r de soudure

12
International Institute of Welding r Institut International de la Soudure Annual Assembly ~ssernblck Annuelle COLLOQUIUM COLLOQUE

Upload: others

Post on 20-Jun-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: r de Soudure

International Institute of Welding r

Institut International de la Soudure

Annual Assembly

~ssernblck Annuelle

COLLOQUIUM

COLLOQUE

Page 2: r de Soudure

ABSTRACT

A MATHEMATICAL HODEL OF HEAT AND FLUID FLOW PHENOnlnA

Ill ELECTROSLA6 WELDING

J. Szekel y and T.U. Eagar

Department o f Mater ia ls Science and Enqlneerfng

ftessachnsetts Ins t I t u t e o f Technology

Canibridqe, Hçss 02139 USA

Dr. Szekely IS a Professor and Dr. Eaqar i s an Assis tant Professor

Suhmi t t e d to the In ternat ional I n s t i t u t e o f Welding C o l l o q u i ~

on Applicat ions o f Numerical Techniques i n Welding

t o be held I n Dublin, Ireland, 4 July. 1978

Subdivision A, Physical and He ta l l u rq l ca l E f fec ts

Through the statement o f Maxwell's equiitlons. the turbulent Navier-Stokes equations ç- the convectfve h a t balance equation, a n à § t h e w t l c a mod01 has been proooied 01 thr E l r c 1 ' ~ - a l l f l Walding Proeçsa I n thà formuliclun, aliowanca has Bean mada fo r bcit3 the r l ~ c t r r r - ~ i - n e t l c and the buoyancy forces that d r i ve tha slag and the metal flow. The r r i u l t a - x st-^:- taneous p a r t i a l d i f f e r e n t i a l equations were solved numerical ly using a d i a i t a l co^aJter.

The p r i n c i p a l f ind ings o f the work may be summarized as fol lows: 1) There I s .lppreciabIc f l u i d motion i n both the molten metal pool and i n

the s l a g and t h l s motion may a f fec t the heat t ransfer processes wick in the system, p a r t i c u l a r l y i n the s lag phase.

2) I n general t h i s f l u i d no t ion i s dr iven by both electro-aqnetic f i rce5 and by buoyancy forces. The elcctranaqnetlc force f i e l d res - i t s frm !^e s p a t i a l l y nonuniform current density d i s t r i b u t i o n i n the syste-. -E i l e the buoyancy d r i ven flows dre caused by the nonuniformity o f the te->era- Cure f i e lds . I t has been found that the geometry o f the sys?e- has a profound e f f e c t I n dctermlninu whether the f low f i e l d i s d f y i n a t f i by electromagnetic o r by buoyancy forces.

3) When w i re e lect rodes are used the f low f i e l d i s dr iven by elcctr.-T.:-clic forces while, f o r p l a t e e lcct rodcs the buoyancy forces doriinate. ::.- t y p i c a l condi t ions, the electromfignetici i l ly dr iven flows may be a"* c r i e r o f magnitude h igher than the buoyancy dr lven flows.

4) This marked dependenceof t h e m e l t v e l o c l t i e s o n the systenae,?¥¥--tr i s a l so manifested by d r a s t i c a l l y d i f f e ren t temperature d i s t r i bu t i f . " a - d elect rode mel t ing ra tes i n systems us inq wire type and p l a t f t ~ z e e!ectrcJei. The c i r c u l a t i o n I n the metal pool I s much less intense than i n ;"¥ 5 I . n .

and tends t o be laminar. A select Ion o f the c m p u t r d resu l t s I s presented i n the saper which "i"rc ; . . f i , - : r? .:t,:

modi f icat ions i n system geometry necessary t o optimize the u t i l i z a t i o n o f i w a l yer:,.

Input .

Introduct ion

Although invented over f o r t y years an@, e lect ros laq welding (EW) has -.at d-va!:.-< , i n t o a commercial process u n t i l the l a t e 1150's by Patnn and others i n the I - ? S D . l t ' , acceptance ho.wv*;r, has been slow i n sp i te o f the fact that i t i s potc-t i-sl '1f I*" -Ã :̂-.

e f f i c i e n t process fo r j o i n i n g o f th i ck sections. The main reason why ESU has not been used extensively I s the long t h e r a l cyc le i-'"*r-

ent i n the pr.-icess, which leads to poor mechanical propert ies o f the 5 . 1 s ~ ola!?. i>:.da-;r~ have been slow s ince dcvelopn'ental work t o improve welding procedures i s cos i ly . f u t h c r -

mare. the h igh :en:peraturcs involved make experimental deterr i inat ion o f the t f - ? e r a t ~ r e and v e l o c i t y f i e l d s w i t h i n the molten stag and metal pools extrer-eiy d i f f i c u l t .

Recent advances I n the computer modell ing o f e lec t rmaanr t i c flows i n r e t a l a rcc r5?h= operations have proven t o be q u i t e e f fec t i ve i n p red ic t i ng ve loc i t y d i s t r i b u t i n r s , t * e r a l d i s t r i b u t i o n s and heat f luxes which otherwise could only be determined wi th puch ewer : - mental d i f f i c u l t y and expense. It I s thought that app l i ca t ion o f these technicdes t a tpe ESW process may prove extremely valuable I n understanding the fundam-itals o f the process and hence I n an eventualImprovement o f the operation.

Formulat1.on.of t h e Model

Let us consider the e lect ros lag welding of two plates, as sketched i n Fioure 1. I t I s seen that b consumable w i re electrode (or :n some cases, a p la te electrode) i s teina

Page 3: r de Soudure

fed continuously I n t o a molten slag pool, whlch I s r e s l s t l v e l y heated by the current that passes from the electrode, through the molten s lag and the metal pool, t o the base plates. I t i t a lso seen tha t two water cooled copper "shoes1' prov ide a mold through whlch a por t ion. Q * the thtri-rl energy I s r f o v e d from the system. I t w l l l be noted that the passage o f e l e c t r i c current frm the narrow electrode throuqh the molten s lag and ne ta l phases must be t i ve raen t and hence w i l l generate an electromagnetic force f l e ld . I n a d d i t i o n the non- (.-;for- te-perature d i s t r i b u t i o n w i l l g i ve r i s e t o bouyancy forces. Both the electronag- pe t i c force f l e l d and bouyancy force f i e l d w l l l generate f l u i d motion, although o f generai ly ocsosina ro ta t iona l sense, as sketched I n F lgure 2.

The heat f l ux from the molten phases t o the base p la tes I s determined by the thermal f t d i e n t s whlch e x i s t across the s o l i d - l i q u i d Interface. These gradients are i n t u r n a '~ec ted by the f l u i d motion and the ra te o f i n te rna l heat generation, hence a model of t h i s arocess nust involve the simultaneous s o l u t i o n o f equations f o r the electromagnetic 'orcr F ie ld buoyancy force f l e l d and temperature f i e l d .

'or -nodel i lng purposes the physical geometry has been Idea l i zed as shown In Flgurm 3. : b i l l be noted that the p r i n c i p a l d i f ference between the pool p r o f i l e s shown In Flgure 3 a-3 if's actual ~ o o l prof I l e s i s that the model postu lates a f l a t metal pool. It w i l l be

Â¥-.. v i t i e ~ ~ e n t l y f a t the ESW process i s dominated by behavior I n the slag phase and hence c t r r - i d e a l i z a t i o n o f the metal pool p r o f i l e should not a f f e c t the general nature o f the ' : i ^ a i " ~ i .

I'pon considering a melt (me ta l l i c o r Ion ic ) contained I n a three-dimenslonxl enclosure, the à § q u ~ t l o . f motion f o r turbulent f low i s w r i t t e n as:

a-2 t * ~ e q u a t i n u f con t inu i t y i s given as:

-"<Â¥r . I s the densl ty I s the v e l o c i t y vector

? i s the pressure t I s t h e t i n e : i s the e f f e c t i v e v iscos i ty , whlch I s the sum o f the laminar and the turbulent

c o n i r i t u t Ions I s the body force vector whlch Incorporates the electromagnetlc force and the buoyancy force. .

I t 1s noted that Ue I s not known a t t h i s stage; It I s genera l ly s t rongly p o s l t i o l -

<'r--È-Jrn and i s a function o f the v e l o c i t y f l e ld . As discussed by Spaldlng [I], and Launder J-3 'Sraldin9 1 2 1 , the ca lcu la t ion o f v requires the so lu t lon o f p a r t i a l d i f f e r e n t i a l equa-

t . the procei'u.-â fo r ut i lch I s we l l documented 131. TÃ -̂ qeneral expression fo r the electromagnetic body force f l e l d I n In te rac t ing e l e c t r i c

a-<! - a y e t i c f i e l d s I s available I n the l i t e r a t u r e ['1,5]. It nay be read i l y shown that fo r t¥- condi t ions o f In terest I n the present ~ t u d y , the electromagnetic force vector, E, nay bà < ~ \ v l ~ t e d fron:

f - J x ! (3) Mftfrw

J 1s the current denslty

I n order t o evaluate F, we have t o solve M * m e l l l s equations (more precisely, the MHD - ~.-.~iw~l'ça Ion o f M à § x u e i l ' equations) whlch mre w r l t t e n as [5, 111:

where E I s the e l e c t r i c f i e ld , and - H I s the magnetic f i e l d Intensity. -

Furthermore, we have that - UJ!

here, p I s the permeabi l i ty I n vacuum.

~ l n i l l y , thm current densi ty I s given by Ohm's Law:

and

where 0 I s the e l e c t r i c a l conductivi ty, and . @ i s the scalar e l e c t r i c potent ia l . I n order to evaluate the body force diie t o buoyancy, the convective heat balance

equation must be solved wl t h due allowance f o r eddy transfer, heat aenerat io f riue t o " J : - l c heating", and the transport o f thermal energy by movlnq droplets. Such an equatic- i- 2 three-dlmenslonal enclosure may be wr i t ten as:

DT ^ , , O f - 7 - kc" + E * - J + ST

where T I s the temperature Cn I s the spec i f i c heat

ke i s the e f fec t i ve thermal conductivi ty. and

I s the source term, which describes the thermal energy transport due t o r o v r - p - i o f metal droplets from the t i p o f the electrode t o the metal pool.

The f l u i d f low equations have t o be wr i t t en down separately fo r the v l t e n 513: .>-.'

molten metal pool; these two sets o f equatlons arc re la ted thiouqh boundar-, coradlti.:--'. - L t v

equations representing the e lect rwdqnet i c force f i e l d and the conservat Ion of i^-er--41 c - r r . have t o be w r i t t e n down separately fo r the electrode, molten slao, neta l pool and s i l i d i r ; - . ' weld Inc lud ing the welding plates. These equations are related throuah the I rc .~ idarv cc':'". I t fol lows that Eqs. (1-9) cons t i tu te the governinq equations, tocethcr wi;h the diV,.re-t; ¥

equatlons used for def in ing the ef fect ive viscosity, 1 1 . The counlcd nature o f t ' - d - + * * - r t . . -

slons 1s r c a d l l y apparent. I n tha t the temperautre f l e l d enters the f l u i d f l e w e c u ~ t i o n ^ through the buoyancy term and the know': lge o f the v e l o c i t y f ie lds and tur?ulenctf rara-i- trr? needed I n the so lu t lon o f the convective heat t ransfer equations. The r-aanetic G r \ i equations may, however, be uncoupled since the magnetic Reynolds nunber for the svste- Â ¥ d n e c study I s much smaller than u n i t y [5.61; thus, the d i f f u s i v e transport o f the l imnet ic ' i c ' l . f

dominates over the convectlve transport. The actual ESW system I s three dlmensiunal I n space and time dependent due to r'ovf-i'-.

o f the boundaries. I t I s possible however t o model the process as two d iwnsional a id

The displacement current I s neglected.

Page 4: r de Soudure

quasl-steady state. The camoutatIonaI economies o f such a mod i f i ca t ion are s lgn l f l can t . Nonetheless the so lu t ion o f the two-dlmenslonal problem requi res approx l i u te l y 300 seconds on the 18H 370/168 a t H.I.T.

L I n I t a t I o n o f the problem t o two dlmenslons  ¥ H o w the c o n ~ t r u c t l o n o f two basically d l f r e r a n t ççorwlr la The f l r s t , b i r d on a CartasIan coordlnata nÈonÑtr 1s equlvblçn t o -e ld lnq b vary th i ck p la le w i t h n p la te e lect rode (cf. F igure l i (a)). The second I l l u - s t r a t e d I n Fiqure 4(b). uses a c y l l n d r l c a l geometry and approximates the more common p r a c t i c e o f ESW w i t h a wl re electrode. I t I s In te res t ing t o note that the former qeomctry, as shokn i n Figure ^(a), gives r i s e t o an electromagnetic force f l e l d whlch does no t induce f l ~ p r o v i d i n q the s v t r y o f the system 1s maintained (7). Hence, the f l ow be- hav ior o f the rectangular geometry I s dmlna ted soley by the buoyancy force f le ld . I n the l a t t e r a c m e t r y (Figure b(b)) both the electromagnetlc and buoyancy force f i e l d s p lay an l-portant role.

Boundary Condl t Ions Thr aovernina eauations and boundary condl t lons f o r bath the rectannular and c v l l n d r l -

cat g--tr ies i r e w r i t t e n I n f i n i t e d l f ferenca form as described elmwhçr (6-8). c ha scl-.it im l i obtained n u n r r l c ~ l l y m l n g i r a l a x i t l o n tachnlque.

Cir-outed P e ~ u l t s I n the following, we shal l present a se lec t ion o f the computed resul ts , whlch were

develooed fo r both c y l l n d r l c a l and f o r rectangular geometry. The comparison o f these two sets o f computed resu l t s w l l l tnen d l o w a r a t i o n a l assessmmt o f the system behavior I n the preneice and I n the absence of an e l cc~~omagne t 1c force f l e ld .

Tables 1 and 11 contain the property values used i n the computation o f the rectanqutar and the c y l i n d r i c a l systems. I t i s seen that these two systems are o f comparable l i near dl-enslons. Moreover, the tot81 heat Input was Iden t i ca l I n these ;xi systems.

Fiqures 5. 6 an") show the conputed streamline pat tern, the map o f t h e v e l o c i t y vector. and the cwcu ted isother""? for the rectangular system. The corresponding p l o t s fo r the c y l i n d r i c a l svsten are given i n Fiqures q, 3 and 10.

I t has t c be stressed. I n conparinq these two sets o f resul ts , tha t i n the reclangular syste-'. the f i o r i n the slaq and the n c t a l phases I s d r i ven by buoyancy forces only; I n the c y l i r - j r i c a l ifstem, the electrn-aqnetic force f l e l d p lays a major r o l e I n determining the flow pa t te rn and the absolute naonitb~de o f the ve loc i ty .

I t i s seen that I n the rectangular system, the buoyancy d r i ven v e l o c i t i e s i n the slag a i d i n the r e t a l phases are r e l a t i v e l y low, o f the order o f 2 cm/s o r less. I n contrast, as seen i n Figure 9, the ve loc i t i es are some 20 times l a m e r i n the s lag region and three t i n e s la rge r i n the m t a l pool o f tbe c y l i n d r l c a l system, where the electrogmagnetic force f i e l d p lays a major ro le i n d r i v i n g the slaq flow.

JDOI co"parin7 the temperature p r o f i l e s I n the two systems, the much more quiescent nature o f the rectanoular system i s read i l y apparent.

The co-puted resul ts reported up t o the present are he lp fu l I n the character izat ion o f the systen. but have only an Ind i rec t bearing on the weld character ls t lcs . As was discussed i n the introductory a c t i o n , the manner I n whlch the thermal energy I s d iss ipated throughout the system has a m j o r r o l e I n determining the charac te r i s t i cs and i n t e g r i t y o f the x l d r c n t produced.

Table I I 1 provides a thermal energy balance f o r both the rectangular and the c y l l n d r l - cat system. This balance i s based on the computed quan t i t i es l i s t e d i n Table IV. The f i r s t two rows i n Table Ill represent the heat Input, whi le the subsequent e n t r i e s represent the heat d i ss ipa t ion i n the various por t ions o f the system.

I n contrast ing the behavior o f the rectangular and the c y l l n d r l c a l systems. I t I s r e a d i l y seen that f o r the rectangular system, on ly some Z } t o f the t o t a l heat Input I s passed on t o the weldingplates, whi le the correspondlnq va lue f o r the c y l l n d r l c a l system I s sone 40?. I t I s a lso seen that a subs tan t ia l l y h igher propor t ion o f the thermal energy input i s beingused f o r ne t t i ng the electrode I n the rectangular system than I s the case fo r c y l l n d r l c 8 1 geometry. I n other words, I n the rectangular system, a much be t te r use I s -de

o f the thermal energy. Thls behavior I s read i l y explained by considering ft fact that t ' -r more vlqorous s t i r r i n g appl ied I n the c y l l n d r l c a l i y s t e n provides for a rather -or* rani,' heat t rans fe r from the molten s l o t to the surroundlnqs.

Thls p o l n t I s fu r the r I l l u s t r a t e d I n Fiqure 11. whlch shows the d i s t r i t u t i c n <tf tÈÂ

l oca l heat f l u x to the welding In ter face as a function o f tha distanca frcr' tt-r five k1.1

surface fo r both the rectangular and the c y l l nd r l ca l syitcm. It i s seen tnat t ? r r . a * - - . i s markedly non-uniform I n the case o f the c y l i n d r i c a l system; the sharp tea- a?;-.-=*;- . , the top r i g h t hand corner o f the qraph corresponds t o the "undercuttino ^ f c - " - Ã ‘ i t-~e: has been found I n he ld ing p rac t i ce [9l. This marked non-unifomi t y i n heat f!o" I! c.,~:,~, by the rap id c ~ n v e c t l v e heat t ransfer by t h t electronagnetical ly dr iven st-?*: fir,--

I n contrast , the d i s t r l b u t l o n o f the local heat f l u x t o the welding ir:e-race <i * - . > - * .

t o be much more uniform I n the rectangu!ar system, where the c i r cu la t ion i n tme s l a . '1- . #

by buoyancy forces. I s much less Intense.

D t n c u c l o n

I n t h i s paper a model o f the heat and f l u i d flow behavior o f t<m-di-er^i'o-al f ^ i systems has been presented, The key f ind lnn o f the model I s that the f IoA :ebavirr i s

markedly d i f f e r e n t when cmpar inq p la te and wl re electroi let. F u r t h ~ r - w e . ¥ >.as 'i:,,>i; t ha t the temperature qradlents are reduced i n the rectangular syste'~' : lat<- clcccrc:<' which leads t o reduced heat f l u x t o the base plate. The net resul t i s that th- - * . * . u t i l i z a t i o n i s more e f f i c i e n t w i th p l a l e electrodes than w i t h h i r e e:si-tr-::-s. F., .:- ,-,. ,' t h i s q u a l l t l a t l v e d i f ference I n thermal e f f i c iency resu l t s f r m the abce-*c* if d- v ' . * - ! ! . - magnetically d r i ven flow f i e l d w i t h p l a t e electrodes. I t should be stressed '-r^<'it-. t L - ' an electromagnetlc force f i e l d does e x i s t i n t h i s case, h- i r . svnt-etry ccndi:ic?s crv:l .,. the force f l e l d from I n i t i a t i n g flow. If i n pract ice svmetry i s not vair:ai-.ed. r e e lec t romaanet l c force f i e l d may become unbalanced and resu l t i n increased "low. *.:x.~v. less. the f low behavior w i t h p la te electrodes. even i f unbalanced. i s expected tn t'e 1e.s than w l r e electrodes o f equal current capacity.

The model as presented, predic ts a qreater maximum heat f lux t o the baw place A S

voltage I s Increased. In a p rac t i ca l sense, t h i s implies that increased volta-a ..--!! lead t o greater undercutt lng ( d i l u t i o n ) o f the base plate. This 15 i n fact ~bserve:. !<' Other p r a c t i c a l observations, such as the necessity of qroundinq both p latss a-d s:a:i-r m u l t l p l e wlre electrodes a t least 1! cm apart (10) I s a natura l consezuence o f tb:e .:,-, t .

maintain symet ry and prevent overlap o f the electronaqnetic force f i e l d s i f s tab le <!,,., a re to be achieved.

Conc lud i ng Remarks

The two dimensional model as presented. I s capable o f accurately pre-i ict ing i n e 'Ir.. and thermal behavior o f ESW. These behaviors may i n tu rn be used to ;x?liiin [be c ' -c- .n ; - - J

charac te r i s t i cs o f ESW. however, fur ther work i s necessary to extend the - 'cAel beso-: e r r , 1lmi tat lons. The tes t inq of a three dimensional analoq i s an obvious addi t ion, >ut -0'-P

importantly, i t i s hoped that refinements w i l l be able t o account fo r t w rfi-cnsio-a1 asymnetrles, a p r i o r 1 calculations o f electrode immersion depth, jou le l 'ca:inv or thr e i c i - trode p r i o r t o en t ry t o the siaq pool, e of mu l t i o le elrctroi ies and copair-able cu i r rs , etc. Although numerous assumptions have been made i n the a ia lys is , i t i s r e i t :bat a- Important step forward has been made i n our understandinq o f ESW. ~t i s ho-ied that t & ; + w l l l I l l u s t r a t e the advantages o f the app l i ca t ion of numerical techoiquei t o w i r i i n o . i rocci ' . i

Acknowledgements -- The authors m u l d l i k e t o acknowledge Dr. A. Dl lawari for h i s assistance i n p rov id i r c

the computed resul ts .

Page 5: r de Soudure

2. 8.E. Launder and D.8. Spalding: Computer Methods In Applied Hechanlcs and Englnee'-Ing, 1974, vol. 3. pp. 269-289.

3. A.D. Gosnan. et al: Heat and Hass Transfer In Recircul~tlng Flows. Academic Press, London and New York, 1969.

4. L.D. Landau and E.B. Llfshltz: Electrodynamics o f Continuous Media, Addison-Wesley, Reading, Mass., 1960.

5. u.6. Hughes and F.J. Young: The E1ectromagnetodyn~ics of Fluids, John Wiley, New York, 1966.

5. A.% Dilawarl and J. Szekely: Met. Trans. 8. mi. 80, pp. 227-236. 1977.

7. A. Oilawarl, J. Szekeiy. and T.W. Eaqar, to be published In Met. Trans.

8. J. Szeqely and A.H. Dllawarl: Proc. of the Fifth Int. Conf. on Vacuum Met. and ESR Proce. e%. Munich, Germany, l97& [in press).

9. I.E. Paton: Electroslaq Welding, American Uelding Society, New York. 1962.

10. "Prxiical T I P S for Electroslag Welding," Arcos Corporçtlon

11. J.C. Jackson, Classical Electrodynamics, John UIiey, New York, 1962.

TABLE I

Physical Property Values Vsed

ka thermal conductivity of slag, 10.5 x 1 0 - kJ/n-s-'K

km thermal conductivity of ulten metal, 20.9 x 10" kJ!r.-s-'K

Dona density of slag at reference temperature, To, 2.75 x 1 0

3 vOvm density of molten metal at reference temperature. To, 7.2 x 10' '^Â¥I

CP,= specific heat uf electrode, 0.50 k.I/kl;-"K

CP,= specific heat of slag, 9.8; k.l/kl;-'K

CpVm specific heat of molten metal or of metal droplet, 0 . 3 ;.I".,:-*K

T, liquidus temperature of electrode or of welding plate matert31, 1.c:J'K

To reference temperature, 350%

AH latent heat of fusion of electrode, 272 k.I!<:

fta thermal coefficient of cubical expansion for molten slat, 1.0 x lo(':Â¥:)-

ftm thermal coefficient of cubical expansion fur wlten ctftal. 1.1) x IU'('K!-' 1

0 electrical conductivity of wlcen sliis. 2.0 x 10" mho/n

5 electrical conductivity of molten metal, 7.14 x 10 nholn

c emisalvlty of free slag surface, 0.6

us viscoiiity of molten slap, 1.0 x 10- kc!"-s

1,, viscosity of molten wtal, 6.0 x 1 0 kg/n-s

Page 6: r de Soudure

TABLE I1

Nuwr lca l Values of Parameters Used i n the Computation

e l ec t rode radix* (ha l f t h i c k n e w ) . 1.5 x 10%

veld pool r ad ius ( h a l t th ickness) . 1.5 x 10-rn

2 e l ec t rode imacrsion In s l a g pool, 1.0 x 10- m

depth of. s l a g pool, 1.5 x 1 0 ~

depth of metal pool, 3.0 x 1 0 m

m ~ ~ n e t i c p e n ~ c a b l l i t y , 1.26 x 1 0 henry/m

Stephan- to l t tmnn cons t an t , 5.73 x 10"' k ~ / n - ~ - * ~

e l e c t r i c p o t e n t i a l a t the Immersed s u r f a c e of the e l e c t r o d e

( r ec t angu la r syscrir.), 14.52 volf

breadth of the r e r t a n ~ t i l a r e l ec t rode , 0.12 m

e l e c t r i c po t en t i a l a t the l m c r e c d s u r f a c e of e l e c t r o d e

( cy l ind r i ca l system). 47.80 v o l t s

TABLE XI1

THERMAL r:icncy numt-r. ~ ' m no-ni THE i t ix~~~cuuw AXD THE CYLINDRICAL SYSTEM

J o u l e hea t i ng i n 1 1 1 1 metal phases i

Hrat flow from s l a g t o metal pool by

- .- 1 8.1 1 8.7 1 2.;: 12-3 convect ion

Heat [low from s l a g t o nietal poul due t o tlie movement of t h e d rop l e t s 9.6 10.3 0.16 2.2

Heat flow from s l a g

I Heat r ad i a t ed from f r e e s l a g su r f ace 1 2.4 1 -2

I s .

L

Hent used t o pre- hea t the e lec- t r ode

t o welding p l a t e s

I I 37'6 1 i 5-86 32-5 '

22.4 1 23.6 7.15 3 9 3

Page 7: r de Soudure

TABLE IT

Electrode aç:.tln velocity 1 (alhr) 70.67

QUA-TIITIES COMPUTED FROM THE MODEL FOR

BOTH THE R I C T ~ G ~ ~ J U ~ AND ~ I N D R I C A L SVSTOS

I t~xtaua linear velocity i n 1 0.01 retal pool (nlsrc)

v

QluntUies C q u t e d

Electrode melting race (kz'sec)

ELECTRODE

. PLATE 2

Rectangular System

5.087 x 10"

WATER A COOLED

COPPER MOLD

7

Cylindrical System

7.917 x

Figure 1 . Schematic o f t h e electroslaq wtldinq process.

Page 8: r de Soudure

SLAG

METAL

Figure 2. Schenatic of the rotational flows expected fron a) thermal buoyancy forces Figure 3. Idealized model of the electroslag welding process. and b) electromagnetic forces.

Page 9: r de Soudure

0 0.3 0.6 0.9 12 1.5

DISTANCE FROM CENTER LINE (cml

Figure 5. Computed stream1 ine pattern for the rectanqular system.

Page 10: r de Soudure

. .

à . o as LO 15

DISTANCE FROM CENTER LINE (cm)

Figure 6. Velocity vector W n g , as computed for the rectawulir SVstm-

DISTANCE FROM CENTER LINE (cml

Figure 7. Confuted Isotherm for the rectangular system.

Page 11: r de Soudure

RADIAL DISTANCE (cmt Flgurà 8. Coiputed stream1 ine p t t t e r n for the cyl lndr icml syÈtm

1

t  : fr-

& >- . I n .

s + I n . 5 . -* t

RADIAL DISTANCE (on) Figure 9. Veloci ty vector napping, as computed for the cyclindrlcal sy"rm-

Page 12: r de Soudure

o a3 a6 as 12

RADIAL DISTANCE (cm) Figure 10. Computed Isotherm for the cyl lndrlct i SyitBm.

J 0 25 050 O X 1.00 125 1.50

DISTANCE FROM FREE SLAG SURFACE (crn) flgurm I t . Computed local heat flux to thm b a u plate for a) Rrctçnault s v n r r .

hut Input 93.4 kJ/sec; b) Cyllndrlcal syttc*): id c) Kuttnqular systm 111.0 kJ/sec.