plasma reaction engineering – silicon etch...

36
Plasma Reaction Engineering – Silicon Etch Applications Siddhartha Panda Department of Chemical Engineering I.I.T. Kanpur Process Engineering Applications of Plasma Technologies IISc Bangalore 14 th August 2009

Upload: others

Post on 08-Sep-2020

2 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Plasma Reaction Engineering –

Silicon Etch Applications

Siddhartha PandaDepartment of Chemical Engineering

I.I.T. Kanpur

Process Engineering Applications of Plasma TechnologiesIISc Bangalore

14th August 2009

Page 2: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Outline:

1. Plasma Reaction Engineering

(i) Plasma physics and Plasma chemistry

(ii) Plasma reactor designs

2. Silicon Etch Applications

(i) Selected applications(ii) Plasma silicon etch – mechanisms(iii) Silicon deep trench – formation dynamics(iv) Silicon deep trench – etch issues

(a) RIE lag (b) Loading (c) Charging effects

3. Summary and Outlook

Page 3: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

1. Plasma Reaction Engineering*

(*Acknowledgement – Dr. G.S. Mathad)

Page 4: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Ar + beamXeF2

monolayer

Si

XeF2 ���� Xe + 2F

Si + 2F ���� SiF2

SiF2 + 2F ���� SiF4

SiF4

(i) Plasma Physics and Plasma Chemistry

Coburn and Winters

Page 5: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Basic plasma chemical reactions:

• electron initiated (elastic collisions with gas) reactions in bulk

- dissociation

A2 + e ���� A + A + e

- ionization

A2 + e ���� A2+ + 2e

- dissociative ionization

AB + e ���� A + B+ + 2e

• ion activated heterogeneous reactions at surfaces

- ion energy dependent on plasma sheath thickness

Page 6: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

• ReA = nA ∫∫∫∫ σσσσeA (εεεε) ννννe (εεεε) f (εεεε) dεεεε

= nA ννννAe(εεεε)

reaction frequency of A with electrons

number density of species A

electron:A collision cross-section

electron speed

reaction rate of

electrons with A

Maxwell electron energy distribution function

• Physics -- fundamental structure & behavior of matter

• Chemistry -- interaction of matter

Page 7: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Plasma properties

1. Electric and magnetic fields

2. Plasma species temperatures

3. Plasma sheath

Page 8: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

1. Reactions -- thermodynamically feasible

2. Reaction rates -- high (throughput) – activation energies

A + B ���� C + D ∆∆∆∆FoR = - X kcal

reactants products

C (s) + O2 (g) ���� CO2 (g) ∆∆∆∆Fo = - 94 kcal @ 298 K

Two aspects of chemical reactions

Page 9: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

1. Reaction enabler

���� Shifts reactions towards thermodynamic feasibility

2. Reaction enhancer

���� Increases reaction rates

Features of plasma chemical reactions

Page 10: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Example 1

SiO2 etch

SiO2 (s) + CF4 (g) ���� SiF4 (g) + CO2 (g) ∆∆∆∆F0R = 113 kcal

Si - - O2 + CF4 (g) ���� SiF4 (g) + CO2 (g) ∆∆∆∆F0R = - 79 kcal

ion bombardment (> 100 eV)

Conventional chemistry

Plasma chemistry

Reaction enabler

Page 11: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Manufacture of acetylene in plasma arc

2 CH4 (g) ���� C2H2 (g) + 3 H2 (g) ∆∆∆∆FoR = 74 kcal @ 298 K

∆∆∆∆FoR = - 24 kcal @ 4000 K

For C2H2 (g),

∆∆∆∆Fo = 50 kcal/mole @ 298 K

∆∆∆∆Fo = 0 kcal/mole @ ~ 4000 K

1 atm

Example 2:

Page 12: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Deep silicon etch

Si (s) + 2 F2 (g) ���� SiF4 (g) ∆∆∆∆FoR = - 137 kcal @ 298 K

(reaction rate is slow @ near-room temperature)

Reaction rate enhanced (~ 50X) by using ion bombardment induced, non-thermal (Ts ~ 100 C) activation

Deep Si - Holes

Reaction enhancer

Example 1

Page 13: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Plasma can directionally increase reaction rates.

SiO2

mono

layers

CF3+ ion activation

@ surface ���� high RV

SiO2 (s) + CF4 (g) ���� SiF4 (g) + CO2 (g) RV >>> RH

without activation,

RH ~ 0

900

profile

Example 2

Page 14: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Activation energy

Source:

• Heat Thermo-chemistry

• Photons Photo Chemistry

• Electrons/ Plasma ChemistryIons/Radicals

Page 15: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Plasma species and bond energies

Plasma Species: eV

• Electrons 0 – 20

• Ion (within bulk plasma) 0 – 2

• Metastables 0 – 20

• UV/Visible 3 – 40

Chemical Bonds:

• C – H 4.3

• C – F 4.4

• C – C 3.4

• C = C 6.1

• C = O 8.0

Page 16: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

(ii) Plasma Reactors

Capacitively Coupled Plasma

Page 17: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Inductively Coupled Plasma

Page 18: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

HD (Magnetron)

Remote plasma

Page 19: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Operating variables

* Pressure

* Gas flow rate,

composition

* Geometry

* Power

* Frequency

* Reactor materials

Key Plasma Properties

* Electron, ion densities

* Reaction rate constants

(a) electron impact

(b) thermal

* Electron energy

distribution

* Electric field

* Ion energy and flux

Performance

* Etch rate

* Uniformity

* Anisotropy

* Selectivity

* Radiation

damage

(Economou, in Electronic Materials Chemistry, 1996)

Page 20: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

2. Silicon etch applications

Page 21: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Microelectronics

trench capacitors

trench isolation

through-silicon vias

channels

Optoelectronic/Photonicssolar cellslaserswaveguides

MEMS

channelsgears

springscantileversAFM tips

micro-spring (Alcatel)

Waveguides in siliconVlasov et al. (Nature, 2005)

(i) Selected applications

DRAMs (Siemens)

Page 22: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

(ii) Plasma silicon etch - mechanisms

Typical etchants – halogens

F – CF4, NF3, SF6

Cl – Cl2, HCl

Br -- HBr

PLASMARF heating � electron generation

Reactions � species generation

Application of negative bias �

acceleration of ions to wafer

Neutral

Ions

Silicon

Mask

Etch product

Page 23: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

NFi NFi-1 + F

NFi-2 + F2

F NFi-1 + F2

NFi + F2 NFi+1 + F

NFj NFi-1 + NFj+1

Possible reactions (sample NF3) – gas phase and surface chemistry

NFi + e � NFi* + e (energetic radicals)

NFi + e � NFi+ + 2e (ions)

NF3 + e � NF3+ + 2e (ionization)

NF3 + e � NF2+ + F + 2e (dissociative ionization)

F2 + e � F2+ + 2e

radicalsNF3

*, NF2*, NF*, F*, N*

ions

NF+, NF2+, NF3

+

Wafer

Thermal reactions

Electron impact

reactions

Plasma

Page 24: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

su

rfa

ce

F F

F Si F

Si Sibu

lk

F F F

Si Si

F F

Si

F F F

Si Si

F F

Si

F F

SiF

Si

F

F F

SiF

Si

F

Fluorine

Page 25: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Fluorosilyl (SiFx) layer on surface

SiF, SiF2, SiF3, SiF4

volatility

Fluorine with Oxygen

Source of O � feedgas

exposed quartz parts

Competition of F and O for Si sites

SiFxOy layer on surface

Ion bombardment

Re-arrangement to the

more volatile component

Page 26: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Bromine

Silicon etch with Br different from that with F

(i) penetration of halides in silicon surface

(ii) volatility of silicon halides

size Br > F

SiBrx less volatile

Bromine and Oxygen

Oxidation of surface

SiBrxOy layer on surface

Page 27: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

(iii) Silicon deep trench – formation dynamics

Etch rate of Silicon

F > Cl > Br

* reactivity (energy of reaction)

* smaller atomic size

F – too high reactivity

isotropic attack

Cl – better control

subsequent problems

Br – slow etch rate but better control

O – purpose?

(Gostein, Future Fab Int., 2007)

Page 28: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Passivation film

passivationfilm

sidewall

trench bottom

ion

neutral

Etch front (trench bottom)

� surface layer inhibits further etch

� ion flux clears film

� etch progresses

(if insufficient clearing of film

==> etch rate slows)

Page 29: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

ion

neutral

Sidewall

Layer on surface when cleared

some escapes out of trench

some re-deposits on sidewall

� forms passivation film

Passivation film protects silicon sidewall

against attack by neutrals

Pressure in chamber ~ 100 mTKnudsen flow regime

Page 30: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

(iv) Silicon deep trench – etch issues

Requirements

* Desired depth

* Sidewall slope

* Structural integrity

Several problems!

(Boufnichel et al., Microelectronic Engineering, 2005)

Page 31: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

smaller features etch slower (smaller depth)

(a) RIE lag

(Ayon et al., Sens. Act., 2001) (Wise et al., Future Fab Int., 2001)

Page 32: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

etch front

Contribution to RIE lag

* geometric effect

decreasing flux

at higher depths

* passivation film -

trench mouth/sidewall

trench bottom

time

depth

etch stop

(Panda et al., MicroelectronicEngineering, 2004)

Page 33: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

(b) Charging

Plasma – electrically neutral

Ions and electrons � surface

Ions – energy distribution more anisotropic

Electrons – energy distribution more isotropic

higher mobility

Non-conducting surfaces in trench –

charged

� affect incoming charged species

Page 34: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

(c) Loading effect

Dependence of etch rate of the quantity of material being etched

1/ER proportional to exposed area to be etched

(Mogab, J. Electrochem Soc., 1977)

Inverse loading effect

opposite – i.e. higher ER with higher exposed area

Reasons –

differences in mechanism of etch

Page 35: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Summary and Outlook

1. Plasma reaction engineering

* Plasma physics, plasma chemistry, plasma reactor engineering closely interlinked

* Reaction enabler, reaction rate enhancer, directionality

2. Silicon etch applications

* Specific reaction mechanisms

* Etch features affect performance � need for plasma reaction engineering

3. Newer applications and challenges

Page 36: Plasma Reaction Engineering – Silicon Etch Applicationspeapt2009.wdfiles.com/local--files/nav:side/L2.pdf · Plasma Reaction Engineering – Silicon Etch Applications Siddhartha

Thank you