plasma enhanced atomic layer deposition of molybdenum · pdf fileplasma enhanced atomic layer...

19
Plasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch 1 , B. Keller 2 , N. Ferralis 2 , J.C. Grossman 2 and G. Sundaram 1 1 Ultratech-Cambridge NanoTech Inc., Waltham, MA, [email protected] 2 Department of Material Science and Engineering, MassachuseJs InsKtute of Technology, Cambridge, MA

Upload: dangtram

Post on 06-Mar-2018

233 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

P l a sma Enhanced A tom i c Laye r Depos i t i on o f Mo lybdenum N i t r i de

A.Bertuch1,B.Keller2,N.Ferralis2,J.C.Grossman2andG.Sundaram11Ultratech-CambridgeNanoTechInc.,Waltham,MA,[email protected],MassachuseJsInsKtuteofTechnology,Cambridge,MA

Page 2: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

IntroducKon

q  LowtemperaturetechniquesfordeposiKnghighqualitymolybdenumnitridefilmsusingplasmaenhancedatomiclayerdeposiKon(PE-ALD)wereinvesKgatedandcharacterized.

q  UniquematerialproperKes:includingelectrical,mechanical,chemical,andcatalyKcbehavior.§  MoNisanextremelyhardmaterial§  SuperconducKve§  ExcellentcatalyKcproperKes§  LowsolubilitytoCuwithgoodelectrical

conducKvity(200-500µΩ-cm)§  DiffusionbarrierforCuinterconnects

2

ImagefromSouthernIllinoisUniversity

DiffusionBarrierforCuinterconnects

Page 3: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

MoNxAtomicLayerDeposi9onq  MoCl5andNH3at350–500°C,ResisKvity1500–100µΩ-cm

§  PetraAlen,“AtomicLayerDeposi5onofTaN,NbNandMoN,AcademicDisserta5on,UniversityofHelsinki,DepartmentofChemistry,June2005.

q  (tBuN=)2(NMe2)2MoandNH3at260–300°C§  V.Miikkulainen,M.Suvanto,andT.A.Pakkanen,“AtomicLayerDeposiKonofMolybdenumNitride

fromBis(tert-butylimido)-bis(dimethylamido)molybdenumandAmmoniaontoSeveralTypesofSubstrateMaterialswithEqualGrowthperCycle,”ChemistryOfMaterials,vol.19,no.2,pp.263-269,Jan.2007.

q  Mo(CO)6andNH3at170°Cwith400°Canneal§  DipNandi,UJamSen,DevikaChoudhury,SagarMitra,andShaibalSarkar,“AtomicLayerDeposited

MolybdenumNitrideThinFilm:PromisingAnodeMaterialforLiIonBaJeries,ACSAppl.Mater.Interfaces,2014,6(9),pp6606–6615,DOI:10.1021/am500285d

q  Mo(NtBu)2(StBu)2,andH2plasmaat300°C,ResisKvity350µΩ-cm§  YujinJang,JunBeomKim,TaeEunHong,andSoo-HyunKim,“Highly-conformalnanocrystalline

molybdenumnitridethinfilmsbyALDasadiffusionbarrier”,JournalofAlloysandCompounds663·November2015,DOI:10.1016/j.jallcom.2015.12.148

PriorWorkMoNX

3

Page 4: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

Bis(tert-butylimido)bis(dimethylamido)Molybdenum

4

(tBuN=)2(NMe2)2Mo Vapour Pressure Curve

0.1

1

10

50 60 70 80 90 100 110

Temp (C)

VP

(tor

r)

EquaKon:LOG10P(Torr)=9.8–3447/T(K)

VaporPressureofMo(NtBu)2(NMe2)2

t-Bu-N=Mo=N-t-Bu

PriorOxideWorkq  Vosetal.,“AtomiclayerdeposiKonofmolybdenumoxidefrom(NtBu)2(NMe2)2Mo

andO2plasma“,J.Vac.Sci.Technol.A34,01A103,2016;DOI:10.1116/1.4930161q  Bertuchetal.,“AtomiclayerdeposiKonofmolybdenumoxideusing

bis(tertbutylimido)bis(dimethylamido)molybdenum”J.Vac.Sci.Technol.A32,01A119,2014;DOI:10.1116/1.4843595

MoO3ALDandPE-ALD

MolecularStructure

Page 5: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

Experimental

q  Equipment:Ultratech/CNTFiji§  ReactorturbopumpandLoadLock§  300W,13.56MHzinducKvelycoupledplasma(ICP)§  N2andH2plasmacomposiKons(2–25%N2inH2)

q  Precursor:(tBuN)2(NMe2)2Mo§  Pvapor(60⁰C)=~0.29Torr§  N2boosteddeliverytechnique1

q  ProcessTemperature:80–300°C

q  FilmCharacterizaKon§  ALDFilmproperKes(SpectroscopicEllipsometry)§  OpKcalandelectrical(SpectroscopicEllipsometryandFourPointProbe)§  FilmComposiKon(XPS)§  Crystallography(XRD)

5

1G.Liu,A.Bertuch,G.Sundaram,“PrecursorBoostforLow-Vapor-PressureALDPrecursors”,Presentedat2010ALDSeoul,Korea

Page 6: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0 10 20 30 40 50

GrowthPerCycle(A/Cycle)

Plasmatime(sec)

150°CMolybdenumNitride1:8N2:H2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50

nank(633nm)

Rho(µohm-cm)

Plasmatime(sec)

150°CMolybdenumNitride1:8N2:H2

Rhonk

PlasmaTimeDependence

ImpactofPlasmaKme,11%N2inH2150⁰C-GrowthperCycle

q  ICP Plasma )me §  15 sec plasma has a reduced process capability

§  GPC is reduced by < approximately 10% §  n and k values are reduced §  Rho is elevated

§  Plasma: 300 WaEs, 40 sec is need to complete the reac)on.

§  40 sec plasma )mes yield improved electrical and op)cal proper)es.

6

Resis9vityandop9calproper9es

Page 7: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

0.200.250.300.350.400.450.500.550.600.650.70

50 75 100 125 150 175 200 225 250 275 300 325

GPC(A/cycle))

Temperature(C)

MolybdenumNitride1:16N2:H2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0200400600800100012001400160018002000

50 75 100 125 150 175 200 225 250 275 300 325

nank(633nm)

Rho(µohm-cm)

Temperature(C)

MolybdenumNitride1:16N2:H2

Rhonk

TemperatureDependence

Temperaturedependence(6%N2inH2)q  Process §  (NtBu)2(NMe2)2Mo precursor

§  Plasma 1:16 N2:H2, 40 sec, 300 W

§  Film thickness = 17 - 25 nm

§  200mm uniformity < 3.5% (1-σ)

§  GPC 0.4 to 0.65 Å/cycle

q  Tunable Op)cal and Electrical Proper)es §  n (633nm) and k (633 nm) values

§  Rho (1400 – 200 µohm-cm)

q  T > 250 °C Transi)on §  Onset of changes in op)cal and

electrical proper)es

7

Resis9vityandgrowthpercycle(GPC)

Resis9vityandop9calproper9es

Page 8: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

PlasmaN2:H2gas,T=150⁰C

N2concentraKoninH2plasmagasq  150 °C MoNX Process

§  (NtBu)2(NMe2)2Mo precursor

§  Plasma: 300 WaEs, 40 sec

§  Variable N2:H2 concentra)on

q  Tunable Op)cal and Electrical Proper)es §  Increasing n & k (633 nm) values

with increasing H2 concentra)on §  Rho (800 – 180 µohm-cm)

q  Growth Per Cycle §  Decreases with increasing H2

concentra)on (0.55 – 0.37 Å/cycle)

§ 

8

0.280.320.360.400.440.480.520.560.60

0% 4% 8% 12% 16% 20%

GPC(A/cycle))

N2 inH2 plasmagas(%)

150°CMoNwith40secplasma

GPC

0.000.501.001.502.002.503.003.504.00

02004006008001000120014001600

0% 4% 8% 12% 16% 20%

nandk(633nm)

Rho(µohm-cm)

N2 inH2 plasmagas(%)

150°CMoNwith40secplasma

Rhonk

Resis9vityandgrowthpercycle(GPC)

Resis9vityandop9calproper9es

Page 9: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

XPS DATA MolybdenumNitride

9

Page 10: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

XPS-SurveyScan

Intensity

(a.u.)

BindingEnergy1200 900 600 300 0.0

2

10

8

12

6

4

O1sMo3s

N1sMo3p1/2Mo3p3/2

Mo3p

Mo3d3/2Mo3d5/2

Mo3dC1s Si2s

Si2p1/2Si2p

Si2p3Mo4s

CONSi

Mo

1min Ar spuEer was used for surface prepara)on.

Peaks associated with Mo, N, O, and C are observed and analyzed from the survey scan.

The MoNX doublet (Mo 3d3/2 and Mo 3d5/2 peaks)

was used for evalua)on

Analysis of film composi)on

Page 11: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

0

10

20

30

40

50

60

70

0% 4% 8% 12% 16% 20%

Composition(%)

N2 inH2 plasmagas(%)

XPSCompositon

MoNCO

MoNx Film Composi)on

q  Temperature (80 – 250 ⁰C)

§  Reduc)on in O and N concentra)on with increasing temperature.

§  Less than 8% O2 from 75 - 250 ⁰C, with a Minima at 250 ⁰C at 3% O2

§  Increasing C concentra)on to 250 ⁰C, then sharp decline at 300 ⁰C

§  10% at 300 ⁰C may explain reduced op)cal and electrical performance at 300 ⁰C

q  H2:N2 Ra)o §  Reduc)on in N has propor)onal to N2 gas

concentra)on

§  Carbon concentra)on increases as the H2 content approaches 100%

§  Corresponding improvements are observed in the op)cal and electrical proper)es with reduced N2.

0

10

20

30

40

50

60

50 100 150 200 250 300 350

Composition(%)

TemperatureC

XPSCompositon

MoNCO

XPSDataComposiKon

ComposiKon(%)TemperatureDependence,6%N2inH2

150⁰Cplasmagasdependence(H2andN2)

Page 12: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

0.00.20.40.60.81.01.21.41.6

0% 4% 8% 12% 16% 20% 24%

MoNRatio(N/Mo)

N2inH2 plasmagas(%)

150°CMoNxComposition

XPSMoNXStoichiometry

N/MoComposiKon-MoNX

00.10.20.30.40.50.60.70.80.91

50 100 150 200 250 300 350

MoNRatio(N/Mo)

Temperature(°C)

MoNxCompositionTemperatureDependence,6%N2plasma

150⁰CplasmagasDependenceH2andN2

q  MoNx Composi)on is dependent upon §  H2:N2 composi)on in plasma step

§  Deposi)on Temperature (75 – 250 ⁰C)

q  The MoNX composi)on

§  By changing the process condi)ons the composi)on of the MoNX can be adjusted.

§  Higher Mo content with increasing H2 concentra)on in the plasma gas

§  Increasing electrical conduc)vity.

q  300 ⁰C data point shows a dis)nct increase in MoN ra)o MoN0.64 §  Thermal transi)on?

§  Precursor Decomposi)on?

§  MoNX crystallinity?

§  Equipment? Single data point

Morichfilm(MoN0.4)

Nrichfilm(MoN1.4)

Morichfilm(MoN0.4)

Nrichfilm(MoN1.4)

Page 13: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

XRD DATA MolybdenumNitride

13

Page 14: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

0

50

100

150

200

250

300

25 35 45 55 65 75 85

NormalizedScattering

Intensity(a.u.)

2? ( )

80°C 100°C150°C 200°C250°C 300°C

q  What is the structure of the MoN? §  Amorphous §  MoN0.5 (cubic)

§  β-Mo2N phase (body centered tetragonal)

§  γ-Mo2N phase (face centered cubic)

q  XRD data indicates γ-Mo2N phase (face centered cubic) for all inves)gated temperatures

XRDSurveyScan

2thetaplot–TemperatureDependence

γM

o 2N(1

11)

γM

o 2N(2

00)

γM

o 2N(2

20)

γMo 2N(3

11)

Sirefl

ec9o

ns

(113)

14

Peak Intensity were normalized to the 111 peak

Page 15: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

0.0

0.5

1.0

1.5

2.0

2.5

35.6

35.8

36

36.2

36.4

36.6

50 100 150 200 250 300

111FWHM

111Position(2θ°)

Temperature(°C)

111position- MoNprocess

0.0

0.5

1.0

1.5

2.0

2.5

35.6

35.8

36.0

36.2

36.4

36.6

0% 4% 8% 12% 16% 20%

111FWHM

111Position(2θ°)

N2 inH2 plasmagas(%)

111position- 150CMoNprocess

0

50

100

150

200

250

300

32 34 36 38 40 42 44 46

NormalizedScattering

Intensity(a.u.)

2? ( )

10:40 5:40

5:80 2.5:801.3:80

(200)(111)

20% N2

11.1% N2

5.9% N2

3.0% N2

1.6% N2

0

50

100

150

200

250

300

32 34 36 38 40 42 44 46

NormalizedScattering

Intensity(a.u.)

2? ( )

80°C 100°C150°C 200°C250°C 300°C

(200)(111)

80 ⁰C

100 ⁰C150 ⁰C

200 ⁰C250 ⁰C300 ⁰C

XRDTwoThetaPeaksdependenceN2inH2plasma,150⁰C Temperaturedependence5.9%N2inH2

Increasing N2 concentra)on in the plasma has less long range order in the crystal.

Page 16: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

0

200

400

600

800

1000

1200

1400

1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1

Intensity(a.u.)

inter-atomicspacing,d(Å)

150C200C250C300C

q  XRD Survey scans converted to inter-layer spacing (d) using Braggs Law.

q  Lance constants were calculated for the major and minor XRD peaks

γ Mo2N face center cubic

XRDData

LasceSpacing–CalculatedfromXRDResults

Inter-atomicspacing,d(A)

MillerIndices

MeasuredLa`ceConstant,a(nm)

1.28 311 0.425+/-0.001

1.50 220 0.424+/-0.001

1.65 113 SireflecKons

2.125 200 0.425+/-0.002

2.47 111 0.428+/-0.001

γM

o 2N(1

11)

γM

o 2N(2

00)

γM

o 2N(2

20)

γMo 2N(3

11)

Braggs Law 2dsinθ = nλ

Lance spacing

222 lkhad

++=

Sirefl

ec9o

ns(1

13)

Measured Lance Constant

Page 17: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

CrystalStructure

q  Lance Constants for MoNX §  MoN0.5 (cubic)

§  β-Mo2N phase (body centered tetragonal)

§  β-Mo16N7 (tetragonal)

§  γ-Mo2N phase (face centered cubic)

17

Mo-NPhase Structure La`ceConstants(nm)

MoN0.5 Cubic a=0.4162

β-Mo2N Bodycenteredtetragonal a=0.416c=0.800

γ-Mo2N Facecenteredcubic a=0.416–0.419a=0.4215–0.4303

β-Mo16N7 Tetragonal a=0.841c=0.805

MoN Hexagonal a=0.5787c=0.5404

Reference: Isabelle Jauberteau, et al., Molybdenum Nitride Films: Crystal Structures, Synthesis, Mechanical Electrical and Some Other ProperGes , CoaGngs 2015, 5, 656-687; doi: 10.3390/coaGngs5040656

Simple cubic Body centered Face centered

a aa

c

Page 18: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

Summary

q  MoNX films were deposited at 80 – 300 ⁰C using PE-ALD techniques.

q  The Mo:NX stoichiometry was process dependant and ranged from 0.4 < X < 1.4.

q  The deposited film contained N, C and O impuri)es. The content of N and C correlate with the observed trends in film proper)es.

q  Electrical (Rho) and op)cal proper)es (n & k) are tunable as a func)on of deposi)on temperature and the N2:H2 plasma gas ra)o.

q  The electrical resis)vity at 150 ⁰C was demonstrated to be < 200 µohm-cm using a < 2.0% N2 in the H2 plasma gas. The measured stoichiometry was MoN0.4 with an elevated C content.

q  γ-Mo2N phase crystallinity was observed for all deposited films from 80 – 300 ⁰C

ULTRATECHCONFIDENTIAL 18

Page 19: Plasma Enhanced Atomic Layer Deposition of Molybdenum · PDF filePlasma Enhanced Atomic Layer Deposition of Molybdenum Nitride A. Bertuch1, B. Keller 2, N. Ferralis , J.C. Grossman

QandA