poster16 e …€™is’referred’to’dgn/lhd note: ion’parccle’flux ’Γ...

1
Radial electric field forma/on and its effect on the electron thermal transport in LHD high T e plasmas Poster 16 Seikichi Matsuoka , S. Satake, H. Takahashi, a) A. Wakasa, M. Yokoyama, T. Shimozuma, T. Ido, A. Shimizu, a) S. Murakami, and LHD Experiment Team NaConal InsCtute for Fusion Science (NIFS) a) Department of Nuclear Engineering, Kyoto Univ. 17th NEXT Meeging, Mar. 15th, 2012 @Kashiwa, Univ. Tokyo Mo/va/on Numerical analyses Finite orbit width effect CERC plasma in LHD High electron temperature plasmas with eITB are experimentally observed in LHD. These includes features; Steep T e gradient Electronroot E r w/ strong E r shear Only ECH heaCng (in recent experiments) T e at the core exceeds 15 keV called CERC (Core ElectronRoot Confinement) FORTEC3D solves the DK eq. with δf MonteCarlo method. distribuCon funcCon : f = f M + δf two weight scheme i: w i and p i Electron parallel flow (tentaCve results) Numerical analyses Eroot E r is formed in high T e CERC plasmas in LHD The orbit and weights of each marker parCcle are followed with including collision in longer Cme step. δf at the steady state determined. Drih KineCc eq. orbit NC flux ambipolar condiCon weight distribuCon func. E r Γ i is referred to DGN/LHD Note: Ion parCcle flux Γ i of DGN/LHD [4] are determined by locally and mono energeCcally since T i of CERC plasma is usually low. Summary Summary Experimental analyses of CERC plasmas have been carried out. We have found; The electron FOW effect is sCll important for the NC energy flux and thus the thermal diffusivity rather than for the ambipolar E r . Strong shear of E r , leading to the improved confinement, is formed in the inner region of local flakening region when the eITB forms in a CERC plasma. The NC thermal diffusivity remains low level during the eITB formaCon, and no 1/ν dependence appears. FormaCon of the eroot E r compensates the increase in the NC thermal transport. The direcCon of the electron parallel flow is qualitaCvely the same as that of the previous experimental study. Discussions To elucidate the mechanism of eITB formaCon; The turbulent transport level will be evaluated by GKVX [5] . Effect of the island, or perturbaCon field will be included. The parallel flow should be evaluated with the momentum conserving collision operator b/w electrons and ions. Effect of the ECH heaCng on the NC transport and the E r formaCon should be invesCgated. References [1] H. Takahashi, et al., IAEA Fus. Energy Conf. (2010) pp.EXC/P815 [2] T. Shimozuma, et al., Nucl. Fusion, 45, 1396 (2005) [3] S. Matsuoka, et al., Phys. Plasmas, 18, 032511 (2011) [4] A. Wakasa, et al., Contrib. Plasma Phys. 50, 582 (2010) [5] M. Nunami, et al., Plasma Fus. Res., 5, 016 (2010) 0 2 4 6 8 10 0 5 10 15 20 Flattening Width #103619 t = 0.8 s e e [m 2 /s] T e [keV] 0 2 4 6 8 10 0 5 10 15 20 #103619 t = 0.9 s foot 0 2 4 6 8 10 0 5 10 15 20 #103619 t = 1.0 s 0 2 4 6 8 10 0 5 10 15 20 0 0.1 0.2 0.3 0.4 0.5 0.6 #103619 t = 1.1 s r eff [m] 0 2 4 6 8 10 0 5 10 15 20 #103619 t = 1.2 s marginal 0 2 4 6 8 10 0 5 10 15 20 #103619 t = 1.4 s 0 2 4 6 8 10 0 5 10 15 20 #103619 t = 2.2 s 0 2 4 6 8 10 0 5 10 15 20 0 0.1 0.2 0.3 0.4 0.5 0.6 #103619 t = 2.8 s r eff [m] 0 0.2 0.4 0.6 0.8 1 1.2 n e_fir [x10 19 m -3 ] 77 GHz (5.5 U, 9.5 U): 1.34 MW 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.5 1 1.5 2 2.5 3 reff_foot reff_in reff_out r eff_foot , r eff_in , r eff_out [m] Time [s] Flattening Width k/2r = 0.5 marginal Local flaVening The eITB foot point of inside/outside approaches each other during the formaCon of CERC eITB (see figure above). T e at the core increases as the width of the flakening becomes narrower. Foot point of eITB ends up at approx. ι/2π = 0.5 [1,2] . Mo/va/on FORTEC3D T e (0) = 5.0 keV low collisionality FORTEC3D includes; 1. Electron finite orbit width (FOW) effect 2. LikeparCcle collisions of both pitch angle and energy scakerings, saCsfying the conservaCon laws 3. UnlikeparCcle collisions of only pitch angle scakering. FOW effect is important for high T e plasmas in LHD as CERC; finite orbit width (FOW) effect for electrons becomes large. Previous benchmark calculaCons b/w FORTEC3D code for electrons [3,4] and local codes show that this arises due to the collisionless detrapping and the poloidal rotaCon. Electron parallel flow is obtained by FORTEC3D for #103619. Results show the parallel flow in the co direcCon generated at the flakening region. This corresponds to the bootstrap current of electrons in the ctrdirecCon. The current density is approximately up to 10 kA/m 3 . Current in the ctrdirecCon in the CERC formaCon qualitaCvely reproduces the tendency of the eITB formaCon in past LHD experiment [2] . The ambipaor E r is compared to both DGN/LHD and the experiment. Results of FORTEC3D agrees well with E r evaluated by the potenCal profile observed by HIBP. Quite similar values are obtained b/w FORTEC3D and DGN/LHD. FOW effect does not influence so much on the steadystate ambipolar E r . FOW effect on LHD CERC plasma NC energy flux is 30 40 % reduced compared to that w/o the electron FOW effect. FOW effect rather important for the NC thermal transport. Along with the eITB formaCon, the ambipolar E r gradually grows to the electron root with steep shear. The region of the sheared eroot E r moves outward. → qualitaCvely agrees to the movement of the eITB footpoint. E r goes to zero locally. → corresponds to the posiCon where the local flakening of T e gradient (eITB footpoint). Although T e increases in the CERC formaCon, χ NC (solid) remains low. 1/ν dependence ( T e 7/2 ) does not appear due to the formaCon of the eroot E r even in the 1/ν region. This indicates that the eroot E r forms to rather compensate the increase in the NC thermal transport in the eITB formaCon process in the CERC plasma. First, the thermal diffusivity reduces at the core (t = 0.9 s), then it reduces approximately at ρ < 0.4 region (t = 1.1 s), where E r has the shear. The comparison of the χ NC to χ exp (dashed) suggests that the main reducCon of the thermal transport is akributed to the reducCon of the turbulent transport, since χ NC is kept low. → GK simulaCons for ETG turbulence are required. NC thermal diffusivity is sCll slightly large in the flakening region due to the absence of the large eroot E r . The E r formaCon and the thermal transport EsCmated radial drih of helical trapped electrons 4 5 cm. NC transport should be calculated with the electron FOW effect. NC energy flux w/ and w/o FOW effect is compared to each other. Thermal diffusivity The total energy flux increases as the temperature increases. NC thermal transport increases due to the formaCon of the steep T e gradient in CERC plasmas. The ambipolar E r and the NC energy fluxes are also invesCgated for #103619. Large E r at the core reduces the electron transport. SInce the ambipolar E r strongly affects the parCcle orbit, the ambipolar E r , the parallel flow, and the NC thermal transport should be invesCgated at the same Cme. FORTEC3D [3] code, which includes the electron FOW effect is appropriate for such NC transport simulaCons in high T e plasmas as CERC. To clarify the eITB formaCon in CERC plasmas, NC simulaCons have been iniCated using FORTEC3D; the ambipolar Er and thermal diffusivity are compared to those experimental values. How are the E r and its shear formed in CERC plasmas? The E r reduces the NC and/or turbulent transport?? What determines the eITB foot point? It has been suggested that the close relaConship b/w the foot point and the magneCc island or a low order raConal [2] . However, it remains unclear. In addiCon, the flow along the surface has a close relaConship to island healing, which occurs the low collisional plasmas. In general, the eITB formaCon in LHD tends to take place for a plasma with counter NBI injecCon (w/ plasma current in the ctr direcCon) than that with coinjecCon [2] . On the other hand, all the CERC plasmas calculated by FORTEC3D in this work are made by ECH only. Is there any relaCon b/w the parallel flow in ECH plasmas and the momentum input in NBI plasmas??

Upload: nguyenque

Post on 14-Jul-2019

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Poster16 E …€™is’referred’to’DGN/LHD Note: Ion’parCcle’flux ’Γ i’of’DGN/LHD[4]’are’determined’by’locally’and’monoP energeCcally’since

Radial  electric  field  forma/on  and  its  effecton  the  electron  thermal  transport  in  LHD  high  Te  plasmas

Poster  16

Seikichi  Matsuoka,  S.  Satake,  H.  Takahashi,  a)A.  Wakasa,  M.  Yokoyama,  T.  Shimozuma,  T.  Ido,  A.  Shimizu,  a)S.  Murakami,  and  LHD  Experiment  TeamNaConal  InsCtute  for  Fusion  Science  (NIFS)a)Department  of  Nuclear  Engineering,  Kyoto  Univ.17th  NEXT  Meeging,  Mar.  15th,  2012  @Kashiwa,  Univ.  Tokyo

Mo/va/on Numerical  analysesFinite  orbit  width  effectCERC  plasma  in  LHDHigh  electron  temperature  plasmas  with  eITB  are  experimentally  observed  in  LHD.  

These  includes  features;Steep  Te  gradientElectron-­‐root  Er  w/  strong  Er  shearOnly  ECH  heaCng  (in  recent  experiments)Te  at  the  core  exceeds  15  keV

called  CERC  (Core  Electron-­‐Root  Confinement)

SummaryTo  simulate  the  radial  electric  field  with  a  spacial  bifurcaCon,  we  implement  a  new  radial  interpolaCon  scheme  in  FORTEC-­‐3D  code.The  new  scheme  includes  three  steps;(1)  interpolate  flux  values  of  three  radial  posiCons  into  their  center,(2)  the  radial  electric  field  is  calculated  by  the  interpolated  flux,(3)  the  radial  electric  field  is  interpolated  by  the  cubic  spline  interpolaCon.  

This  introduces  a  smoothing  effect  on  Er    at  a  posiCon  (interface)  where  a  spacial  bifurcaCon  occurs.Thus  the  new  scheme  successfully  acts  as  a  diffusive  term  around  the  interface  region.

Future  planTo  invesCgate  the  diffusive  effect  on  Er  in  more  detail;(1)  Effect  of  the  boundary  condiCon(2)  When/How  the  numerical  increase  in  Er  arisesshould  be  clarified.With  respect  to  the  electron-­‐root  Er  in  the  edge.  the  effect  of  the  parCcle  orbit  in  the  stochasCc  region  will  be  examined.Physical  mechanism  of  the  spacial  bifurcaCon  needs  to  be  explored.

Reference[1]  S.  Matsuoka,  et  al.,  Plasma  Fus.  Res.  6,  016  (2011)[2]  A.  Wakasa,  et  al.,  Contrib.  Plasma  Phys.  50,  582  (2010)

FORTEC-­‐3D  solves  the  DK  eq.  with  δf    Monte-­‐Carlo  method.distribuCon  funcCon  :  f  =  fM  +  δftwo  weight  scheme  i:  wi  and  pi

Electron  parallel  flow  (tentaCve  results)

Numerical  analyses

E-­‐root  Er  is  formed  in  high  Te  CERC  plasmas  in  LHD

The  orbit  and  weights  of  each  marker  parCcle  are  followed  with  including  collision  in  longer  Cme  step.→  δf  at  the  steady  state  determined.

Drih  KineCc  eq.

orbit

NC  flux

ambipolar  condiCon

weightdistribuCon  func.

Er

Γi  is  referred  to  DGN/LHD

Note:Ion  parCcle  flux  Γi  of  DGN/LHD[4]  are  determined  by  locally  and  mono-­‐energeCcally  since  Ti  of  CERC  plasma  is  usually  low.

SummarySummaryExperimental  analyses  of  CERC  plasmas  have  been  carried  out.We  have  found;‣ The  electron  FOW  effect  is  sCll  important  for  the  NC  energy  flux  and  thus  the  thermal  diffusivity  rather  than  for  the  ambipolar  Er.‣ Strong  shear  of  Er,  leading  to  the  improved  confinement,  is  formed  in  the  inner  region  of  local  flakening  region  when  the  eITB  forms  in  a  CERC  plasma.‣ The  NC  thermal  diffusivity  remains  low  level  during  the  eITB  formaCon,  and  no  1/ν  dependence  appears.  FormaCon  of  the  e-­‐root  Er  compensates  the  increase  in  the  NC  thermal  transport.‣ The  direcCon  of  the  electron  parallel  flow  is  qualitaCvely  the  same  as  that  of  the  previous  experimental  study.

DiscussionsTo  elucidate  the  mechanism  of  eITB  formaCon;‣ The  turbulent  transport  level  will  be  evaluated  by  GKV-­‐X[5].‣ Effect  of  the  island,  or  perturbaCon  field  will  be  included.‣ The  parallel  flow  should  be  evaluated  with  the  momentum  conserving  collision  operator  b/w  electrons  and  ions.‣ Effect  of  the  ECH  heaCng  on  the  NC  transport  and  the  Er  formaCon  should  be  invesCgated.

References[1]  H.  Takahashi,  et  al.,  IAEA  Fus.  Energy  Conf.  (2010)  pp.EXC/P8-­‐15[2]  T.  Shimozuma,  et  al.,  Nucl.  Fusion,  45,  1396  (2005)[3]  S.  Matsuoka,  et  al.,  Phys.  Plasmas,  18,  032511  (2011)[4]  A.  Wakasa,  et  al.,  Contrib.  Plasma  Phys.  50,  582  (2010)[5]  M.  Nunami,  et  al.,  Plasma  Fus.  Res.,  5,  016  (2010)

e-ITBの形成過程 ECHのハイパワー長パルス運転が可能となり、フラットニングの緩和を伴うe-ITBの成長過程を調査することができた。 フラットニング領域の内側と外側両方で縮小が進み、最終的にローカルフラットニングは解消。 e-ITBは /2 = 0.5近傍まで成長する。 放電後半ではプラズマ中心領域の温度勾配が劣化。

02468

10

0

5

10

15

20

FlatteningWidth

#103619t = 0.8 s

e [m2/s]

Te [keV]

02468

10

0

5

10

15

20#103619t = 0.9 s

foot

02468

10

0

5

10

15

20#103619t = 1.0 s

02468

10

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6

#103619t = 1.1 s

reff

[m]

02468

10

0

5

10

15

20#103619t = 1.2 s

marginal

02468

10

0

5

10

15

20#103619t = 1.4 s

02468

10

0

5

10

15

20#103619t = 2.2 s

02468

10

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6

#103619t = 2.8 s

reff

[m]

00.20.40.60.8

11.2

n e_fir

[x10

19 m

-3]

77 GHz (5.5 U, 9.5 U): 1.34 MW

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3

reff_foot

reff_in

reff_outr eff_

foot

, ref

f_in, r

eff_

out [m

]

Time [s]

FlatteningWidth

/2 = 0.5

marginal

e-ITBの形成過程 ECHのハイパワー長パルス運転が可能となり、フラットニングの緩和を伴うe-ITBの成長過程を調査することができた。 フラットニング領域の内側と外側両方で縮小が進み、最終的にローカルフラットニングは解消。 e-ITBは /2 = 0.5近傍まで成長する。 放電後半ではプラズマ中心領域の温度勾配が劣化。

02468

10

0

5

10

15

20

FlatteningWidth

#103619t = 0.8 s

e [m2/s]

Te [keV]

02468

10

0

5

10

15

20#103619t = 0.9 s

foot

02468

10

0

5

10

15

20#103619t = 1.0 s

02468

10

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6

#103619t = 1.1 s

reff

[m]

02468

10

0

5

10

15

20#103619t = 1.2 s

marginal

02468

10

0

5

10

15

20#103619t = 1.4 s

02468

10

0

5

10

15

20#103619t = 2.2 s

02468

10

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6

#103619t = 2.8 s

reff

[m]

00.20.40.60.8

11.2

n e_fir

[x10

19 m

-3]

77 GHz (5.5 U, 9.5 U): 1.34 MW

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3

reff_foot

reff_in

reff_outr eff_

foot

, ref

f_in, r

eff_

out [m

]

Time [s]

FlatteningWidth

/2 = 0.5

marginal

Local  flaVeningThe  eITB  foot  point  of  inside/outside  approaches  each  other  during  the  formaCon  of  CERC  eITB  (see  figure  above).Te  at  the  core  increases  as  the  width  of  the  flakening  becomes  narrower.Foot  point  of  eITB  ends  up  at  approx.  ι/2π  =  0.5[1,2].

Mo/va/on

FORTEC-­‐3D

Te(0)  =  5.0  keV  low  collisionality

FORTEC-­‐3D  includes;1.  Electron  finite  orbit  width  (FOW)  effect2.  Like-­‐parCcle  collisions  of  both  pitch  angle  and  energy  scakerings,  saCsfying  the  conservaCon  laws3.  Unlike-­‐parCcle  collisions  of  only  pitch  angle  scakering.

FOW  effect  is  important  for  high  Te  plasmas  in  LHD  as  CERC;finite  orbit  width  (FOW)  effect  for  electrons  becomes  large.

Previous  benchmark  calculaCons  b/w  FORTEC-­‐3D  code  for  electrons[3,4]  and  local  codes  show  that  this  arises  due  to  the  collisionless  detrapping  and  the  poloidal  rotaCon.

Electron  parallel  flow  is  obtained  by  FORTEC-­‐3D  for  #103619.

Results  show  the  parallel  flow  in  the  co-­‐direcCon  generated  at  the  flakening  region.

This  corresponds  to  the  bootstrap  current  of  electrons  in  the  ctr-­‐direcCon.The  current  density  is  approximately  up  to  10  kA/m3.

Current  in  the  ctr-­‐direcCon  in  the  CERC  formaCon  qualitaCvely  reproduces  the  tendency  of  the  eITB  formaCon  in  past  LHD  experiment[2].

The  ambipaor  Er  is  compared  to  both  DGN/LHD  and  the  experiment.Results  of  FORTEC-­‐3D  agrees  well  with  Er  evaluated  by  the  potenCal  profile  observed  by  HIBP.Quite  similar  values  are  obtained  b/w  FORTEC-­‐3D  and  DGN/LHD.

FOW  effect  does  not  influence  so  much  on  the  steady-­‐state  ambipolar  Er.

FOW  effect  on  LHD  CERC  plasma

NC  energy  flux  is  30  -­‐  40  %  reduced  compared  to  that  w/o  the  electron  FOW  effect.

FOW  effect  rather  important  for  the  NC  thermal  transport.

Along  with  the  eITB  formaCon,  the  ambipolar  Er  gradually  grows  to  the  electron  root  with  steep  shear.

The  region  of  the  sheared  e-­‐root  Er  moves  outward.→  qualitaCvely  agrees  to  the  movement  of  the  eITB  footpoint.

Er  goes  to  zero  locally.→  corresponds  to  the  posiCon  where  the  local  flakening  of  Te  gradient  (eITB  footpoint).

Although  Te  increases  in  the  CERC  formaCon,  χNC  (solid)  remains  low.→  1/ν  dependence  (  ∝ Te7/2)  does  not  appear  due  to  the  formaCon  of  the  e-­‐root  Er  even  in  the  1/ν  region.This  indicates  that  the  e-­‐root  Er  forms  to  rather  compensate  the  increase  in  the  NC  thermal  transport  in  the  eITB  formaCon  process  in  the  CERC  plasma.First,  the  thermal  diffusivity  reduces  at  the  core  (t  =  0.9  s),  then  it  reduces  approximately  at  ρ  <  0.4  region  (t  =  1.1  s),  where  Er  has  the  shear.The  comparison  of  the  χNC  to  χexp  (dashed)  suggests  that  the  main  reducCon  of  the  thermal  transport  is  akributed  to  the  reducCon  of  the  turbulent  transport,  since  χNC  is  kept  low.→  GK  simulaCons  for  ETG  turbulence  are  required.

NC  thermal  diffusivity  is  sCll  slightly  large  in  the  flakening  region  due  to  the  absence  of  the  large  e-­‐root  Er.

The  Er  formaCon  and  the  thermal  transport

EsCmated  radial  drih  of  helical  trapped  electrons  ≅  4  -­‐  5  cm.

NC  transport  should  be  calculated  with  the  electron  FOW  effect.

NC  energy  flux  w/  and  w/o  FOW  effect  is  compared  to  each  other.

Thermal  diffusivity

The  total  energy  flux  increases  as  the  temperature  increases.

NC  thermal  transport  increases  due  to  the  formaCon  of  the  steep  Te  gradient  in  CERC  plasmas.

The  ambipolar  Er  and  the  NC  energy  fluxes  are  also  invesCgated  for  #103619.

Large  Er  at  the  core  reduces  the  electron  transport.

SInce  the  ambipolar  Er  strongly  affects  the  parCcle  orbit,  the  ambipolar  Er,  the  parallel  flow,  and  the  NC  thermal  transport  should  be  invesCgated  at  the  same  Cme.

FORTEC-­‐3D[3]  code,  which  includes  the  electron  FOW  effect  is  appropriate  for  such  NC  transport  simulaCons  in  high  Te  plasmas  as  CERC.To  clarify  the  eITB  formaCon  in  CERC  plasmas,  NC  simulaCons  have  been  iniCated  using  FORTEC-­‐3D;  the  ambipolar  Er  and  thermal  diffusivity  are  compared  to  those  experimental  values.

How  are  the  Er and  its  shear  formed  in  CERC  plasmas?The  Er  reduces  the  NC  and/or  turbulent  transport??What  determines  the  eITB  foot  point?It  has  been  suggested  that  the  close  relaConship  b/w  the  foot  point  and  the  magneCc  island  or  a  low  order  raConal[2].  However,  it  remains  unclear.In  addiCon,  the  flow  along  the  surface  has  a  close  relaConship  to  island  healing,  which  occurs  the  low  collisional  plasmas.

In  general,  the  eITB  formaCon  in  LHD  tends  to  take  place  for  a  plasma  with  counter  NBI  injecCon  (w/  plasma  current  in  the  ctr-­‐direcCon)  than  that  with  co-­‐injecCon[2].On  the  other  hand,  all  the  CERC  plasmas  calculated  by  FORTEC-­‐3D  in  this  work  are  made  by  ECH  only.Is  there  any  relaCon  b/w  the  parallel  flow  in  ECH  plasmas  and  the  momentum  input  in  NBI  plasmas??