proton pumping in bacteriorhodopsin with qm/mm scc-dftb

21
Proton pumping in bacteriorhodopsin with QM/MM SCC-DFTB Nicoleta Bondar, 1 Marcus Elstner, 2 Stefan Fischer, 3 Sándor Suhai, 4 and Jeremy C. Smith 1 1 Computational Molecular Biophysics, IWR, University of Heidelberg, Germany 2 University of Braunschweig, Germany 3 Computational Biochemistry, IWR, University of Heidelberg 4 Molecular Biophysics Department, German Cancer Research Center, Germany

Upload: vanig

Post on 09-Jan-2016

53 views

Category:

Documents


0 download

DESCRIPTION

Proton pumping in bacteriorhodopsin with QM/MM SCC-DFTB. Nicoleta Bondar, 1 Marcus Elstner, 2 Stefan Fischer, 3 S ándor Suhai, 4 and Jeremy C. Smith 1. 1 Computational Molecular Biophysics, IWR, University of Heidelberg, Germany 2 University of Braunschweig, Germany - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Proton pumping in bacteriorhodopsin

with QM/MM SCC-DFTB

Nicoleta Bondar,1 Marcus Elstner,2 Stefan Fischer,3

Sándor Suhai,4 and Jeremy C. Smith1

1Computational Molecular Biophysics, IWR, University of Heidelberg, Germany2University of Braunschweig, Germany3Computational Biochemistry, IWR, University of Heidelberg4Molecular Biophysics Department, German Cancer Research Center, Germany

Page 2: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Acknowledgements

IWR, University of Heidelberg

Prof. Jeremy C. SmithDr. Stefan Fischer

German Cancer Research Center

Prof. Sándor Suhai

University of Braunschweig

Prof. Marcus Elstner

University of Bremen

Prof. Thomas Frauenheim

€: The German Cancer Research Center (DKFZ) Heidelberg The German Research Foundation (DFG)

Page 3: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Bacteriorhodopsin proton pumping

Short-distance proton transfer (3-4 Å) from retinal to aspartate on the extracellular side:

Long-distance proton transfer (~11 Å)from aspartate on the cytoplasmic side to the retinal:

Involves proton transfers between the retinal chromophore and aspartic residues

Extracellular side

Extracellular side

Page 4: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Computing reaction pathways for bacteriorhodopsin proton pumping

Retinal

Asp85Asp212

Thr89

w402

Lys216

Quantum Mechanical / Molecular MechanicalQM: SCC-DFTB, B3LYP/6-31G**MM: CHARMM

ns range10s range

10ms range

Page 5: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Accuracy of SCC-DFTB in describing bacteriorhodopsin proton transferMethod Retinal

energy(donor)

Acetate energy(acceptor)

Δ E (acetate-retinal)

AM1 222.9 333.5 108.6

PM3 215.5 331.1 115.6

SCC-DFTB (&) 254.7 365.7 111.0

SCC-DFTB 265.0 365.7 100.7

HF/4-31G 263.6 364.2 100.6

HF/6-31G* 255.0 366.7 111.7

HF/6-31G** 257.7 370.9 113.2

HF/6-311+G** 258.6 361.3 102.7

B3LYP/4-31G 271.7 362.4 90.7

B3LYP/6-31G* 265.0 364.9 99.9

B3LYP/6-31G** 267.2 368.2 101.0

B3LYP/6-311+G** 261.6 352.6 91.0

MP2/6-31G* 252.3 362.3 110.0

MP2/6-31G** 256.7 368.5 111.8

MP2/6-311G* 248.7 358.3 109.6

MP2/6-311G** 252.3 365.6 113.3

MP2/6-311+G** 250.2 354.5 104.3

Page 6: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Accuracy of SCC-DFTB in describing bacteriorhodopsin proton transferMethod Retinal

energy(donor)

Acetate energy(acceptor)

Δ E (acetate-retinal)

AM1 222.9 333.5 108.6

PM3 215.5 331.1 115.6

SCC-DFTB (&) 254.7 365.7 111.0

SCC-DFTB 265.0 365.7 100.7

HF/4-31G 263.6 364.2 100.6

HF/6-31G* 255.0 366.7 111.7

HF/6-31G** 257.7 370.9 113.2

HF/6-311+G** 258.6 361.3 102.7

B3LYP/4-31G 271.7 362.4 90.7

B3LYP/6-31G* 265.0 364.9 99.9

B3LYP/6-31G** 267.2 368.2 101.0

B3LYP/6-311+G** 261.6 352.6 91.0

MP2/6-31G* 252.3 362.3 110.0

MP2/6-31G** 256.7 368.5 111.8

MP2/6-311G* 248.7 358.3 109.6

MP2/6-311G** 252.3 365.6 113.3

MP2/6-311+G** 250.2 354.5 104.3

AM1, PM3, and the standard SCC-DFTB overestimate the acetate-retinal proton affinity.

Page 7: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Accuracy of SCC-DFTB in describing bacteriorhodopsin proton transferMethod Retinal

energyAcetate energy

Δ E (acetate-retinal)

AM1 222.9 333.5 108.6

PM3 215.5 331.1 115.6

SCC-DFTB (&) 254.7 365.7 111.0

SCC-DFTB 265.0 365.7 100.7

HF/4-31G 263.6 364.2 100.6

HF/6-31G* 255.0 366.7 111.7

HF/6-31G** 257.7 370.9 113.2

HF/6-311+G** 258.6 361.3 102.7

B3LYP/4-31G 271.7 362.4 90.7

B3LYP/6-31G* 265.0 364.9 99.9

B3LYP/6-31G** 267.2 368.2 101.0

B3LYP/6-311+G** 261.6 352.6 91.0

MP2/6-31G* 252.3 362.3 110.0

MP2/6-31G** 256.7 368.5 111.8

MP2/6-311G* 248.7 358.3 109.6

MP2/6-311G** 252.3 365.6 113.3

MP2/6-311+G** 250.2 354.5 104.3

Regardless of the basis set used, B3LYP overestimates the Schiff base proton affinity.

Page 8: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Accuracy of SCC-DFTB in describing bacteriorhodopsin proton transferMethod Retinal

energyAcetate energy

Δ E (acetate-retinal)

AM1 222.9 333.5 108.6

PM3 215.5 331.1 115.6

SCC-DFTB (&) 254.7 365.7 111.0

SCC-DFTB 265.0 365.7 100.7

HF/4-31G 263.6 364.2 100.6

HF/6-31G* 255.0 366.7 111.7

HF/6-31G** 257.7 370.9 113.2

HF/6-311+G** 258.6 361.3 102.7

B3LYP/4-31G 271.7 362.4 90.7

B3LYP/6-31G* 265.0 364.9 99.9

B3LYP/6-31G** 267.2 368.2 101.0

B3LYP/6-311+G** 261.6 352.6 91.0

MP2/6-31G* 252.3 362.3 110.0

MP2/6-31G** 256.7 368.5 111.8

MP2/6-311G* 248.7 358.3 109.6

MP2/6-311G** 252.3 365.6 113.3

MP2/6-311+G** 250.2 354.5 104.3

Effective error cancellation.

Page 9: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Accuracy of SCC-DFTB in describing bacteriorhodopsin proton transferMethod Retinal

energyAcetate energy

Δ E (acetate-retinal)

AM1 222.9 333.5 108.6

PM3 215.5 331.1 115.6

SCC-DFTB (&) 254.7 365.7 111.0

SCC-DFTB 265.0 365.7 100.7

HF/4-31G 263.6 364.2 100.6

HF/6-31G* 255.0 366.7 111.7

HF/6-31G** 257.7 370.9 113.2

HF/6-311+G** 258.6 361.3 102.7

B3LYP/4-31G 271.7 362.4 90.7

B3LYP/6-31G* 265.0 364.9 99.9

B3LYP/6-31G** 267.2 368.2 101.0

B3LYP/6-311+G** 261.6 352.6 91.0

MP2/6-31G* 252.3 362.3 110.0

MP2/6-31G** 256.7 368.5 111.8

MP2/6-311G* 248.7 358.3 109.6

MP2/6-311G** 252.3 365.6 113.3

MP2/6-311+G** 250.2 354.5 104.3

SCC-DFTB (SRP) agrees reasonably well with B3LYP/6-31G** and MP2/6-311+G** in describing the retinal-acetate relative deprotonation energy.

Page 10: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Accuracy of SCC-DFTB in describing bacteriorhodopsin proton transfer

SCC-DFTB/MM-optimizedB3LYP 6-31G**/MM-optimized

QM/MM-optimized structures

QM/MM proton transfer activation energies

B3LYP/6-31G** and SCC-DFTB values agree to within 2.1 kcal/mol (rms value).

Page 11: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Computing reaction pathways for bacteriorhodopsin proton pumping

Retinal

Asp85Asp212

Thr89

w402

Lys216

Reaction path calculations

ns range10s range

1ms range

Page 12: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Computing pathways for proton transfer

The difficulties of choosing the reaction coordinate

Energy discontinuities are

present in the coordinate-

driving reaction path.

d = d1 – d2

Normalized (protein) RMSD

Energy discontinuities

correspond to large RMSD

differences.

The jumps in the structure

hide high energy peaks.

Page 13: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

R

P

S1

S2

Computing pathways for proton transfer

Fischer & Karplus, Chem Phys Lett 1992

All degrees of freedom in the protein, no driving constraints

Optimizes an initial guess of the path

Conjugate Peak Refinement

Page 14: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

R

P

S1

S2

Computing pathways for proton transfer

Fischer & Karplus, Chem Phys Lett 1992

Explore by varying the initial path

All degrees of freedom in the protein, no driving constraints

Optimizes an initial guess of the path

Conjugate Peak Refinement

Page 15: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Computing pathways for proton transfer

Retinal

Thr89

Asp85 w402Asp212

Lys216

R

P

Normalized reaction coordinate

Conjugate Peak Refinement

Coordinatedriving

… many paths must be computed with different starting coordinates

Page 16: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Energetics of bacteriorhodopsin proton pumping

Proton-donor group points in the direction opposite to the net transfer

Proton-donor group points in the direction of the net transfer

Page 17: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Energetics of bacteriorhodopsin proton pumping

protonateddeprotonated

Bondar, Smith, Fischer, Photochem. Photobiol. Sci. 2006

Page 18: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

protonateddeprotonated

deprotonated

retinal reprotonation

Energetics of bacteriorhodopsin proton pumpingBondar, Smith, Fischer, Photochem. Photobiol. Sci. 2006

Page 19: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

K

protonateddeprotonated

deprotonated

retinal reprotonation

protonated

Formation of the proton-transfer reactant state

X

Energetics of bacteriorhodopsin proton pumpingBondar, Smith, Fischer, Photochem. Photobiol. Sci. 2006

Page 20: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Mechanism of the first proton transfer step

Direct: E# = 12.4 kcal/mol

Asp212,w402 path: E# = 11.5 kcal/molThr89 path: E# = 13.6 kcal/mol

Experimental enthalpy barrier: ~13 kcal/mol

(Ludman et al, Biophys J. 1998)

CP

EC

Bondar, Elstner, Suhai, Smith, Fischer. Structure 2004

CP

EC

CP

EC

Page 21: Proton pumping in bacteriorhodopsin  with QM/MM SCC-DFTB

Directionality in the early photocycle steps

5

Twisting of the retinal chain is tuned such that

- Enough energy is stored to drive the photocycle

- Thermal cis-trans isomerization is energetically unfavourable

cytoplasm

Bondar, Fischer, Suhai, Smith, JPCB 2005

19

TwistedbR state

TwistedK state

12

QM/MM K-state model

Energy storage 7 kcal/mol in retinal twist + 7kcal/mol in perturbation of

h-bonding interactions