrate  the  meter  over  a  larger  

range  of  conductivity  values.      

Page 13: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 13 of 22  Last Updated 7/2013

 

Measuring  Sample  Conductivity  1. Rinse  the  electrode  with  distilled  water  as  described  previously.      2. Insert  the  electrode  into  the  unknown  solution.  3. Allow  the  reading  to  stabilize  before  recording  the  value.      4. When  you  take  the  electrode  out  of  the  solution,  rinse  it  again  with  

distilled  water.  5. Cover  the  tip  or  place  the  electrode  back  into  its  proper  storage  

conditions.      

Page 14: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 14 of 22  Last Updated 7/2013

 

MEASURING  TRANSPIRATION  USING  A  SIMPLE  POTOMETER    Purpose:    Quantify  the  amount  of  water  a  celery  leaf  transpires  by  monitoring  its  water  uptake.    

How  the  Method  Works:    Transpiration  is  the  movement  of  water  through  a  plant.    The  loss  of  water  through  stomatal  pores  in  the  shoots  is  also  considered  part  of  transpiration,  as  this  evaporative  process,  along  with  osmosis,  drives  the  upward  movement  of  water  in  the  plant.    While  it  is  difficult  to  accurately  measure  the  loss  of  water  from  a  plant’s  shoots,  

measuring  the  resulting  water  uptake  through  the  roots,  stem,  or  thick  petioles  is  simple.    Here  transpiration  is  measured  in  a  celery  leaf  by  placing  the  cut  petiole  into  one  end  of  a  piece  of  tubing  and  sealing  it.    Filling  the  tube  with  water  allows  the  measurement  of  water  consumed  by  the  leaf  over  time  as  the  change  in  water  volume  inside  the  tubing.    

Technical  Complexity:    Medium,  since  the  process  of  making  and  keeping  a  seal  in  the  tube  can  be  difficult.    

Time  Required:    20-­‐30  minutes  per  reading.      

Materials:  • Whole  leaves  or  bunch  of  celery  • Paring  knife,  scalpel,  or  single-­‐edged  razor  blade  • At  least  40  cm  of  clear,  flexible  plastic  tubing  with  a  diameter  large  enough  to  fit  a  celery  petiole    • Rubber  stoppers  of  various  sizes  • Parafilm  or  other  hydrophobic  sealing  material  • Shallow  basin    • Tap  water  • Paper  towels  • Permanent  marker  • Clock  or  timer  • Ruler    

Assembling  the  Potometer:  Proper  sealing  of  the  potometer  is  the  most  important  factor  in  making  accurate  measurements  here.      

1. Fill  a  shallow  basin  with  tap  water.  2. Submerge  a  length  of  clear  tubing  entirely  in  the  basin.    

o Gently  move  the  basin  or  tubing  until  all  air  bubbles  have  escaped  the  tubing.  3. Remove  one  leaf  of  celery  from  the  bunch  and,  taking  care  not  to  cut  yourself,  use  the  paring  

knife  or  other  sharp  tool  to  cut  the  end  of  the  petiole.  

Image:    Matthew    McVickar  (Flickr)  

Page 15: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 15 of 22  Last Updated 7/2013

 

4. Immediately  immerse  the  cut  end  of  the  petiole  in  the  basin  of  water,  and  work  carefully  to  fit  the  cut  end  into  one  end  of  the  tubing.  o Exposing  the  cut  end  to  air  too  long  will  allow  air  to  be  pulled  

into  the  bottom  of  the  petiole,  slowing  the  normal  rate  of  transpiration.  

o It  may  be  helpful  to  have  several  sizes  of  tubing  available  or  to  cut  the  petiole  further  towards  the  leaflets  in  order  to  fit  the  petiole  inside.  

5. Close  the  gap  between  the  concave  side  of  the  petiole  and  the  rest  of  the  tubing  by  fitting  a  rubber  stopper  into  the  same  end  of  the  tubing.  o You  may  need  to  try  more  than  one  stopper  size  to  find  one  that  fits.  o Avoid  crushing  the  end  of  the  petiole  to  prevent  damage  to  the  vascular  tissues.  

6. Carefully  seal  the  joints  between  the  tubing,  celery,  and  stopper  with  hydrophobic  film.  a. Cut  a  piece  of  film  2-­‐5  cm  long  from  the  roll.  b. Place  one  edge  of  the  film  against  the  stopper  and  tubing.  c. Pressing  down  on  the  edge  of  the  film,  use  your  other  hand  to  stretch  the  film  and  pull  it  

around  both  the  tubing  and  the  stopper,  and  then  both  the  tubing  and  the  petiole.  d. Wrap  the  film  around  the  celery,  stopper,  and  tubing  several  times  until  it  is  completely  

used  up.    e. You  may  want  to  wrap  each  cycle  further  upwards,  so  that  you  also  close  the  gap  between  

the  stopper  and  celery.    

Measuring  Transpiration:  This  step  will  require  two  people.    One  person  will  hold  the  free  end  of  the  tubing  and  make  measurements,  while  the  other  person  will  hold  the  celery  leaf  upright.  

1. Lift  the  free  end  of  the  tubing  above  the  surface  of  the  water.  2. Pour  out  a  small  amount  of  water  from  this  end,  so  that  the  meniscus  is  clearly  visible  inside.  3. The  second  person  should  lift  the  sealed  end  of  the  tubing  above  the  surface  of  the  water,  

checking  to  make  sure  no  leaks  or  air  bubbles  show  up  inside.  o The  tubing  should  now  form  a  “U”  shape,  with  one  person  holding  each  end.  o If  any  leaks  or  air  bubbles  form,  the  seal  is  leaky.    Go  back  to  Steps  4,  5,  and  6  in  the  previous  

section  to  make  a  better  seal.  4. If  the  seal  is  good,  wipe  the  free  end  of  the  tubing  with  paper  towel  to  dry  it,  then  use  a  

permanent  marker  to  mark  the  location  of  the  meniscus.  5. Record  the  time  at  which  the  meniscus  was  marked.  6. Allow  15  to  20  min  to  allow  for  measureable  levels  of  plant  transpiration.  

o If  you  like,  you  may  apply  environmental  treatments  at  this  time,  such  as  different  lighting,  temperature,  or  air  flow  conditions.  

7. Using  a  permanent  marker,  mark  the  meniscus  position  at  the  end  of  the  monitoring  period.  o If  the  mark  is  not  easily  distinguished  from  the  initial  one,  you  may  extend  the  monitoring  

period  to  make  the  difference  easier  to  see.  8. You  may  now  lay  down  the  tubing,  making  sure  to  let  the  water  flow  into  the  basin.  

Page 16: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 16 of 22  Last Updated 7/2013

 

Calculating  Water  Consumption  Rate:  1. Using  a  ruler,  measure  the  length  (L)  in  cm  that  the  meniscus  moved  in  the  tubing  during  the  

monitoring  period.  2. Measure  the  internal  diameter  (d)  in  cm  of  the  tubing  at  its  free  end.  

3. Calculate  the  volume  of  the  water  column  that  was  consumed  as:    𝜋(!!)!𝐿  .  

o The  units  of  the  calculation  will  be  in  cm3,  which  is  equivalent  to  mL.  4. Divide  the  volume  of  water  used  by  the  number  of  minutes  you  monitored  to  

determine  the  water  consumption  rate  in  mL/min.      

       d  

 

L  

Page 17: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 17 of 22  Last Updated 7/2013

 

QUANTIFYING  WATER  MASS  IN  CELERY    

Purpose:    To  determine  the  mass  or  changes  in  mass  of  water  in  celery  petioles  for  osmosis  experiments.    

How  the  Method  Works:    There  are  two  ways  to  measure  plant  water  mass:    mass  change  or  direct  quantification.    In  the  mass  change  approach,  the  whole  sample  is  weighed  before  and  after  any  treatment  short  enough  to  allow  measureable  changes  water  mass  but  

not  plant  growth.    For  the  direct  quantification  approach,  samples  are  weighed  at  the  final  experiment  endpoint,  then  dried  and  weighed  again.    The  difference  in  mass  between  the  two  measurements  is  the  water  mass.    Samples  that  are  weighed  for  dry  mass  cannot  be  used  for  further  studies,  so  you  need  to  decide  which  method(s)  is/are  suited  to  your  research  question.    

Technical  Complexity:    Simple.    

Time  Required:    About  5  min  per  plant.    For  dry  weight  measurements,  an  overnight  drying  time  is  required.      

Materials:  • Digital  balance  with  milligram  (0.001  g)  precision  • Paper  towels  • Drying  oven  • (Optional)  Paper  lunch  bags  • (Optional)  Ziploc  sandwich  or  gallon-­‐sized  bags    

Measuring  Change  in  Water  Mass  This  approach  assumes  that  the  only  variable  influencing  the  mass  of  the  celery  is  the  amount  of  water  it  contains.    If  this  assumption  is  false,  it  may  be  better  to  use  direct  quantification.  

1. Just  before  starting  the  experiment,  weigh  the  celery  sample  on  a  digital  balance  and  record  the  mass  in  your  lab  notebook.  

2. Carry  out  the  experiment  according  to  plan.  3. After  the  treatment  is  complete,  remove  the  celery  sample  from  the  soaking  solution.  4. Blot  the  sample  gently  with  a  paper  towel  to  remove  any  free  surface  moisture.  5. Weigh  the  sample  immediately  on  the  digital  balance.      

o Plants  have  a  high  water  composition,  so  waiting  to  weigh  them  may  lead  to  some  drying  and  produce  inaccurate  data.  

6. Change  in  water  mass  =  Final  fresh  mass  –  Initial  fresh  mass.  

7. Percent  change  in  water  mass  =  100%  x   (!"#$%  !"#$%  !"##!!"!#!$%  !"#$%  !"##)!"!#!$%  !"#$%  !"##

 .  

 

Page 18: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 18 of 22  Last Updated 7/2013

 

Direct  Quantification  of  Water  Mass  This  method  directly  measures  the  mass  of  water  in  the  celery.    However,  directly  measuring  the  same  sample  both  before  and  after  treatment  is  not  possible,  because  the  method  uses  destructive  sampling.  

1. Carry  out  the  experiment  according  to  plan.  2. After  the  treatment  is  complete,  remove  the  celery  sample  from  the  soaking  solution.  3. Blot  the  sample  gently  with  a  paper  towel  to  remove  any  free  surface  moisture.  4. Weigh  the  sample  immediately  on  a  digital  balance.      5. Dry  all  samples  overnight  in  an  oven  set  to  low  heat  (60oC).    

o If  you  have  many  celery  stalks  to  dry,  it  may  be  helpful  to  place  them  individually  in  paper  lunch  bags.  

o Use  labels  or  make  a  chart  of  the  drying  positions  to  keep  track  of  their  respective  treatments.  

6. Let  the  celery  cool  in  a  dry  environment.  o In  a  humid  environment,  the  plant  tissue  may  take  up  water.    o A  sealable  plastic  bag  will  keep  moisture  out  if  you  live  in  a  humid  

climate.  8. Once  the  samples  have  cooled,  weigh  them  on  the  balance.      

o Plants  contain  mostly  water,  so  the  dried  samples  will  weigh  much  less  than  before.      9. The  water  content  of  a  plant  sample  can  be  calculated  as:  

o Water  mass  =  Fresh  mass  –  Dry  mass  

o Percent  water  mass  =  100%  x   (!"#$%  !"##!!"#  !"##)!"#$%  !"##

 .  

   

Page 19: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 19 of 22  Last Updated 7/2013

 

PLANT  CELL  STAINING  TECHNIQUES    

Purpose:    To  identify  different  cellular  structures,  and  thereby  different  cell  types,  using  biological  stains.    

How  the  Method  Works:    A  variety  of  cell  stains  are  available  to  highlight  different  cellular  structures,  such  as  the  primary  cell  wall,  secondary  cell  wall,  starches,  and  lipids.    Here  we  describe  the  use  of  four  such  stains  that  are  most  likely  to  help  distinguish  among  different  types  of  celery  cells.    

Technical  Complexity:    Simple.    

Time  Required:    About  10-­‐20  min  to  make  one  stain  stock;  5-­‐10  min  to  prepare  one  specimen.      

Materials:  • Microscope  slide(s)  containing  specimen(s)  • Digital  balance  • Spoon  or  scoopula  • Weighing  boat  or  weighing  paper  • Graduated  cylinder  • Water  • Light-­‐blocking  container  for  storing  prepared  stain  (e.g.,  foil-­‐wrapped  or  brown  glass)  • Eye  dropper  • Dust-­‐free  tissues,  such  as  Kimwipes  • Timer  • (Optional)  Cover  slips  • (Optional)  Forceps  • (Optional)  Glass  Petri  dish  • Materials  for  one  or  more  of  the  methods  below:  

Method  A   Method  B   Method  C   Method  D  • Toluidine  blue  O  powder  

• Benzoic  acid  • Sodium  benzoate  • pH  meter  or  test  strips  

• Phloroglucinol  powder  

• Ethanol  • Concentrated  hydrochloric  acid  

• Fume  hood  

• Sudan  IV  powder  • Propylene  or  ethylene  glycol  

• Hot  plate  • Thermometer  • Whatman  No.  2  filter  papers  

• Funnel  

• Potassium  iodide  • Iodine  • Fume  hood  

 

   

Page 20: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 20 of 22  Last Updated 7/2013

 

Method  A:    Staining  the  Primary  Cell  Wall  This  method  stains  cellulose  in  the  primary  cell  wall.    Based  on  the  thickness  and  evenness  of  the  cell  wall,  you  can  distinguish  between  parenchyma  and  collenchyma  cells.  

1. Prepare  0.1%  toluidine  blue  stain:  a. Make  0.1  M  benzoate  buffer:  

i. Weigh  out  0.125  g  benzoic  acid  and  0.145  g  sodium  benzoate  using  a  digital  balance.  ii. Dissolve  both  in  a  storage  container  by  adding  water,  bringing  the  volume  to  100  mL.  iii. Test  the  buffer  pH  and  adjust  to  4.4  as  needed  by  adding  single  drops  of  1  M  

hydrochloric  acid  or  1  M  sodium  hydroxide.  b. Weigh  out  0.1  g  of  toluidine  blue  O  powder  on  the  balance.  c. Add  the  toluidine  blue  O  powder  to  the  storage  container,  then  stir  or  swirl  to  dissolve  

completely,  producing  0.1%  toluidine  blue  stain.  2. Stain  the  specimen:  

a. Using  an  eyedropper,  transfer  one  or  more  drops  of  0.1%  toluidine  blue  stain  onto  a  specimen  on  a  microscope  slide  you  have  previously  prepared.  

b. Allow  the  stain  to  incubate  for  one  minute.  c. Absorb  as  much  stain  as  possible  from  the  slide  using  a  dust-­‐free  tissue.  d. Wash  the  specimen  by  flooding  it  with  water  using  the  eyedropper.  e. Dry  the  specimen  using  a  new  tissue  or  the  eyedropper.  f. If  needed,  repeat  steps  d-­‐e  to  remove  excess  stain.  g. Add  one  drop  of  water  onto  the  specimen  to  keep  it  hydrated.  h. Touch  a  cover  slip  to  one  side  of  the  water  drop  using  your  fingers  or  a  forceps.  i. Gently  lower  the  cover  slip  over  the  specimen,  

avoiding  any  air  bubbles.  3. Examine  the  specimen  using  a  microscope.  

o Cellulose  and  pectin  will  be  stained  reddish  purple.      o Recall  that  collenchyma  will  have  uneven,  thick  cell  

walls.  o Parenchyma  will  have  thinner  cell  walls;  parenchyma  

with  chloroplasts  are  chlorenchyma.  o Lignin  and  other  phenolic  compounds  will  range  in  

color  from  blue  to  green.    

Method  B:    Staining  the  Secondary  Cell  Wall  This  method  stains  lignin  in  the  secondary  cell  wall.    Based  on  the  presence  or  absence  of  lignin,  you  can  distinguish  between  sclerenchyma  and  other  cell  types.  

1. Prepare  phloroglucinol-­‐HCl  stain:  a. Prepare  80  mL  of  20%  ethanol  in  a  storage  container  by  adding  17  mL  95%  ethanol  to  63  mL  

water.  b. Weigh  out  2.0  g  phloroglucinol  powder  using  a  digital  balance.  c. Dissolve  the  phloroglucinol  in  the  20%  ethanol  solution.  

Toluidine  blue  stained  creeping-­‐oxeye  stem      

Image:    石川  Shihchuan  (Flickr)  

Page 21: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 21 of 22  Last Updated 7/2013

 

d. In  a  fume  hood,  and  while  wearing  gloves,  add  20  mL  of  concentrated  hydrochloric  acid  (12  M)  to  the  solution.  

e. Gently  swirl  or  stir  the  solution  to  mix.  2. While  still  wearing  lab  gloves,  stain  the  specimen:  

a. Use  an  eyedropper  to  add  one  or  two  drops  of  phloroglucinol-­‐HCl  stain  to  the  specimen.   Alternatively,  you  may  pour  some  stain  in  a  glass  Petri  dish  and  move  the  specimen  to  the  dish  for  incubation.  

b. Incubate  for  at  least  two  minutes.  c. Absorb  as  much  stain  as  possible  from  the  slide  using  a  dust-­‐free  tissue.  

Alternatively,  transfer  the  specimen  from  the  dish  to  the  slide  using  a  toothpick  or  forceps.  

d. Add  one  drop  of  water  onto  the  specimen  to  keep  it  hydrated.  e. Touch  a  cover  slip  to  one  side  of  the  water  drop  using  your  fingers  or  a  forceps.  f. Gently  lower  the  cover  slip  over  the  specimen,  avoiding  any  air  bubbles.  

3. Immediately  examine  the  specimen  using  a  microscope.  o The  color  will  fade  over  several  minutes.  o Lignin-­‐containing  cells,  i.e.,  sclerenchyma,  will  be  

stained  red.  o Xylem  cells  will  form  tube  shapes  with  pointed  

ends  or  circles,  depending  on  the  angle  at  which  the  specimen  was  cut.  

o Sclereids  will  not  be  elongated  and  may  instead  form  branches  or  star  shapes.  

 

Method  C:    Staining  Lipids  This  method  stains  the  waxes,  fats,  and  oils  within  a  cell  or  tissue  and  will  allow  you  to  more  easily  identify  the  waxy  cuticle  in  epidermal  cells.    It  may  also  stain  any  suberin  present,  which  is  a  compound  found  in  a  structure  outside  the  vascular  bundles  called  the  Casparian  strip.  

1. Prepare  the  Sudan  IV  stain:  a. Measure  out  100  mL  of  propylene  glycol  or  ethylene  glycol  in  a  graduated  cylinder  and  

transfer  to  a  heatable  container.  b. Weigh  out  0.7  g  of  Sudan  IV  powder  and  transfer  to  the  container.  c. While  stirring,  heat  the  solution  to  100oC  on  a  hot  plate  and  incubate  for  5-­‐10  minutes.  d. With  a  Whatman  No.  2  filter  paper  and  funnel,  filter  the  hot  solution  into  another  container.  e. Allow  the  solution  to  cool,  then  repeat  the  filtering  step,  transferring  the  solution  into  a  

storage  container.  2. Stain  the  specimen:  

a. Prepare  a  solution  of  85%  propylene  glycol  or  ethylene  glycol  in  water.  b. Transfer  specimen(s)  directly  into  a  small  container  of  the  Sudan  IV  stain.  c. Incubate  specimen(s)  in  the  stain  for  5  min.  d. Move  the  specimen(s)  to  the  85%  propylene  or  ethylene  glycol  solution,  gently  swirling  the  

container  to  help  wash  away  extra  stain.  

Stained  lignin  (red)  in  poplar  branch  Image:    tpuukko  (Flickr)  

Page 22: PlantingScience!! Celery!ChallengeToolkit! · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Toolkit Page 2 of 22! Last Updated 7/2013 ! CUTTING’TRANSVERSESECTIONS’OFPLANT’

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Toolkit Page 22 of 22  Last Updated 7/2013

 

e. After  about  30  sec  of  washing,  gently  rinse  the  specimen(s)  in  water.  f. Transfer  the  specimen(s)  to  the  microscope  slide(s).  g. Add  a  cover  slip  to  the  specimen(s)  as  previously  described.  

3. Examine  the  specimen  using  a  microscope.  o Any  waxes,  fats,  or  oils  will  be  stained  red.  o Epidermal  cells  will  be  distinguishable  by  the  

presence  of  their  outer  cuticle.  o You  may  also  see  a  red  band  around  the  outside  of  

some  vascular  tissues.    This  is  the  Casparian  strip,  a  hydrophobic  band  of  suberin  that  prevents  loss  of  water  out  of  the  xylem.  

 

Method  D:    Staining  Starches  This  approach  stains  cellular  starches.    You  may  be  able  to  distinguish  among  cells  used  for  food  storage  (e.g.,  parenchyma)  and  other  cell  types  (e.g.,  vascular  cells)  using  this  approach.  

1. Prepare  the  IKI  stain  before  you  begin  to  prepare  your  specimens,  since  iodine  takes  a  while  to  dissolve.  a. Using  a  graduated  cylinder,  transfer  100  mL  of  water  to  the  stain  storage  container.  b. Weigh  out  2.0  g  of  potassium  iodide  on  a  digital  balance  and  transfer  it  to  the  storage  

container.  c. In  a  fume  hood,  weigh  out  0.2  g  of  iodine  and  transfer  it  to  the  storage  container.  d. Tightly  cap  the  bottle  as  the  iodine  dissolves  to  avoid  its  sublimation  and  loss  from  the  stain.  

2. Stain  the  specimen:  a. Make  sure  that  both  the  potassium  iodide  and  iodine  have  completely  dissolved  in  the  stain.  b. Using  an  eyedropper,  transfer  a  drop  of  the  IKI  stain  onto  the  specimen.  c. Incubate  for  5  minutes.  d. Add  a  cover  slip  to  the  specimen  as  previously  

described.  3. Examine  the  specimen  using  a  microscope.  

o Starches  will  range  in  color  from  bluish  black  to  reddish  purple.  

o Longer  starch  polymers  will  tend  to  have  a  blacker  color,  while  shorter,  newly  synthesized  starch  polymers  will  tend  to  be  more  reddish.  

o Nuclei  and  cell  walls  will  often  stain  reddish  brown.    

Staining  methods  based  on:    Yeung,  E.C.    1998.    A  Beginner’s  Guide  to  the  Study  of  Plant  Structure.    In  S.J.  Karcher,  Ed.    Tested  Studies  for  Laboratory  Teaching,  Vol.  19:    Proceedings  of  the  19th  Workshop/Conference  of  the  Association  for  Biology  Laboratory  Education  (ABLE),  pp.  125-­‐142.  

IKI  stained  leek  epidermis  Image:    Yersinia  pestis  (Flickr)  

Casparian  strip  (arrow)  in  maize  root  Image:    BlueRidgeKitties  (Flickr)