red geodÉsica famarena 2014

117
1 ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS JAIRO ALONSO SEGURA PULIDO SEBASTIAN CASTILLO VIVAS JUAN DAVID GUASCA GIL UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CLADAS FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES PROYECTO CURRICULAR DE TECNOLOGÍA EN TOPOGRAFÍA BOGOTÁ, D.C. 2015

Upload: jouranne

Post on 18-Feb-2016

52 views

Category:

Documents


8 download

DESCRIPTION

RED GEODÉSICA FAMARENA 2014

TRANSCRIPT

Page 1: RED GEODÉSICA FAMARENA 2014

1

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO

AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL

FRANCISCO JOSÉ DE CALDAS

JAIRO ALONSO SEGURA PULIDO

SEBASTIAN CASTILLO VIVAS

JUAN DAVID GUASCA GIL

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CLADAS

FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES

PROYECTO CURRICULAR DE TECNOLOGÍA EN TOPOGRAFÍA

BOGOTÁ, D.C.

2015

Page 2: RED GEODÉSICA FAMARENA 2014

2

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO

AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL

FRANCISCO JOSÉ DE CALDAS

JAIRO ALONSO SEGURA PULIDO

SEBASTIAN CASTILLO VIVAS

JUAN DAVID GUASCA GIL

Proyecto de Grado presentado como requisito para optar por el título de

Tecnólogo en Topografía en la modalidad de: Proyecto de Grado

DIRECTOR:

Carlos Alfredo Rodríguez Rojas

Ingeniero Topográfico, Esp. SIG.

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CLADAS

FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES

PROYECTO CURRICULAR DE TECNOLOGÍA EN TOPOGRAFÍA

BOGOTÁ, D.C.

2015

Page 3: RED GEODÉSICA FAMARENA 2014

3

Las ideas emitidas por los autores son de exclusiva

responsabilidad y no expresan necesariamente

opiniones de la Universidad (Artículo 117, Acuerdo

029 de 1998).

Page 4: RED GEODÉSICA FAMARENA 2014

4

Nota de aceptación

Acuerdo 29 de 1998. Reglamento estudiantil.

El consejo de la Universidad Distrital Francisco José de Caldas aprueba el trabajo

de grado titulado “ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD

DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD

DISTRITAL FRANCISCO JOSÉ DE CALDAS” . Lo anterior, en cumplimiento de

los requisitos para obtener el título de Tecnólogos en Topografía.

_____________________________

Ing. Carlos Alfredo Rodríguez Rojas Director

____________________________

Jurado

____________________________

Jurado

Bogotá D.C. 2015

Page 5: RED GEODÉSICA FAMARENA 2014

5

Dedicatoria

A todos nuestros seres queridos y en especial a nuestros padres pos tantos años

de educación, esfuerzo y apoyo incondicional, a la Universidad que a través de

nuestros maestros nos brindó los conocimientos necesarios, a nuestros

compañeros por su acompañamiento y apoyo, y para todas aquellas personas que

siempre creyeron en nuestros conocimientos y capacidades para salir adelante.

Por último, al esfuerzo personal que permitió la realización del presente proyecto

de grado.

Page 6: RED GEODÉSICA FAMARENA 2014

6

Agradecimientos

A todas aquellas personas que fueron participes en la preparación, investigación y

elaboración del presente proyecto, de una forma desinteresada aportando ideas,

opiniones y consejos que finalmente permitieron la correcta ejecución del mismo.

Al ingeniero Carlos Alfredo Rodríguez Rojas por su colaboración, orientación y

acompañamiento durante todo el proceso.

Gracias a todas aquellas otras personas que de una u otra manera estuvieron

siempre ahí.

Page 7: RED GEODÉSICA FAMARENA 2014

7

CONTENIDO

Pág.

INTRODUCCIÓN. 16

PLANTEAMIENTO DEL PROBLEMA. 17

OBJETIVOS. 18

GENERAL. 18

ESPECIFICOS. 18

1. ALCANCE 19

1.1 MARCO DE REFERENCIA

1.2 LOCALIZACIÓN DEL PROYECTO 19

2. MARCO TEÓRICO. 20

2.1 NOCIONES DE GODESIA 20

2.1.1 Sistema de referencia 20

2.1.2 Marco de referencia 20

2.2 GEODESIA SATELITAL 21

2.2.1 Geodesia Clásica Vs. Geodesia Satelital 21

2.2.2 Sistemas globales de navegación satelital (GNSS) 22 2.2.2.1 Sistema GPS 22 2.2.2.2 Sistema GLONASS 22 2.2.2.3 Sistema Galileo 23

2.3 MÉTODOS PARA EL POSICIONAMIENTO GEODÉSICO HACIENDO USO

DE RECEPTORES GPS 23

2.3.1 ¿Qué es el GPS? 23

2.3.2 Método de Posicionamiento absoluto 24

2.3.3 Método de Posicionamiento Diferencial 24

2.3.4 Método de Posicionamiento Relativo 24

2.4 SISTEMA GEODÉSICO NACIONAL DE LA REPÚBLICA DE COLOMBIA25

2.4.1 Generalidades 25

2.4.2 Sistema Geodésico Horizontal 25

2.4.3 Sistema Geodésico Vertical 26

Page 8: RED GEODÉSICA FAMARENA 2014

8

2.5 MICROGEODESÍA Y REDES 27

2.5.1 Red 27

2.5.2 Metodología de trabajo y sus valoraciones 27

2.5.3 Redes Locales 28

2.5.4 Condición general de mínimo 28

2.5.5 Mínimos cuadrados 29

2.5.6 Métodos de compensación 29

2.5.7 Estudio de la fiabilidad interna de la red 31

2.6 DETERMINACIÓN DE PLANOS TOPOGRAFICOS LOCALES DE

PROYECCIÓN CARTOGRAFICA 33

2.6.1 Adopción de la proyección Local Transversal de Mercator (LTM) en

Chile 33

2.7 FUNDAMENTOS DE NIVELACIÓN 34

2.7.1 Métodos de nivelación 36

2.7.1.1 Nivelación con 3 hilos 36

2.7.1.2 Método de nivelación del punto medio 36

2.7.1.3 Nivelación geométrica compuesta 38

2.8 ERRORES EN LA NIVELACION GEOMETRICA 39

2.8.1 Error en la nivelación del instrumento. 39

2.8.2 Error en la lectura sobre la mira 40

2.8.3 Error Total 41

2.9 REDES DE NIVELACIÓN 41 2.9.1 Ajuste de redes de nivelación 42 2.9.2 Ecuación básica de observación del desnivel 42 2.9.3 Redes De Nivelación Con Restricciones. 44

3 RECURSOS. 45

3.1 RECURSOS HUMANOS 45

3.2 RECURSOS MATERIALES 45

3.3 RECURSOS FÍSICOS 45

3.4 RECURSOS TÉCNICOS 45

4 EQUIPOS 46

4.1 EQUIPO DE CAMPO 46

4.2 EQUIPO DE OFICINA 46

Page 9: RED GEODÉSICA FAMARENA 2014

9

5 METODOLOGÍA. 47

5.1 ETAPA I – DIAGNOSTICO DEL ESTADO INICIAL DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE 51

5.1.1 Determinación del inventario de Vértices Geodésicos existentes en la Facultad del Medio Ambienté. 51

5.1.2 Determinación del estado físico de los Vértices Geodésico existentes en la Facultad del Medio Ambiente. 51

5.2 ETAPA II – ADQUISICIÓN DE LA INFORMACIÓN DE CAMPO 52

5.2.1 Diseño y ocupación de la Red Geodésica Horizontal FAMARENA 2014 52 5.2.2 Diseño y ejecución de la Red Vertical FAMARENA 2014 51 55

5.3 ETAPA III – PROCESAMIENTO DE LA INFORMACIÓN 61

5.3.1 Ajuste por mínimos cuadrados de la Red Vertical FAMARENA 2014 61 5.3.2 Procesamiento de los archivos crudos de ocupación de la Red

FAMARENA 2014 74

6 RESULTADOS. 84

6.1 RESULTADO DEL POST-PROCESO DE ARCHIVOS CRUDOS DE OCUPACIÓN DE LA RED GEODÉSICA FAMARENA 2014 Y AJUSTE MATRICIAL POR EL METODO DE LOS MINIMOS CUADRADOS DE LA RED GEODESICA FAMARENA 2014 84

6.1.1 Coordenadas Geográficas de la RED GEODESICA FAMARENA 2014 85 6.1.2 Coordenadas Geocéntricas de la RED GEODESICA FAMARENA 2014 86

6.1.3 Coordenadas referidas al plano de proyección local Vivero_2014 y cotas

geométricas ajustadas de la RED GEODESICA FAMARENA 2014 87

6.2 ANALISIS DE RESULTADOS 88 6.2.1 Comparación de las coordenadas vigentes para los vértices Geodésicos

de la facultad con las coordenadas obtenidas mediante la ejecución del proyecto de actualización 88

6.2.2 Propuesta para la adopción de un plano topográfico de proyección local para la Facultad de Medio Ambiente: Sistema Local de Proyección Vivero_2014 91

6.2.3 Comparación de distancias entre vértices de la RED FAMARENA 2014 en sistemas de coordenadas planas cartesianas de Bogotá y Planas cartesianas Vivero_2014 93

CONCLUSIONES. 96

RECOMENDACIONES. 98

BIBLIOGRAFÍA 99

ANEXOS. 100

Page 10: RED GEODÉSICA FAMARENA 2014

10

INDICE DE TABLAS

Pág Tabla 1: Tiempos de rastreo de los receptores empleados en la jornada de ocupación de la RED PRINCIPAL 54 Tabla 2: Tiempos de rastreo de los receptores empleados en la jornada de ocupación de la RED INTERNA O SECUNDARIA 55 Tabla 3: Nivelación entre los vértices CD-866 y NPA4 57 Tabla 4: Nivelación entre los vértices NP6-E1 y NPA4 58 Tabla 5: Determinación del numero de ecuaciones necesarias para conformar una matriz A 62 Tabla 6: Error de cierre poligonos RED VERTICAL PRINCIPAL 66

Tabla 7. Comparación de las cotas ajustadas obtenidas para los nodos de RED VERTICAL

PRINCIPAL por lo métodos de ecuaciones paramétricas y de condición 73

Tabla 8. Errores Medios Cuadráticos los vectores postprocesados y ajustados, puntos Base 77

Tabla 9. Coordenadas geocéntricas de los puntos de control y los puntos ajustados 77

Tabla 10. Coordenadas geocéntricas de los puntos de control y los puntos ajustados 78

Tabla 11. Errores Medios Cuadráticos de los vectores postprocesados y ajustados, puntos

Rover RED INTERNA 79

Tabla 12. Errores Medios Cuadráticos de los vectores postprocesados RED PRINCIPAL 81

Tabla 13. Coordenadas geocéntricas de los puntos de control y los puntos ajustados 81

Tabla 14. Errores Medios Cuadráticos de los vectores postprocesados RED PRINCIPAL 81

Tabla 15. Coordenadas geocéntricas de los puntos de control y los puntos ajustados 81

Tabla 16. Coordenadas Geográficas RED FAMARENA 2014 85

Tabla 17. Coordenadas Geocéntricas RED FAMARENA 2014 86

Tabla 18. Coordenadas Planas Origen Vivero_2014 RED FAMARENA 2014 87

Tabla 19. Coordenadas Vigentes para los vértices 88

Tabla 20. Coordenadas Actualizadas para los vértices 89

Tabla 21. Variaciones en coordenadas Este y Norte 89

Tabla 22. Distancias entre parejas de puntos Plano de proyección Origen Bogotá 93

Tabla 23. Distancias entre parejas de puntos Plano de proyección Origen Vivero_2014 93

Tabla 24. Variaciones de distancias 95

Page 11: RED GEODÉSICA FAMARENA 2014

11

INDICE DE FIGURAS

Pág.

Figura 1: Localización espacial del proyecto. Escala aprox. 1:1000 19

Figura 2. Perfil que representa dos puntos en terreno 35

Figura 3. Método de nivelación del punto medio 37

Figura 4. Compensación de los efectos de esfericidad y refracción 38

Figura 5. Nivelación geométrica compuesta 39

Figura 6. Determinación del desnivel entre dos puntos del terreno 43

Figura 7. Consideración de la incertidumbre residual al determinar una diferencia de nivel 44

Figura 8. Esquema de la metodología 47

Figura 9: Esquema de la RED PRINCIPAL. Escala aprox. 1:1000 52

Figura 10: Esquema de la RED INTERNA. Escala aprox. 1:1000 53

Figura 11: Impronta del Vértice CD-866 56

Figura 12: Esquema de POLÍGONO SECUNDARIO y nivelación de enlace con el vértice CD-

866. Escala aprox. 1:1000 59

Figura 13: Esquema de la RED VERTICAL PRINCIPAL. Escala aprox. 1:1000 60

Figura14. Datos base ajuste ecuaciones paramétricas 63

Figura 15. Calculo matricial parametrización POLIGONO SECUNDARIO 64

Figura 16. Datos base ajuste ecuaciones de condición POLIGONO SECUNDARIO 64

Figura 17. Calculo matricial ecuaciones de condición POLIGONO SECUNDARIO 65

Figura 18. Calculo matricial parametrización RED VERTICAL PRINCIPAL 67

Figura 19. Calculo matricial ecuaciones de condición RED VERTICAL PRINCIPAL 69

Figura 20. Calculo matricial ecuaciones de condición RED VERTICAL PRINCIPAL 70

Figura 21. Calculo matricial ecuaciones de condición RED VERTICAL PRINCIPAL 71

Figura 22. Calculo matricial ecuaciones de condición RED VERTICAL PRINCIPAL 72

Figura 23: Configuración de sistema de coordenadas para postprocesos con Topcon Tools 74

Figura 24: Sitio web para la obtención de las soluciones semanales actualizadas para las

estaciones de rastreo permanente 75

Page 12: RED GEODÉSICA FAMARENA 2014

12

Figura 25: Verificación de simultaneidad de tiempos de rastreo RED INTERNA 76

Figura 26: Vectores de postproceso de los vértices Base, RED INTERNA 76

Figura 27: Verificación de simultaneidad de tiempos de rastreo RED INTERNA 77

Figura 28: Vectores de postproceso de los vértices Rover, RED INTERNA 78

Figura 29: Vectores de postproceso de los vértices, RED PRINCIPAL 80

Figura 30: Interfaz del software MAGNA SIRGAS versión 3.0 para la determinación de la

corrección en coordenadas geocéntricas de un punto para la transformación de

coordenadas de la época del posicionamiento a la época 1995,4 82

Figura 31: Interfaz del software MAGNA SIRGAS versión 3.0 para la transformación de

archivos de coordenadas 83

Figura 32. Localización del origen Vivero_ 2014. Escala aprox. 1:1000 91

Figura 33. Creación del origen vivero_2014 en el software Magna Sirgas Pro 3 Beta 92

Figura 34. Creación exitosa del origen vivero_2014 92

Figura 35. Coordenadas de vértices 93

Figura 36. Distancias evaluadas. Escala aprox. 1:1000 93

Page 13: RED GEODÉSICA FAMARENA 2014

13

LISTA DE ANEXOS

ANEXO 1. Fotografía del receptor GPS Topcon Hiper Lite+

ANEXO 2. Fotografía del nivel digital Topcon DL-102C

ANEXO 3. Formatos de Inspección de estado físico de los vértices Geodésicos de

la RED FAMARENA 2014

ANEXO 4. Plano general Red Geodésica Principal FAMARENA 2014

ANEXO 5. Plano general red Geodésica secundaria FAMARENA 2014

ANEXO 6. Formatos de ocupación jornada de trabajo en campo Septiembre 20

ANEXO 7. Formatos de ocupación jornada de trabajo en campo Noviembre 29

ANEXO 8. Esquemas de la Red de Nivelación FAMARENA 2014

ANEXO 9. Carteras de campo de nivelación

ANEXO 10. Carteras de cálculo y ajuste de la Red de nivelación

ANEXO 11. Certificados IGAC NP6 E 1 y CD-866

ANEXO 12. Formato de Parámetros Sistema Cartesiano de Proyección Origen

Vivero_2014

ANEXO 13. Formatos de coordenadas Vértices Geodésicos RED FAMARENA

2014

ANEXO 14. Catálogo de coordenadas de los vértices geodésicos de la RED

FAMARENA 2014.

ANEXO 15. Catálogo de coordenadas vigente para los vértices geodésicos de la

Facultad del Medio Ambiente

Page 14: RED GEODÉSICA FAMARENA 2014

14

RESUMEN.

El desarrollo del presente Trabajo de Grado inicio con el propósito de generar

información espacial para la actualización de la Red Geodésica de la Facultad del

Medio Ambiente y Recursos Naturales de la Universidad Distrital Francisco José

de Caldas, mediante la ejecución del posicionamiento con técnicas satelitales de

los vértices geodésicos que la conforman, de igual modo, mediante la ejecución de

la nivelación geométrica entre todos y cada uno de dichos vértices.

La ejecución del presente trabajo se desarrolla siguiendo las pautas que implican

la ejecución de cualquier trabajo de posicionamiento satelital mediante tecnologías

de GPS. Además se rige a las normas que la Universidad solicita para este tipo de

proyecto y atiende la necesidad que esta presenta con respecto a la actualización

de la Red Geodésica de la Facultad del Medio Ambiente y Recursos Naturales.

El primer paso que se realizó para el desarrollo del proyecto fue el diagnóstico del

estado inicial de la Red Geodésica de la Facultad del Medio Ambiente y Recursos

Naturales.

Tras haber analizado la información correspondiente al diagnóstico previo se ha

procedido a la ejecución del posicionamiento mediante técnicas de

posicionamiento satelital y de igual modo de la nivelación geométrica entre todos y

cada uno de los vértices geodésicos que conformaran la nueva Red Geodésica de

la Facultad.

También se hace mención a los aspectos generales que han determinado el

desarrollo de la propuesta tales como: Objetivos, alcance de la propuesta, y

metodología que se ha seguido para el desarrollo del proyecto.

Page 15: RED GEODÉSICA FAMARENA 2014

15

ABSTRACT.

The development of this work Grade beginning with the purpose of generating

spatial information for updating the Geodetic Network of the Faculty of

Environment and Natural Resources of the University Francisco José de Caldas,

by running the positioning of satellite techniques geodetic vertices that form,

equally, by implementing the geometric leveling between each and every one of

these vertices.

The implementation of this work is developed along the lines that involve the

execution of any work by satellite positioning GPS technologies. In addition to the

rules governing the University requests for this type of project and addresses the

need that this presents regarding updating the Geodetic Network of the Faculty of

Environment and Natural Resources.

The first step was carried out for the project was the diagnosis of the initial state of

the Geodetic Network of the Faculty of Environment and Natural Resources.

After analyzing the information for the previous diagnosis we proceeded to the

execution of positioning by satellite positioning techniques and similarly the

geometric leveling between each and every one of the survey points that will make

up the new Geodetic Network of the Faculty.

Objectives, scope of the proposal and methodology to be followed for the

development of project references to the general aspects that have shaped the

development of the proposal such as is also done.

Page 16: RED GEODÉSICA FAMARENA 2014

16

INTRODUCCIÓN

Gracias a la tecnología GPS y la creación de redes geodésicas hace ya más de

treinta años hoy se puede decir en donde estamos parados, es tal la evolución,

que hoy se cuenta con dispositivos como, celulares que cuentan con GPS que

ayudan a la ubicación espacial, con lo cual se puede evidenciar que cada día en el

que evolucione esta tecnología ayudara al planeta con los problemas cotidianos

que hoy en día aquejan a sus pobladores. Utilizando esta tecnología de punta es

que se busca la actualización de la red geodésica actual de la Universidad Distrital

Francisco José de caldas, sede vivero.

La determinación y construcción de la actual red geodésica de la Facultad del

Medio Ambiente y Recursos Naturales de la Universidad Distrital Francisco José

de Caldas se ha llevado a cabo en diferentes periodos, para la obtención de las

coordenadas de los vértices que la conforman se han aplicado diferentes métodos.

Como se puede apreciar en el catálogo oficial de coordenadas de los vértices

geodésicos de la Facultad a disposición de la comunidad académica, en Marzo de

2009 se determinaron las coordenadas de 24 vértices, para 15 de estos, se obtuvo

coordenadas con métodos de posicionamiento GPS, para los restantes 9 se

aplicaron métodos topográficos. En Julio de 2009 se sumaron al catálogo las

coordenadas de 30 nuevos vértices, cuyas coordenadas se determinaron

mediante métodos topográficos.

En la actualidad la utilización de los vértices geodésicos a disposición de la

comunidad académica de la facultad genera el inadecuado desarrollo de proyectos

que implican la producción de información espacial de calidad, esta situación se

manifiesta, entre otras razones, por la imposibilidad de realizar cierres de

poligonales trazadas en el marco de actividades académicas dentro de los

márgenes de tolerancia y precisión conocidos, situación que por consiguiente

afecta la calidad de la información espacial producida por los usuarios.

Diversas causas han generado la afectación en prácticas de topografía por la

actual red geodésica de la facultad, entre estas se destacan los métodos y

técnicas empleados en el momento de su determinación, ya que además de ser

métodos diferentes, se han llevado a cabo en diferentes periodos de tiempo. Por lo

anterior, se propone realizar la actualización de la red geodésica de la facultad

mediante una única metodología: El posicionamiento de los vértices que

determinan la red geodésica de la facultad usando técnicas de GPS.

Page 17: RED GEODÉSICA FAMARENA 2014

17

PLANTEAMIENTO DEL PROBLEMA.

La red geodésica de la Facultad del Medio Ambiente y Recursos Naturales de la

Universidad Distrital Francisco José de Caldas, ha sido ampliada con el paso de

los años, esta ampliación se ha llevado a cabo en diferentes periodos para la

obtención de las coordenadas de los vértices que la conforman. Como se puede

apreciar en el catálogo oficial de coordenadas de los vértices geodésicos de la

Facultad a disposición de la comunidad académica, en Marzo de 2009 se

determinaron las coordenadas de 24 vértices, para 15 de estos, se obtuvo

coordenadas con métodos de posicionamiento GPS, para los restantes 9 se

aplicaron métodos topográficos. En Julio de 2009 se sumaron al catálogo las

coordenadas de 30 nuevos vértices, cuyas coordenadas se determinaron

mediante métodos topográficos1.

El hecho de que las coordenadas de los vértices geodésicos de la Facultad se

hayan determinado en diferentes periodos y haciendo uso de distintos métodos

implica diferentes niveles de precisión y exactitud para las coordenadas obtenidas

de los vértices. Esta situación ha generado problemas para el diseño y trazado de

poligonales base para el amarre de levantamientos topográficos, dado que se

afectan los cierres y los niveles de exactitud y precisión de las poligonales que en

muchos casos se encuentran por fuera de los rangos de tolerancia. A su vez, se

afecta la calidad de la información espacial producida en el marco de proyectos

académicos.

A la anterior situación se suman otros problemas que han afectado el adecuado

desarrollo de prácticas académicas de campo y también la realización de pos

procesos GPS, tales como la construcción de edificaciones que impiden la

intervisibilidad de algunos vértices, la geometría de la red no es óptima para

realización de MODELOS matemáticos ya que las distancias entre cada vértice en

algunas zonas es menor de 1mt con lo cual se evidencia acumulación de vértices

en algunas zonas, el tránsito de bovinos (particularmente en el lote B de la

Facultad) y las dinámicas propias del terreno en el cual fue construida la red

geodésica de la Facultad que han provocado su deterioro y desplazamiento (aún

por determinar).

1 Datos obtenidos según catálogo oficial de coordenadas de vértices geodésicos de la Facultad de Medio Ambiente y Recursos Naturales.

Page 18: RED GEODÉSICA FAMARENA 2014

18

OBJETIVOS.

GENERAL

Obtener las coordenadas con su respectivo ajuste horizontal y vertical de la red

geodésica (FAMARENA 2014) de la Facultad de Medio Ambiente y Recursos

Naturales de la Universidad Distrital Francisco José de Caldas para su

actualización.

ESPECIFICOS

Diagnosticar el estado de los vértices geodésicos de la Facultad de Medio

Ambiente y Recursos Naturales de la Universidad Distrital Francisco José

de Caldas y verificar las condiciones técnicas para la ejecución de un

posicionamiento.

Georreferenciar la red geodésica (FAMARENA 2014) de la Facultad de

Medio Ambiente y Recursos Naturales de la Universidad Distrital Francisco

José de Caldas.

Determinar las coordenadas con su respectivo ajuste horizontal y vertical de

los vértices que conformaran la red geodésica actualizada de la Facultad

de Medio Ambiente y Recursos Naturales de la Universidad Distrital

Francisco José de Caldas referidas al Datum MAGNA-SIRGAS.

Obtener mediante una nivelación de precisión las cotas geométricas

correspondientes a cada uno de los vértices de la red geodésica

(FAMARENA 2014) de la Facultad de Medio Ambiente y Recursos

Naturales de la Universidad Distrital Francisco José de Caldas.

Page 19: RED GEODÉSICA FAMARENA 2014

19

1. ALCANCE

1.1 MARCO DE REFERENCIA

La Red Geodésica de la Facultad del Medio Ambiente y Recursos Naturales de la

Universidad Distrital Francisco José de Caldas es de vital importancia para el

desarrollo de proyectos académicos que implican la producción de información

espacial de calidad, puesto que los vértices que la conforman son los puntos de

partida para el trazado de poligonales base en la ejecución de levantamientos

topográficos, planímetros o altimétricos, además de servir como puntos de control

para la georrefenciación de imágenes aéreas. Por lo anterior el estado de la Red

Geodésica y la precisión en la determinación de las coordenadas de los vértices

que la conforman determinan la calidad de los resultados obtenidos en los

proyectos que implican la generación de información espacial.

1.2 LOCALIZACIÓN DEL PROYECTO

Los predios de la Facultad del Medio Ambiente y Recursos Naturales de la

Universidad Distrital Francisco José de Caldas se constituyen por dos lotes que se

encuentran dentro de los siguientes límites:

NORTE: Limita con el Instituto de Ortopedia Infantil Roosevelt y con la

Universidad de los Andes.

SUR: Limita con predio privados.

ORIENTE: Limita con los Cerros Orientales de Bogotá.

OCCIDENTE: Limita con el teatro al aire libre La Media Torta y con la

Universidad de los Andes

Figura 1: Localización espacial del proyecto. Escala aprox. 1:1000

Fuente: Software Google Earth, 2015

Page 20: RED GEODÉSICA FAMARENA 2014

20

2. MARCO TEÓRICO.

2.1 NOCIONES DE GODESIA

2.1.1 Sistema de referencia

En geodesia, un sistema de referencia es un modelo físico-matemático que asocia

la verdadera forma y tamaño de la Tierra con un elipsoide de revolución. Si

además, dicho modelo es definido con una orientación y ubicación, y es asociado

a un sistema de coordenadas tridimensional [X, Y, Z], se conoce como Datum

Geodésico2.

Esencialmente son dos los parámetros que determinan un Datum Geodésico,

estos son:

•Elipsoide: Modelo matemático que define un sólido de revolución que representa

la forma y tamaño de la Tierra.

•Datum o punto fundamental: Equiparable al origen del sistema de coordenadas

[X=0, Y=0, Z=0]. En función de la ubicación del Datum se definen dos tipos de

sistema: Sistema Geocéntrico de Referencia si la ubicación del punto Datum

coincide con el centro de masas de la Tierra, y Sistema Geodésico Local si la

ubicación del punto Datum se encuentra desplazada del geocentro3.

2.1.2 Marco de referencia

“Un marco de referencia corresponde a la materialización física en terreno de la

definición de un sistema de referencia. Por lo mismo, corresponde a un momento

dado y de ahí una de sus más importantes características ya que la relación

existente entre el Sistema y la Tierra difiere con el tiempo debido a distintos

fenómenos, como por ejemplo, el de las variaciones del eje de rotación terrestre o

también a movimientos tectónicos”4.

2 MINISTERIO DE BIENES NACIONALES (Chile), 2010; Sánchez, 2004 3 MINISTERIO DE BIENES NACIONALES (Chile), 2010; Sánchez, 2004 4 MINISTERIO DE BIENES NACIONALES (Chile), 2010; Sánchez, 2004

Page 21: RED GEODÉSICA FAMARENA 2014

21

2.2 GEODESIA SATELITAL

2.2.1 Geodesia Clásica Vs. Geodesia Satelital

La ciencia de la geodesia se ha desarrollado en pro de la consecución, entre otros,

de un objetivo fundamental: “la determinación absoluta de una posición con

precisión uniforme en todos los puntos sobre la superficie de La Tierra”5.

En geodesia clásica, a partir de puntos origen, cuyas coordenadas elipsódicas se

determinaban aplicando técnicas astronómicas y nivelaciones geométricas de

precisión, se arrastraban las coordenadas para la determinación de la posición de

otros puntos sobre la superficie terrestre mediante mediciones angulares y de

distancias. La aplicación de los métodos clásicos de la geodesia implica que la

determinación de la posición de puntos sobre la superficie terrestre es relativa a

los puntos de partida del levantamiento geodésico y por tanto la precisión obtenida

en el posicionamiento de puntos dependerá de la distancia a los puntos origen del

levantamiento6.

Por lo anterior, “para la geodesia clásica ha sido imposible definir un sistema de

referencia único para todo el planeta”7, razón por la cual se han generado marcos

de referencia regionales, cuyos orígenes se encuentran desplazados del centro de

masas terrestre8.

El rápido desarrollo de las tecnologías satelitales durante la segunda mitad del

siglo XX, de la mano con los conocimientos de la geodesia, permitió el

surgimiento de los llamados sistemas globales de navegación satelital (GNSS)

mediante los cuales ha sido posible la determinación de la posición espacial de los

puntos de la superficie terrestre referida a un sistema global de referencia. De este

modo, la ciencia de la geodesia ha sido fundamental para el desarrollo de los

sistemas de navegación satelital (GNSS), y ahora estos se han convertido en la

principal herramienta con la cual cuenta la geodesia para la consecución de sus

objetivos9.

5 Leica Geosystems AG. 1999 6 Huerta et al, 2005; Leica Geosystems AG. 1999 7 Huerta et al, 2005 8 Huerta et al, 2005 9 Huerta et al, 2005; Leica Geosystems AG. 1999

Page 22: RED GEODÉSICA FAMARENA 2014

22

2.2.2 Sistemas globales de navegación satelital (GNSS)

Los sistemas globales de navegación satelital (GNSS) son un conjunto de

tecnologías fundamentadas en la puesta en órbita de la Tierra de constelaciones

de satélites emisores de señales que al ser captadas por receptores de GNSS

permiten determinar las posiciones de puntos de la Tierra en cuatro dimensiones:

Latitud, longitud, altitud y tiempo10.

“Los orígenes del GNSS se sitúan en los años 70 con el desarrollo del sistema

militar estadounidense GPS (Global Positioning System), destinado al guiado de

misiles, localización de objetivos y tropa etc.”11. En la actualidad, además de ser

destinadas a aplicaciones militares las tecnologías GNSS tienen múltiples

aplicaciones en el ámbito de la vida civil en áreas como la recreación y el

desarrollo de proyectos ingenieriles y científicos.

2.2.2.1 Sistema GPS

El sistema de navegación GPS surgió como un proyecto militar del gobierno de los

EEUU, su antecesor es el sistema TRANSIT que se desarrolla en la década del

sesenta con la participación del Departamento de Defensa y Transporte de los

EEUU y la NASA. En sus inicios no se consideró un GNSS pues si bien contaba

con cobertura mundial no se encontraba disponible las 24 horas del día12.

En el año 1973 inicio el proyecto NAVSTAR GPS, con lo cual se dio el transito

cualitativo necesario. Tras la caída de la Unión Soviética, el gobierno de los EEUU

decidió poner la tecnología GPS a disposición civil. El sistema GPS alcanzo un

óptimo nivel de operación y puesta en marcha en el año 1994, al alcanzar 24

satélites puestos en órbita integrando su segmento espacial y un gran número de

estaciones de control operativas alrededor del mundo13.

2.2.2.2 Sistema GLONASS

“La contrapartida rusa al GPS es el GLONASS, desarrollado en conjunto por el

Ministerio de Defensa ruso, Academia de las Ciencias y la Armada Soviética entre

1968 y 1969. El propósito oficial de este nuevo sistema es dotar de

posicionamiento espacial y temporal, y medida de velocidad en toda la Tierra así

como en el espacio cercano, a un número ilimitado de usuarios bajo cualquier

circunstancia. Sería siete años después en 1976 cuando se aprobó en el Comité

10 García, 2008 11 García, 2008 12 García, 2008 13 García, 2008

Page 23: RED GEODÉSICA FAMARENA 2014

23

del Partido Comunista Soviético y el Consejo de Ministros de la URSS el plan de

desarrollo de GLONASS”14.

El sistema tuvo un importante desarrollo entre los años 1982 y 1991 pero este se

vio frenado tras la caída de la Unión Soviética, y fue retomado por la Federación

Rusa que lo declaró oficialmente en operación en 1993, su constelación de

satélites en órbita se completó en 1995. “Sin embargo, debido a problemas

económicos durante los años 1996 a 2002 Rusia fue incapaz de mantener su

propio sistema de navegación, manteniendo solamente ocho satélites operativos,

lo que lo convirtió en prácticamente un sistema inútil a nivel global”15.

2.2.2.3 Sistema Galileo

“Galileo es la respuesta europea al nuevo panorama internacional de GNSS,

constituye el primero de los llamados GNSS-2, y se espera que genere multitud de

beneficios económicos y puestos de trabajo en la Unión Europea. Galileo se ha

planteado como un sistema que permita ser independiente a Europa del GPS y el

GLONASS, pero que sea complementario a ambos y que permita la

interoperabilidad con éstos. Cuando el proyecto esté completado se dispondrá de

30 nuevos satélites que conjuntamente con GPS y GLONASS permitirá obtener un

posicionamiento muy preciso”16.

5.2 MÉTODOS PARA EL POSICIONAMIENTO GEODÉSICO HACIENDO USO

DE RECEPTORES GPS

2.3.1 ¿Qué es el GPS? (AG, Leica Geosystems, 1999)

“GPS es la abreviatura de NAVSTAR GPS. Este es el acrónimo en Inglés de

NAVigation System with Time And Ranging Global Positioning System, (que en

Español significa Sistema de Posicionamiento Global con Sistema de Navegación

por Tiempo y Distancia).

El GPS es un sistema basado en satélites artificiales, dispuestos en una

constelación de 24 de ellos, para brindar al usuario una posición precisa. En este

punto es importante definir el término “precisión”. Para un excursionista o un

soldado que se encuentra en el desierto, la precisión significa más o menos 15 m.

Para un en aguas costeras, la precisión significa 5m. Para un topógrafo, la

precisión significa 1cm o menos. El GPS se puede emplear para obtener todos

estos rangos de precisión, la diferencia radicará en el tipo de receptor a emplear y

en la técnica aplicada”.

14 García, 2008 15 García, 2008 16 García, 2008

Page 24: RED GEODÉSICA FAMARENA 2014

24

2.3.2 Método de Posicionamiento absoluto

Se fundamenta en los códigos que determinan las señales satelitales del sistema

GPS (códigos C/A y P), ya que estos viajan aproximadamente a la velocidad de la

luz (la cual es conocida) es posible estimar la distancia entre el satélite y el

receptor GPS a través de la ecuación física de movimiento: Distancia = Velocidad

x Tiempo17.

“La precisión en posición que se puede llegar a obtener es del orden de los 10 a

15 m debido a la imposibilidad de eliminar o modelar los efectos negativos de la

ionosfera, troposfera, etc.”18.

2.3.3 Método de Posicionamiento Diferencial

Se conoce también como método DGPS, se fundamenta en la posibilidad de que

las posiciones absolutas obtenidas por un receptor móvil sean corregidas con la

ayuda de un segundo receptor denominado fijo o Base que se emplaza en un

punto de referencia o con coordenadas conocidas19.

“Una de sus variantes más ampliamente utilizada es la de DGPS en Tiempo Real

o conocida también como RTCM (por el protocolo de enlace radial). La precisión

en posición puede llegar a ser submétrica”20.

2.3.4 Método de Posicionamiento Relativo

“Corresponde al método con el cual se puede llegar a obtener las mejores

precisiones a través de la aplicación de diversas técnicas de medición y se basa

en el cálculo de las distancias entre la antena GPS y el satélite a través de la

propia onda portadora mediante procesos interferométricos. Modelando las

diferencias de la fase se calcula el número entero de longitudes de onda, conocido

como “ambigüedad del entero”, éstas calculadas para cada satélite se multiplican

por la longitud de la onda de cada portadora (L1 y L2) sumándose posteriormente

las diferencias de fase, obteniéndose la distancia verdadera entre el satélite y la

antena GPS para cada instante.

El cálculo final se obtiene combinando este método con el método diferencial, es

decir estando uno de los receptores sobre un punto con coordenadas conocidas.

17 MINISTERIO DE BIENES NACIONALES (Chile), 2010 18 MINISTERIO DE BIENES NACIONALES (Chile), 2010 19 MINISTERIO DE BIENES NACIONALES (Chile), 2010 20 MINISTERIO DE BIENES NACIONALES (Chile), 2010

Page 25: RED GEODÉSICA FAMARENA 2014

25

Las precisiones que se pueden llegar a obtener van desde los milímetros a los

centímetros dependerán, dentro de lo que los operadores pueden controlar, del

tipo de receptor usado y técnica de medición”21.

2.4 SISTEMA GEODÉSICO NACIONAL DE LA REPÚBLICA DE COLOMBIA

2.4.1 Generalidades22

Se define como red geodésica nacional al conjunto de puntos situados sobre el

terreno, dentro del ámbito del territorio nacional, establecido físicamente mediante

monumentos o marcas físicas más o menos permanentes.

El sistema geodésico para un país generalmente está definido por tres aspectos

fundamentales:

El control geodésico básico horizontal.

El control geodésico básico vertical.

Estos aspectos invariablemente, deberán de ser adoptadas en todos los trabajos

que requieran georrefenciación.

2.4.2 Sistema Geodésico Horizontal23

Para los efectos de este punto, se adopta como sistema geodésico nacional EL

conceptualizado por la Asociación Internacional de geodesia a través del sistema

geodésico mundial, el elipsoide GRS-80 (WGS-84), adopción que hizo el IGAC.

El DATUM oficial de Colombia es el Marco Geocéntrico Nacional de referencia,

denominado MAGNA en reemplazo del DATUM Bogotá,

El sistema de referencia geocéntrico para las Américas SIRGAS, el cual fue

recomendado para su adopción por todos los países del continente durante la

séptima conferencia cartográfica regional de las Naciones Unidas para las

Américas, servirá de base para la construcción de la infraestructura de Datos

espaciales de las Américas.

El control geodésico básico horizontal o también llamado control de primer orden

tiene como objetivo establecer la red geodésica de un país mediante

levantamientos geodésicos horizontales y se resumen en tres puntos a saber:

21 MINISTERIO DE BIENES NACIONALES (Chile), 2010 22 Villalobos N. G et al, 2008. 23 Villalobos N. G et al, 2008

Page 26: RED GEODÉSICA FAMARENA 2014

26

Por una parte obtener el armazón de puntos precisamente determinados

espacialmente para que apoyen en ellos los demás levantamientos que se

requieran.

En combinación con los cálculos de latitud, longitud y la gravedad hallar el

tamaño y forma de la tierra con sus superficies equipotenciales exteriores.

Monitorear el planeta tierra para detectar los movimientos o

desplazamientos de la corteza terrestre.

Para levantamientos geodésicos se podrán utilizar los métodos y técnicas de

campo que se listan a continuación o sus combinaciones. La selección de

cualquiera de ellos cuando sea posible optar entre dos o más, deberá estar ligada

a las consideraciones económicas y su capacidad relativa para producir los

resultados esperados, los que deben formar parte de los criterios contemplados

por los estándares internacionales o normas técnicas nacionales en el pre análisis

y diseño del proyecto:

Triangulación

Trilateración

Poligonación

Técnicas diferentes del sistema de posicionamiento global

Técnicas mixtas

2.4.3 Sistema Geodésico Vertical24

Los levantamientos geodésicos verticales comprenden todas aquellas operaciones

de campo dirigidas a determinar las distancias verticales que existen entre puntos

situados sobre o cerca de la superficie terrestre y el nivel de referencia definido

por el IGAC. EL DÁTUM vertical es el punto de referencia que se le determina la

altura. Eventualmente puede tener coordenadas; generalmente se toma como el

nivel medio del mar que se determina mediante observaciones realizadas por

mareógrafos en las costas de cada país.

En la resolución 068 de enero 28 de 2005, se establece que el modelo de geoide

asociado al DÁTUM MAGNA, será el producto denominado GEOCOL 2004.

Mientras no se disponga técnica y oficialmente la actualización del sistema de

referencia vertical para Colombia se seguirá empleando el que tiene origen en el

mareógrafo de Buenaventura.

Colombia presenta una topografía muy variada, la cual dificulta el desempeño de

los métodos geodésicos clásicos, especialmente la nivelación geométrica o

24 Villalobos N. G et al, 2008

Page 27: RED GEODÉSICA FAMARENA 2014

27

diferencial con tres hilos. Por tal motivo, una de las principales aplicaciones

prácticas del modelo GEOCOL 2004, es la determinación de alturas similares a las

niveladas a partir de información GPS, De acuerdo con esto, paralelamente a la

determinación del geoide, se ha diseñado una metodología de nivelación satelital,

que permite establecer alturas sobre el nivel medio del mar utilizando las

elipsoidales, obtenidas de los GPS ligados a MAGNA- SIRGAS, y las

ondulaciones geoidales.

2.5 MICROGEODESÍA Y REDES

2.5.1 Red

“Se define una red como un conjunto de puntos perfectamente definidos en el

terreno, entre los que se han efectuado observaciones de tipo geodésico o

topográfico, para obtener coordenadas, respecto a un sistema de referencia

establecido”25

2.5.2 Metodología de trabajo y sus valoraciones

“Establecer una clasificación clarifica la metodología de trabajo y sus valoraciones.

Ésta puede hacerse bajo diferentes premisas, se consideran las siguientes:

En cuanto a su extensión:

localesy astopográfic

geodésicas

En cuanto a coordenadas:

),( elipsoide el sobre

t)z,y,(x, sionalestetradimen

z)y,(x, onalestridimensi

z asaltimétric

y)(x, casplanimétri

26

25 Berné J. et al, 2002 26 Berné J. et al, 2002

Page 28: RED GEODÉSICA FAMARENA 2014

28

2.5.3 Redes Locales

“Se entiende por redes locales aquéllas cuyos lados son menores de 2 o 3 km., en

las que, al ser tan cortos, no es necesario establecer correcciones geodésicas a

las distancias o ángulos.

Son utilizadas en proyectos de carácter local, como:

Redes de control de proyectos de ingeniería.

Redes de control de cartografía catastral.

Redes de alta precisión.

Redes para el control de deformaciones.

Por otra parte, el diseño y análisis de redes, para el que RedTop supone una

eficaz herramienta, es una exigencia que se establece siempre al geodesta,

cumpliendo como prescripciones técnicas a priori:

Configuración de vértices y metodología de observación.

Recursos humanos y técnicos.

Coste en tiempo y dinero”27.

2.5.4 Condición general de mínimo

“En el emblema de la Real Academia de Ciencias hay una divisa que dice”:

Observación y Cálculo” si a estas dos palabras le añadimos el análisis estadístico

de residuales, detección de errores y fiabilidad de resultados completa los

objetivos de Microgeodesía y redes locales.

En las redes topográficas se realizan una serie de medidas directas de una

cantidad física (observación) y se establece n unas hipótesis consecuentes y en

función de ellas se modifican los resultados de las medidas de acuerdo con la

teoría de los mínimos cuadrados.

Es preciso tener en cuenta las siguientes consideraciones:

En una red topográfica existen condiciones reales (no hipótesis) entre las

medidas, que deben cumplirse:

27 Berné J. et al, 2002

Page 29: RED GEODÉSICA FAMARENA 2014

29

A un punto le corresponde una posición única

La distancia entre dos puntos es única

Tres puntos definen un ángulo único. Etc.

El ajuste opera modificando cada medida particular, en función de todas las

restantes capaces de afectarla.

Los resultados del ajuste, conducen a correcciones de las medidas particulares del

mismo orden de magnitud o inferior que los errores accidentales a priori en cada

observación.

En topografía todo elemento a medir (ángulo, distancia…) debe ser pensado como

una población o colectivo, y toda medida topográfica como una muestra de esa

población, constituida por una serie finita de valores discretos.

Al observable que es un valor discreto, se le asocia una variable continua, que

sigue una distribución normal.

En definitiva en nuestras redes tendremos datos superabundantes, de forma que

podríamos obtener varias soluciones, pero de todas ella habrá una que cumpla

con la mejor solución matemática, esa se obtendrá aplicando el método de los

mínimos cuadrados”28.

2.5.5 Mínimos cuadrados

“El método general de mínimos cuadrados, aparece en la literatura bajo diversas

denominaciones, así es denominado “Método General” por los autores Chueca

Pazos, Mikhhail, Copper y Wolf. En el libro de Leick, aparece como Modelo “Mixto

de Ajuste” y, M. Sevilla y Harvey le llaman Método Combinado

La particularizaron de éste, cuando aparece una relación directa entre

observaciones y parámetros, el profesor Chueca le llama Método de

Observaciones indirectas, otros (Harvey) le llama método paramétrico y en el libro

de Leick, aparece como modelo de ecuaciones de observación”29.

2.5.6 Métodos de compensación

“A partir del modelo matemático propuesto, A·x – K = R, así como del

correspondiente modelo estadístico Gauss-Markov, somos capaces de compensar

28 Berné J. et al, 2002 29 Berné J. et al, 2002

Page 30: RED GEODÉSICA FAMARENA 2014

30

nuestros observables de tal forma que podemos obtener las coordenadas

compensadas de los vértices libres de la red.

Este modelo matemático es función de las matrices A – matriz de diseño - y P -

matriz de pesos – y del vector K – vector columna de términos independientes -,

donde las dimensiones son las siguientes:

)1,()1,()1,(),( mmnnm RKxA

Dónde:

m se corresponde con el número de ecuaciones – observaciones que se

han realizado en el trabajo de campo -.

n se corresponde con el número de incógnita a determinar en la

compensación – correcciones a las coordenadas aproximadas-.

La matriz de pesos cabe destacar, que se trata de una matriz cuadrada y diagonal,

de tal forma que sus elementos se consideran incorrelados, y su valor se obtiene a

partir de los errores medios cuadráticos de cada observable, estimados a priori

A partir de las consideraciones establecidas por el modelo estadístico de Gauss-

Markov, la esperanza matemática de los residuos debe ser igual a cero (0). Por lo

tanto el sistema de ecuaciones a resolver, por el algoritmo de mínimos cuadrados

será:

0)1,()1,(),( mnnm KxA

Para la compensación de la red emplearemos el método de mínimos cuadrados,

que exige trabajar con un sistema de ecuaciones normales, por lo tanto para poder

trabajar con este método se aplicará la siguiente expresión:

KAxAA TT )(

Page 31: RED GEODÉSICA FAMARENA 2014

31

Esta expresión nos define un sistema de ecuaciones normales, que se podrá

resolver por diferentes métodos factorización LU, Cholesky,... - pero dado que

nuestro objetivo es minimizar el sumatorio de la traza de la matriz de residuos”30.

2.5.7 Estudio de la fiabilidad interna de la red

“La fiabilidad interna de una red indica su capacidad de control general y

específico de la calidad de los observables, junto con la detección y

particularización de eventuales errores groseros.

Para cifrarla se utilizan: los números de redundancia de observables, el Test de

Baarda y los parámetros de homogeneidad interna.

Para el estudio de la fiabilidad interna de la red utilizaremos los siguientes

parámetros:

A. Redundancia de cada observable.

B. Parámetro de Baarda.

C. Mínimo error detectable.

A. Redundancia de cada observable.

La redundancia de un observable es un parámetro adimensional, y nos muestran

lo bien o mal que está controlado dicho observable. La expresión que nos permite

calcular el número de redundancias de un observable es:

1qpr ii

Donde,

ri redundancia de un observable.

pi peso de un observable.

qi cofactor de los residuos a posteriori del observable.

Cabe destacar que el valor de la redundancia de un observable se encuentra en el

intervalo cero (0) – uno (1) – [0,1] -, y que el sumatorio de las redundancias de

30 Berné J. et al, 2002

Page 32: RED GEODÉSICA FAMARENA 2014

32

todos los observables debe ser igual al número de redundancias del sistema

planteado”31.

B. Parámetro de Baarda.

“Este parámetro depende del nivel de significación y de la potencia de test

establecido para la red. En nuestro caso se ha establecido un nivel de significación

del 99.9 % - = 0.001 -, y una potencia de test para la detección de errores

groseros del 80% - = 0.2 -. El parámetro de Baarda se obtiene a partir de la

siguiente expresión:

iR

i

i

Rw

El parámetro de Baarda es, junto al mínimo error detectable, unos de los

coeficientes que se emplean para rechazar o eliminar un observable. Además este

parámetro permite controlar los errores groseros introducidos en la red.

De este modo un observable será rechazado cuando el valor del parámetro de

Baarda sea superior al punto porcentual establecido para el nivel de

significación”32.

C. Mínimo error detectable.

“El mínimo error detectable para un observable se obtiene a partir de la siguiente

expresión:

i

i

ri

0

Como podemos observar este parámetro, se determina en función del parámetro

de traslación, que se corresponde con el desplazamiento producido en la campana

de Gauss por el error “grosero”.

En definitiva estos parámetros nos determinan para un nivel de significación y para

una potencia de test dados, cual es el mínimo error detectable para cada uno de

los observables. El modelo planteado establece que no se rechazará un

observable correcto, con una probabilidad, en nuestro caso, del 99.9 %, y aquellos

31 Berné J. et al, 2002 32 Berné J. et al, 2002

Page 33: RED GEODÉSICA FAMARENA 2014

33

posibles errores groseros serán detectados con una potencia de test del 80%, lo

que implica que un 20% de los mismos podrán introducirse en el ajuste”33

2.6 DETERMINACIÓN DE PLANOS TOPOGRAFICOS LOCALES DE

PROYECCIÓN CARTOGRAFICA

2.6.1 Adopción de la proyección Local Transversal de Mercator (LTM) en

Chile34

“En Chile la Referenciación Geodésica y la materialización de Sistema de

Transporte de Coordenadas (STC) empleado en Estudios de los Proyectos de

Obras Viales, se encuentra normado por el Manual de Carreteras del Ministerio de

Obras Públicas de Chile, publicado en el año 2001.

En éste se especifica como sistema geodésico el WGS-84 (actualmente Sirgas) y

como sistema cartográfico, la proyección Local Transversal de Mercator (LTM),

con parámetros específicos con el objeto de minimizar las deformaciones,

principalmente entre distancias de terreno y sus proyectadas a fin que la

construcción de las obras de ingeniería puedan ser replanteadas en terreno de

forma expedita.

Esto se logra haciendo pasar el cilindro TM a una altura conveniente, de tal forma

que la diferencia entre las distancias horizontal y proyectada estén en tolerancia,

de esa manera los planos representarán la realidad métrica del proyecto, es decir

el plano LTM será un Plano Topográfico Local (PTL).

La ventaja de esta proyección cartográfica modificada reside en que se soluciona

rigurosamente el problema de la tolerancia planimétrica requerida para los

proyectos de ingeniería y el problema de inconsistencia de coordenadas entre

proyectos vecinos. Lo anterior, sumado a la obligación de ligazón a vértices de la

red geodésica GPS del Instituto Geográfico Militar (IGM) referida al sistema

Sirgas, se traduce en un Sistema de Transporte de Coordenadas (STC) preciso y

exacto, cautelando la coherencia entre las coordenadas de proyecto y las de

terreno”.

Definición de altura del plano topográfico local (PTL)35

“La altura del PTL se define considerando la altura media de la zona del proyecto,

por ejemplo para el caso de Santiago de Chile se estimó una altura de 550m, de

esta forma la correspondencia, entre las distancias horizontales determinadas en

33 Berné J. et al, 2002 34 Zepeda René et al, 2010 35 Zepeda René et al, 2010

Page 34: RED GEODÉSICA FAMARENA 2014

34

terreno, y las proyectadas en el PTL-550m estarán en tolerancia dentro de

1:40.000 o mejor, en tanto la altura de terreno no discrepe más de 150 m sobre el

PTL, es decir el STC tiene aplicación entre los 400 y 700 m de altura, para

precisión mejor o igual a 0.025 m/km”.

2.7 FUNDAMENTOS DE NIVELACIÓN36

Llamamos Altimetría a la rama de la Topografía que estudia los métodos e

instrumentos necesarios para definir el relieve del terreno, mediante la obtención

de la elevación o altura de puntos del terreno respecto a una superficie de

comparación o la diferencia de elevación o altura entre dos o más puntos del

terreno.

En altimetría, las superficies de comparación que se toman como referencia para

determinar la elevación de los puntos del terreno corresponden a las superficies

equipotenciales del campo gravitatorio terrestre, denominadas también superficies

de nivel. En ellas, la elevación de todos sus puntos es constante y la dirección de

la gravedad es perpendicular en todos ellos. En realidad, debido el aplastamiento

de la Tierra en la zona de los polos, las superficies de nivel a diferentes alturas y

en diferentes latitudes no son verdaderamente concéntricas. De todas estas

superficies de nivel, la más importante es la que corresponde a la de potencial

cero, denominada geoide y definida como la resultante de prolongar idealmente la

superficie de los mares en calma por debajo de los continentes.

Sin embargo, para simplificar, localmente se puede considerar las superficies de

nivel esféricas y concéntricas a la superficie de la Tierra, a la que igualmente se

considera esférica en todo el análisis.

Aun esta simplificación, y debido a la irregularidad que presenta la superficie del

geoide, es necesario definir en cada país un punto de referencia a partir del cual

se establecen las elevaciones del terreno. Este punto, denominado, Punto

Altimétrico Fundamental, se define por medio de mareógrafos que calculan el

llamado cero nominal.

En Colombia este punto está establecido por un mareógrafo instalado por el

Instituto Geográfico Nacional, que define la elevación cero para todo el territorio

nacional.

En nivelación, a la operación de calcular altitudes o cotas de puntos, por aplicación

de los desniveles entre ellos, se denomina Arrastrar o Trasladar cotas.

36 Abellán María, 2013

Page 35: RED GEODÉSICA FAMARENA 2014

35

Si suponemos dos puntos en un terreno determinado: A y B, relativamente

próximos, que aparecen representados en el siguiente perfil.

Figura 2. Perfil que representa dos puntos en terreno

Fuente: Abellán María, 2013

Trazando sobre ellos planos horizontales imaginarios, el desnivel entre A y B es la

distancia entre las superficies de nivel que pasan por ambos puntos que, dada su

proximidad, podemos suponer planas y horizontales. Este valor lo vamos a

representar como ∆Z A B (que se lee: incremento de Z entre A y B o desnivel entre

A y B).

Podríamos calcular el desnivel entre ambos puntos si fuéramos capaces de medir

la distancia vertical desde dichos puntos al plano horizontal H, valores indicados

como LA y LB respectivamente, y estableciendo la siguiente igualdad.

De donde se obtiene el desnivel como:

Page 36: RED GEODÉSICA FAMARENA 2014

36

Las distancias LA y LB se miden empleando un nivel topográfico, junto con una

mira graduada.

2.7.1 Métodos de nivelación

2.7.1.1 Nivelación con 3 hilos37

Como su nombre indica, la nivelación con 3 hilos consiste en tomar lecturas sobre

la mira en el hilo superior, el hilo central y el hilo inferior. Este procedimiento tiene

las siguientes ventajas: a) permite realizar comprobaciones de las lecturas y evitar

posibles errores, b) produce una mayor exactitud en las medidas al poder la media

aritmética de las mismas, c) permite realizar mediciones estadimétricas para

calcular la distancia de la visual entre el nivel y la mira, que permitirá calcular el

peso de las observaciones para el ajuste de redes de nivelación por el método de

los mínimos cuadrados.

En este procedimiento, la diferencia entre la lectura superior y la central se

compara con la diferencia entre la lectura central y la inferior. Ambos valores

deben coincidir o, en todo caso, diferir en menos del valor de la división más

pequeña de la mira: 2 mm. Si la diferencia es mayor de esta cantidad, las tres

lecturas deben ser repetidas, se calcula la media aritmética de todas ellas y se

compara con el valor de la lectura central. Si coinciden o son prácticamente

iguales (< 2 mm), este valor es el que se toma como definitivo para los cálculos.

Por otro lado, la diferencia entre la lectura superior y la inferior, multiplicada por la

constante estadimétrica del retículo del anteojo, normalmente 100, es igual a la

distancia de la visual entre el nivel y la mira.

2.7.1.2 Método de nivelación del punto medio38

Se pueden distinguir dos tipos de nivelación, Geométrica o por alturas, y

Trigonométrica o por ángulos.

El método de nivelación del punto medio se encuentra dentro de los métodos de

nivelación geométrica simple, que son aquellos en los que se determina el

desnivel entre dos o más puntos desde una única posición del nivel.

Consiste en posicionar el nivel en un punto arbitrario que esté situado,

aproximadamente, a la misma distancia de los dos puntos cuyo desnivel se quiere

obtener. Desde esa posición se tomará lectura en la mira colocada en A y después

colocada en B.

37 Abellán María, 2013 38 Abellán María, 2013

Page 37: RED GEODÉSICA FAMARENA 2014

37

Figura 3. Método de nivelación del punto medio

Fuente: Abellán María, 2013

Se tiene, por tanto, que:

De donde el desnivel será:

La determinación del desnivel entre dos puntos se establece en un sentido

determinado, desde un punto hacia otro: ∆Z A B, desnivel entre A y B, medido

desde A hacia B. El valor numérico del desnivel debe indicar la posición relativa

entre ambos puntos, por tanto, el desnivel debe venir acompañado de un signo,

positivo si el punto hacia el cual se mide el desnivel tiene mayor cota que el punto

desde el cual se mide, y negativo en caso contrario.

Como norma general, determinaremos el desnivel desde un punto hacia otro como

la lectura en el punto desde el cual se mide, menos la lectura en el punto hacia el

cual se mide. Mediante esa diferencia de lecturas se obtiene el signo correcto del

desnivel, positivo o negativo, que indicará la posición relativa correcta entre ambos

puntos. La nomenclatura que se emplea en nivelación es la siguiente: la lectura en

el punto desde el cual se mide, se denomina lectura de espalda y la lectura en el

punto hacia el cual se mide, se denomina lectura de frente. De esta forma, el

desnivel entre dos puntos A y B, se determinará como:

Page 38: RED GEODÉSICA FAMARENA 2014

38

Para la aplicación de este método el nivel debe estar aproximadamente a la

misma distancia de los puntos.

Este método elimina la influencia del efecto de la esfericidad y la refracción, al

quedar compensados en ambas visuales. También elimina la influencia de un

posible error sistemático del instrumento por falta de horizontalidad del eje de

colimación.

Figura 4. Compensación de los efectos de esfericidad y refracción

Fuente: Abellán María, 2013

Como caso particular, puede ocurrir que uno o ambos puntos estén situados por

encima del plano de comparación que establece el eje de colimación del nivel. En

estos casos se coloca la mira al revés apoyada sobre el punto que queda por

encima del plano definido por el eje de colimación, de forma que la imagen de la

misma a través del anteojo es invertida. La lectura sobre el punto donde la mira

está al revés se considera negativa, a efectos de determinar el desnivel como la

diferencia entre la lectura de espalda y la lectura de frente.

2.7.1.3 Nivelación geométrica compuesta39

Se dice que la nivelación geométrica es compuesta cuando se determina el

desnivel entre varios puntos del terreno de forma que, bien por no haber visibilidad

entre todos ellos o bien porque están muy alejados unos de otros, es necesario

39 Abellán María, 2013

Page 39: RED GEODÉSICA FAMARENA 2014

39

cambiar de posición el nivel una o varias veces, haciendo un recorrido por el

terreno.

Figura 5. Nivelación geométrica compuesta

Fuente: Abellán María, 2013

2.8 ERRORES EN LA NIVELACION GEOMETRICA40

Además de los errores sistemáticos que aparecen en la nivelación, tales como el

error de esfericidad, error de refracción y error debido a la falta de horizontalidad

del eje de colimación, existen diversas causas por las que pueden aparecer

errores aleatorios, siendo las principales las debidas a la nivelación del

instrumento y a la lectura sobre la mira. El tamaño de estos errores se ve afectado

por la calidad de la óptica del anteojo, la sensibilidad del nivel de burbuja y del

compensador, y la graduación de la mira.

2.8.1 Error en la nivelación del instrumento41

El error estimado en la nivelación de un instrumento que tiene un compensador

automático, vienen dados por el fabricante en los datos técnicos de dicho

instrumento. Los niveles con un compensador de gran precisión suelen presentar

una desviación en torno a ±0.2´´, pudiendo llegar hasta ±10 ´´ para niveles de

poca precisión. Para el nivel utilizado, Topcon DL-102C y la precisión del

compensador es de ±0.5´´.

40 Abellán María, 2013 41 Abellán María, 2013

Page 40: RED GEODÉSICA FAMARENA 2014

40

Para una distancia D, entre el nivel y la mira, este error se cuantifica por:

Si se aplica esta expresión al cálculo del desnivel entre dos puntos del terreno

separados una distancia 2D, mediante el método del punto medio, el error de

dicho desnivel será:

De donde:

2.8.2 Error en la lectura sobre la mira42

Este tipo de error es despreciable para el presente proyecto, debido a la utilización

de miras con código de barras y nivel óptico digital, lo errores se podrían presentar

de manera notable por otros factores como el plomo de la mira, el cual es un error

de tipo personal.

Sin embargo, el manual técnico del equipo empleado (NIVEL DIGITAL TOPCON

DL-102C) especifica una desviación estándar en 1Km de: electrónica 1mm y en

óptica 1.5mm. Estas con la utilización de una mira de fibra de vidrio, tal y como

establece la norma ISO 17123-2. Estos valores corresponden a un error en la

lectura de la mira, por unidad de longitud, de: +/- 0.001mm /m.

Para una distancia D, entre el nivel y la mira, este error se cuantifica por:

Si se aplica esta expresión al cálculo del desnivel entre dos puntos del terreno

separados una distancia 2D, mediante el método del punto medio, el error de

dicho desnivel será:

42 Abellán María, 2013

Page 41: RED GEODÉSICA FAMARENA 2014

41

De donde:

2.8.3 Error Total43

Por tanto, el error aleatorio total del desnivel entre dos puntos debido a ambas

causas, nivelación del instrumento y lectura de mira, viene dado por:

De donde:

2.9 REDES DE NIVELACIÓN44

El desarrollo clásico de los métodos de nivelación geométrica compuesta y sus procedimientos de compensación de errores, mediante la realización de itinerarios altimétricos o líneas de nivelación, se ven condicionados por la geometría de los recorridos a realizar, dando lugar a los itinerarios cerrados y abiertos. El desarrollo de los mismos es lineal, con un punto de inicio y otro punto de finalización, sin posibilidad de bifurcaciones. Se ha de establecer un sentido de recorrido que implica la necesidad de asignar un orden a los distintos tramos de nivelación. Además, es necesario conocer al menos la cota de un punto en los itinerarios cerrados, o la cota de dos puntos en el caso de los itinerarios encuadrados. En ellos, tanto el cálculo del llamado “error de cierre” como el procedimiento de compensación de errores empleado, se establecen en función de esa geometría, repartiendo el error a partes iguales entre los distintos tramos y empleando la cartera de nivelación como ayuda para el cálculo ordenado de los resultados. Este tipo de itinerarios no nos permite realizar trabajos de cierta envergadura o extensión. En la actualidad, con los avances en la fabricación de instrumentos cada vez más precisos y el empleo de herramientas computacionales, estos procesos resultan obsoletos y hemos de dar paso a la generalización de estos métodos en su ampliación práctica sobre el terreno y a un tratamiento matemático riguroso del

43 Abellán María, 2013 44 Abellán María, 2013

Page 42: RED GEODÉSICA FAMARENA 2014

42

ajuste de los errores que se produzcan como consecuencia de la toma de medidas. Todo ello nos conduce a la ampliación o extensión del concepto de itinerario de nivelación al concepto de red de nivelación. Esta se puede definir como un conjunto de itinerarios conectados o enlazados entre sí, donde pueden existir otro tipo de condicionamientos tales como uno o más puntos de cota conocida, e incluso uno o varios desniveles conocidos previamente. Desde el punto de vista de cálculo, en las redes de nivelación no existe un punto inicial y otro punto final, aunque físicamente si existan a la hora de la toma de datos en campo. Tampoco es necesario definir un sentido de recorrido, aunque sobre el terreno los datos se tomen en un orden determinado.

2.9.1 Ajuste de redes de nivelación45

En una red de nivelación de m desniveles con n puntos de cota desconocida, se puede escribir una ecuación básica. Si se considera la no existencia de puntos intermedios en los tramos de la red, únicamente es posible determinar un desnivel en cada tramo, que resulta en una ecuación básica.

En caso de existir puntos intermedios en algún camino, en cada uno de ellos se podrán plantear tantas ecuaciones básicas como desniveles puedan establecerse entre dos puntos cuales-quiera de dicho camino.

En general, se tendrá una cantidad de medidas (m) superiores a las necesarias para resolver el problema (n). Por ello, en una red de nivelación con m desniveles y n puntos de cota desconocida, se generará un sistema de m ecuaciones lineales con n+m incógnitas, con m>n. Para resolver este problema matemático se recurre a las herramientas matemáticas que proporciona el álgebra matricial.

2.9.2 Ecuación básica de observación del desnivel46

Si se consideran dos puntos del terreno, cuyo desnivel ∆Z A B se quiere

determinar, ese desnivel se puede expresar en función de las cotas de dichos

puntos, que en general serán desconocidas

45 Abellán María, 2013 46 Abellán María, 2013

Page 43: RED GEODÉSICA FAMARENA 2014

43

Figura 6. Determinación del desnivel entre dos puntos del terreno

Fuente: Abellán María, 2013

Usando un nivel y una mira se puede determinar ese desnivel, aplicando el

método del punto medio y expresar el desnivel en función de las lecturas de mira:

A partir de las anteriores consideraciones, es posible plantear la siguiente

ecuación lineal:

Expresión que se denomina ECUACIÓN BÁSICA DE OBSERVACIÓN DE

DESNIVEL, que relaciona las cotas de los puntos del terreno, como incógnitas,

con las lecturas de mira, que son valores medidos y, por tanto, conocidos.

Sin embargo, en todo proceso de medición se cometen errores, por tanto, las

lecturas de mira pueden ir acompañadas de un cierto error en su medición, que

conduce inevitablemente a que las cotas calculadas, a partir de esas lecturas,

sean también erróneas. En este sentido, es necesario definir la ecuación básica

del desnivel, introduciendo en el primer miembro un componente denominado

residuo, que compense los errores inherentes al proceso de medición que

acompañan a las lecturas de mira que aparecen en el segundo miembro de la

ecuación.

Page 44: RED GEODÉSICA FAMARENA 2014

44

Figura 7. Consideración de la incertidumbre residual al determinar una diferencia de nivel

Fuente: Abellán María, 2013

De esta forma, la ecuación básica del desnivel será:

En esta ecuación podrían ser incógnitas la cota de uno o ambos puntos y el

residuo.

2.9.3 Redes De Nivelación Con Restricciones47

Para calcular una red de nivelación es necesario conocer, como mínimo, la cota de un punto conocido. En ocasiones se puede presentar el caso de conocer previamente, además de la cota de algún punto, el desnivel existente entre una o varias parejas de puntos del terreno. Esto puede ser debido a la existencia de alguna medición previa en la zona, mediante la cual se haya determinado con gran precisión el desnivel entre algunos puntos. Estos desniveles fijos suponen un condicionamiento para el modelo de ajuste de forma que, una vez calculadas las cotas, se deben verificar esos desniveles fijos conocidos de antemano. Por ello, cuando en una red de nivelación se conoce previamente el desnivel exacto entre una o varias parejas de puntos, decimos que se trata de una red con restricciones. Tales restricciones se deben tener en cuenta durante el proceso de cálculo y cumplir (verificar) tras el ajuste.

47 Abellán María, 2013

Page 45: RED GEODÉSICA FAMARENA 2014

45

3. RECURSOS.

El desarrollo del proyecto involucro recursos humanos, recursos físicos y recursos

técnicos. Cabe resaltar la colaboración de los estudiantes que cursaron la

asignatura de Geodesia Posicional del proyecto curricular Tecnología en

Topografía con la tutoría del profesor Carlos Alfredo Rodríguez Rojas, quienes con

su ayuda y esfuerzo aportaron al desarrollo adecuado del proyecto en las jornadas

de trabajo en campo.

3.1 RECURSOS HUMANOS

El recurso humano por parte de la Universidad Distrital se vio presente en el apoyo

prestado por la coordinación del almacén de topografía de la Facultad del Medio

Ambiente que facilito el préstamo de los equipos empleados en la ejecución del

proyecto. Además, a través de los docentes que intervinieron como Director de

proyecto y revisores.

Se suman los esfuerzos de los estudiantes ejecutantes del proyecto.

3.2 RECURSOS MATERIALES

Están presentes en los materiales utilizados para el desarrollo en campo del

proyecto como: Estacas, puntillas, pintura, etc.

Además se destacan materiales de investigación como libros, fotocopias y demás

fuente de información física.

3.3 RECURSOS FÍSICOS

Instalaciones y predios de la Facultad del Medio Ambiente y Recursos Naturales

de la Universidad Distrital Francisco José de Caldas.

3.4 RECURSOS TÉCNICOS

Equipos topográficos como: Niveles digitales, Equipos receptores de GPS

estáticos de doble frecuencia.

Software como: Herramientas de Office, Autocad, Topcon Tools.

Otros como: Computador, Cámara fotográfica.

Page 46: RED GEODÉSICA FAMARENA 2014

46

4. EQUIPOS

4.1 EQUIPO DE CAMPO

Receptores estáticos de GPS Topcon Híper Lite+

Nivel digital Topcon DL-102C

Mira con código de lectura digital de 2 cuerpos, con medición de 3 metros

Cámara fotográfica digital

4.2 EQUIPO DE OFICINA

Computador: Marca ASUS, procesador Intel CORE i5, 4 GB de RAM.

Impresora: HP 3200.

Plotter HP Design Jet.

Software como: Herramientas de Office, Autocad, Topcon Tools.

Page 47: RED GEODÉSICA FAMARENA 2014

47

5. METODOLOGÍA.

El proyecto se desarrolló mediante tres etapas, organizadas del siguiente modo:

Figura 8. Esquema de la metodología

Fuente: Los autores, 2015

INICIO

• Planteamiento del problema y definición del alcance del proyecto.

ETAPA I

• Diagnostico del estado inicial de la Red Geodesica de la Facultad y planeación de la ejecución del proyecto.

ETAPA II

• Adquisición de información en campo:

• Ocupación de los Vertices Geodesicos de la Red FAMARENA 2014.

• Ejecución de la nivelación de los tramos de la Red Vertical.

ETAPA III

• Procesamiento y analisis de la información:

• Post-proceso de datos crudos obtenidos en las jornadas de ocupación de la Red.

• Ajuste de la Red Vertical.

FIN DEL PROYECTO

• Documentación de los resultados y sustentación del proyecto:

• Elaboración de informe final.

• Sustentación del proyecto desarrollado.

Page 48: RED GEODÉSICA FAMARENA 2014

48

PRIMERA ETAPA

Consistió en Diagnosticar el estado de los vértices geodésicos de la Facultad y

verificar las condiciones técnicas para la ejecución de un posicionamiento óptimo,

se llevó a cabo mediante la ejecución de tres actividades:

1. Inspección de campo: Se realizó una visita a cada uno de los vértices que

componen la actual red geodésica de la Universidad Distrital Francisco

José de Caldas sede Vivero con lo cual se observó el estado físico de cada

uno de los vértices, por medio del “formato de inspección” se tomaron cada

uno de los componentes para verificar su estado.

2. Levantamiento cinemático de los vértices Geodésicos: Se realizó el

levantamiento Cinemático de los vértices existentes en la actual red

geodésica de la Universidad Distrital Francisco José de Caldas sede Vivero

con el fin de obtener la localización aproximada de los vértices. Para la

ejecución del levantamiento cinemático (método parar y seguir) se utilizaron

4 antenas receptoras Topcon Hiper Lite+, se instaló un receptor fijo

(estación base) sobre el vértice V6, los receptores Rover se instalaron en

los vértices levantados en modo estático colectando datos durante

intervalos de tiempo de 2 a 10 minutos según especificaciones del

fabricante de los receptores empleados para la ejecución de levantamientos

cinemáticos48.

3. Cálculos y análisis de resultados: con los datos obtenidos por el

levantamiento Cinemático se procede al procesamiento de estos para la

obtención de las coordenadas aproximadas de cada vértice existente en la

facultad, esto empleando el software Topcon Tools, se utilizaron los datos

crudos del levantamiento cinemático, datos crudos de la antena Boga

ubicada en el Instituto Agustín Codazzi y las coordenadas del punto Boga

actualizadas por el Sirgas.

48 Topcon Positioning systems, 2004

Page 49: RED GEODÉSICA FAMARENA 2014

49

SEGUNDA ETAPA

Consistió en el diseño y posicionamiento de la red geodésica FAMARENA 2014

esto mediante la ejecución de tres actividades:

1. De acuerdo a los datos obtenidos en la primera etapa con el

posicionamiento Cinemático se obtuvieron coordenadas aproximadas de los

vértices se realizó el diseño de la nueva red geodésica de la Facultad,

de acuerdo con factores como la intervisibilidad de los vértices geodésicos,

el estado físico de los hitos, la geometría de la Red (configurada por

triángulos cuyos ángulos internos no tendiesen a ser agudos) y

garantizando distancias horizontales entre vértices no inferiores a 50 m.

Mediante los criterios mencionados se determinaron los vértices a

posicionar.

Para la conformación de la RED GEODESICA FAMARENA 2014 se

diseñaron dos redes: Una RED PRINCIPAL, determinada por los vértices

geodésicos más externos de la RED FAMARENA y una RED INTERNA O

SECUNDARIA.

2. Se posicionaron los vértices con una metodología estática,

programando dos jornadas de ocupación, una para el posicionamiento de

la RED PRINCIPAL, determinada por los vértices geodésicos más externos

de la RED FAMARENA y la segunda para el posicionamiento de la RED

INTERNA O SECUNDARIA.

Para la jornada de posicionamiento de la RED PRINCIPAL se emplearon 4

antenas receptoras Topcon Hiper Lite+, las cuales se instalaron en los

vértices NP59_CD, GR_2, GR_1, NP6_UD-95, NP_6_E_1, GR_3 y

NP60_UD-95 para colectar datos durante un tiempo aproximado de 2

horas, lo cual permitió realizar su postproceso con las estaciones

permanentes ABPD y ABPW.

Para la jornada de posicionamiento de la RED SECUNDARIA se emplearon

6 antenas receptoras Topcon Hiper Lite+. Se instalaron 2 antenas actuando

como base en los vértices geodésicos PILASTRA_NATURA y GR_1 por ser

estos los vértices con mejores condiciones para la toma de datos satelitales

al presentarse en su entorno pocos obstáculos que implicaran el sesgo en

la información colectada por el efecto multitrayectoria de las señales

satelitales captadas. Las 4 antenas adicionales actuaron como Rover

instalándose en los vértices restantes para colectar datos durante tiempos

Page 50: RED GEODÉSICA FAMARENA 2014

50

de rastreo de más de 40 minutos, teniendo en cuenta los parámetros

establecidos por el IGAC para la estimación de tiempos mínimos de rastreo

de señales GPS, según los cuales el tiempo mínimo de rastreo sobre un

punto debe ser de 15 minutos contados a partir de la estabilización del

equipo, adicionando por cada kilómetro de distancia a la base 5 minutos49.

Los receptores base colectaron datos por espacio de 6 horas con 30

minutos aproximadamente, tiempo total de ejecución de la jornada de

ocupación de los vértices de la RED SECUNDARIA.

3. Se nivelaron lo vértices de la red geodésica (FAMARENA 2014), con nivel

de precisión Topcon DL-120C, se tomaron lecturas dando a conocer cada

una de las cotas de los vértices, esto tomando como cotas de amarre, las

del vértice CD-866 ubicado en inmediaciones de la Plaza de Bolívar en el

centro de Bogotá y el vértice NPA-4 ubicado en inmediaciones de la casa

Museo Quinta de Bolívar.

TERCERA ETAPA

Consistió en la determinación de las coordenadas de los vértices que conforman

la red geodésica actualizada, se llevó a cabo mediante la ejecución de dos

actividades:

1. Cálculos y análisis de resultados, mediante el uso del programa Topcon

Tools se realizó el postproceso obteniendo las coordenadas de cada uno de

los vértices que conforman la red actualizada, se utilizaron los datos crudos

de las jornadas de posicionamiento, datos crudos de las estaciones

permanentes ABPD y ABPW, las coordenadas de estas actualizadas por

el Sirgas y datos de efemérides precisas obtenidos del sitio web de la

agencia estadounidense NASA.

El ajuste de la red de nivelación se realizó empleando el software Excel

haciendo un ajuste por mínimos cuadrados mediante los métodos

matriciales de formulación de ecuaciones paramétricas y formulación de

ecuaciones de condición.

2. Se elabora el nuevo catálogo de coordenadas de los vértices geodésicos

de la Facultad y se elabora un informe dando a conocer cada uno de los

datos obtenidos con su respectiva metodología.

49 IGAC, 2004

Page 51: RED GEODÉSICA FAMARENA 2014

51

5.1 ETAPA I – DIAGNOSTICO DEL ESTADO INICIAL DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE

5.1.1 Determinación del inventario de Vértices Geodésicos existentes en la Facultad del Medio Ambienté

Se realizó el levantamiento de los vértices geodésicos existentes en la Facultad de Medio Ambiente con receptores GPS configurados en modo cinemático el día 24 de Agosto de 2013. La información obtenida mediante la ejecución del levantamiento sirvió para tener la localización aproximada de cada uno de los vértices de la Facultad, y de este modo, poder realizar de manera efectiva las actividades de planeación y diseño de la Red Geodésica actualizada (FAMARENA 2014). Además de la información colectada por los receptores de GPS empleados en la jornada de levantamiento, se obtuvo información de la estación permanente BOGA del Instituto Geográfico Agustín Codazzi (IGAC). Adicionalmente, se contó con el plano digital de la Facultad del Medio Ambiente realizado por el Ingeniero Ismael Osorio Baquero, quien amablemente lo aporto como ayuda para el análisis de la información. Luego de obtener las coordenadas aproximadas de los Vértices Geodésicos existentes en la facultad mediante el post-proceso de los datos crudos de las antenas receptoras y la estación permanente BOGA, estas se superpusieron en el plano aportado por el Ingeniero Ismael Osorio, con lo cual se corroboro la calidad de la información obtenida en la jornada de levantamiento. El plano obtenido, modificado del original, sirvió como base para el posterior diseño y planeación de la ocupación de la RED FAMARENA 2014.

5.1.2 Determinación del estado físico de los Vértices Geodésicos existentes en la Facultad del Medio Ambiente.

Se verifico en campo el estado físico de los Vértices existentes en la Facultad del Medio Ambiente y Recursos Naturales a la fecha del 29 de Noviembre del año 2014. Las observaciones referentes a la calidad del estado de los vértices se consignaron en los formatos de inspección de los mismos anexos al presente trabajo.

Page 52: RED GEODÉSICA FAMARENA 2014

52

5.2 ETAPA II – ADQUISICIÓN DE LA INFORMACIÓN DE CAMPO 5.2.1 Diseño y ocupación de la Red Geodésica Horizontal FAMARENA

2014 Teniendo como punto de partida la información del levantamiento cinemático para el inventario de los vértices Geodésicos existentes en la Facultad y su análisis, se seleccionaron los vértices que conforman la RED GEODESICA FAMARENA 2014. En este proceso se seleccionaron 27 vértices, como criterios de selección de estos, a partir de los existentes, se tuvieron en cuenta factores como el estado físico de los Vértices, la intervisibilidad entre ellos, las distancias horizontales entre ellos (no menores a 50 m en la mayoría de casos) y la configuración geométrica de la Nueva Red. Para la conformación de la RED GEODESICA FAMARENA 2014 se diseñaron dos redes: Una RED PRINCIPAL, determinada por los vértices geodésicos más externos de la RED FAMARENA y una RED INTERNA O SECUNDARIA. Se planearon dos jornadas de ocupación de los vértices de la RED FAMARENA 2014. En la primera jornada, ejecutada el día 20 de Septiembre de 2014 se obtuvo la información correspondiente al posicionamiento de los vértices de la RED PRINCIPAL.

Figura 9: Esquema de la RED PRINCIPAL. Escala aprox. 1:1000

Fuente: Software Google Earth, 2015

Page 53: RED GEODÉSICA FAMARENA 2014

53

La segunda jornada, ejecutada el día 29 de Noviembre de 2014, permitió la

obtención de la información correspondiente al posicionamiento de la RED

INTERNA.

Figura 10: Esquema de la RED INTERNA. Escala aprox. 1:1000

Fuente: Software Google Earth, 2015

Se emplearon receptores de GPS Topcon Hiper Lite+ configurados para grabar

datos satelitales de la constelación GPS en modo estático a intervalos de 1

Segundo, con una máscara de elevación de 15°.

Además de los datos crudos (en formato RINEX) obtenidos con los receptores

Topcon en las jornadas de posicionamiento correspondientes, se contó con la

información de las estaciones permanentes ABPW y BOGT correspondiente al día

Page 54: RED GEODÉSICA FAMARENA 2014

54

GPS 263 (primera jornada de ocupación), y con la información de las estaciones

permanentes ABCC, ABPD, ABPW, BOGA y BOGT correspondiente al día GPS

333 (segunda jornada de ocupación), las coordenadas de estas actualizadas por

el Sirgas y datos de efemérides precisas obtenidos del sitio web de la agencia

estadounidense NASA.

Los tiempos de rastreo para los receptores Topcon empleados en las jornadas de

ocupación de la RED FAMERENA 2014 se determinaron teniendo en cuenta los

parámetros establecidos por el IGAC para la estimación de tiempos mínimos de

rastreo de señales GPS, según los cuales el tiempo mínimo de rastreo sobre un

punto debe ser de 15 minutos contados a partir de la estabilización del equipo,

adicionando por cada kilómetro de distancia a la base 5 minutos.

Los tiempos aproximados de rastreo para cada receptor instalado en cada uno de

los vértices de la RED FAMARENA en sus respectivas jornadas de ocupación se

listan en las siguientes tablas:

Tabla 1: Tiempos de rastreo de los receptores empleados en la jornada de ocupación de la RED PRINCIPAL

Fuente: Los autores, 2015

Vértice Distancia media a las bases (km) Tiempo mínimo de rastreo (min) Tiempo de rastreo en campo (min)

NP_6_E_1 13.5 82.5 120

GR_3 13.5 82.5 120

NP_59_CD 13.5 82.5 120

NP60_UD95 13.5 82.5 120

GR_2 13.5 82.5 120

NP6_UD_95 13.5 82.5 120

GR-1 13.5 82.5 120

JORNADA DE OCUPACIÓN RED PRINCIPAL (SEPTIEMBRE 20 DE 2014)

Page 55: RED GEODÉSICA FAMARENA 2014

55

Tabla 2: Tiempos de rastreo de los receptores empleados en la jornada de ocupación de la

RED INTERNA O SECUNDARIA

Fuente: Los autores, 2015

Los estudiantes de los cursos de Geodesia Posicional que participaron en las

jornadas de trabajo en campo diligenciaron los formatos de ocupación anexos al

presente trabajo, estos incluyen información detallada de seriales de los equipos,

horas de inicio y fin de las sesiones de colección de datos, alturas instrumentales

de las armadas, diagramas de obstáculos de los respectivos posicionamientos

entre otra información relevante.

5.2.2 Diseño y ejecución de la Red Vertical FAMARENA 2014 Una vez concluidos los procesos de inventario y selección de los vértices geodésicos de la Facultad de Medio Ambiente, se diseñó la RED VERTICAL FAMARENA 2014, determinada por una RED VERTICAL PRINCIPAL y un POLÍGONO SECUNDARIO. El método de nivelación empleado en la ejecución de la nivelación de los tramos de la RED VERTICAL FAMARENA 2014, es el método de visuales reciprocas, teniendo en cuenta el punto medio entre lecturas para cada armada.

Vértice Distancia media a las bases (km) Tiempo mínimo de rastreo (min) Tiempo de rastreo en campo (min)

GR_1 13.5 82.5 438

PILASTRA_NATURA 13.5 82.5 427

CN-1 0.35 16.75 57

CN-3 0.35 16.75 56

FAMARENA-1 0.35 16.75 57

GR_04 0.35 16.75 49

NP_59_CD 0.35 16.75 125

TT1A 0.35 16.75 70

TT2 0.35 16.75 53

TT9 0.35 16.75 59

TT12 0.35 16.75 64

TT14 0.35 16.75 51

TT16 0.35 16.75 48

TT18 0.35 16.75 65

TT20 0.35 16.75 53

V1 0.35 16.75 67

V6 0.35 16.75 52

VIV-2 0.35 16.75 53

VIV-05 0.35 16.75 60

VIV-6 0.35 16.75 53

VIVERO-3 0.35 16.75 46

VIVERO-08 0.35 16.75 59

JORNADA DE OCUPACIÓN RED SEDUNDARIA (NOVIEMBRE 29 DE 2014)

Page 56: RED GEODÉSICA FAMARENA 2014

56

Posteriormente se inició el proceso de reconocimiento del área de trabajo para una mejor ejecución, y se prosiguió de la siguiente manera: Para la determinación de la cota geométrica de los vértices de la RED FAMARENA, se realizó un estudio de la zona en conjunto con los datos suministrados por el IGAC con la intención de determinar un vértice con cota geométrica certificada para amarrar la Red de nivelación, se determinó emplear el vértice CD-866 ubicado en la plaza bolívar de Bogotá para este proceso, por ser el vértice más cercano a la facultad de Medio Ambiente con cota geométrica certificada por el IGAC

Figura 11: Impronta del Vértice CD-866

Fuente: Los autores, 2015

La primera nivelación se desarrolló de la siguiente manera: comienza en la placa CD-866 hasta el mojón NP-A4 ubicado en la casa Museo Quinta de Bolívar en Bogotá (Ver cartera de campo tramo 40), de este último punto es trasladada a la pilastra NP-6-E1 ubicada en el Teatro al aire libre La Media Torta de Bogotá (Ver cartera de campo tramo 39). Esto con la intención de verificar o comparar la cota suministrada y certificada por el Instituto Geográfico Agustín Codazzi (NP6-E1) (Ver anexo 8). La nivelación y contra-nivelación se llevó a cabo empleando el nivel digital Topcon DL-102C, y se ajustó por número de cambios individuales.

Page 57: RED GEODÉSICA FAMARENA 2014

57

Tabla 3: Nivelación entre los vértices CD-866 y NPA4

Fuente: Los autores, 2015

PUNTO V+ V- ALTURA COTA PUNTO V+ V- ALTURA COTA

CD 866 1.7856 2 608.242 2 606.456 CD 866 1.786 2 606.457 2 606.456

0.0402 2 608.201 0.040 2 608.242

2.961 2 611.162 2.961 2 608.202 2 608.202 2608.202

0.0687 2 611.094 0.069 2 611.163

2.741 2 613.835 2.741 2 611.094 2 611.094 2611.094

0.1578 2 613.677 0.158 2 613.835

2.9774 2 616.654 2.977 2 613.677 2 613.677 2613.677

0.2298 2 616.425 0.230 2 616.655

3.0097 2 619.434 3.010 2 616.425 2 616.425 2616.425

0.2386 2 619.196 0.239 2 619.435

2.9414 2 622.137 o 2.941 2 619.196 2 619.196 2619.196

0.232 2 621.905 0.232 2 622.138

2.6179 2 624.523 2.618 2 621.905 2 621.905 2621.905

0.0522 2 624.471 0.052 2 624.523

2.7467 2 627.217 2.747 2 624.471 2 624.471 2624.471

0.3735 2 626.844 0.374 2 627.218

2.6532 2 629.497 2.653 2 626.844 2 626.844 2626.844

1.0835 2 628.414 1.083 2 629.497

0.262 2 628.676 0.262 2 628.414 2 628.414 2628.414

2.7461 2 625.930 2.746 2 628.676

0.5921 2 626.522 0.592 2 625.930 2 625.930 2625.929

2.3377 2 624.184 2.338 2 626.522

0.8532 2 625.037 0.853 2 624.184 2 624.184 2624.184

2.7456 2 622.292 2.746 2 625.038

0.3114 2 622.603 0.311 2 622.292 2 622.292 2622.292

2.8688 2 619.734 2.869 2 622.603

0.1262 2 619.860 0.126 2 619.735 2 619.734 2619.734

2.9456 2 616.915 2.946 2 619.861

0.4986 2 617.413 0.499 2 616.915 2 616.915 2616.915

2.8664 2 614.547 2.866 2 617.414

0.2791 2 614.826 0.279 2 614.547 2 614.547 2614.547

0.1995 2 614.627 0.200 2 614.826

1.7692 2 616.396 1.769 2 614.627 2 614.627 2614.626

0.9813 2 615.414 0.981 2 616.396

0.2529 2 615.667 0.253 2 615.415 2 615.415 2615.414

2.9022 2 612.765 2.902 2 615.668

2.4771 2 615.242 2.477 2 612.765 2 612.765 2612.765

0.2968 2 614.945 0.297 2 615.242

2.7197 2 617.665 2.720 2 614.946 2 614.945 2614.945

0.1491 2 617.516 0.149 2 617.665

2.8847 2 620.401 2.885 2 617.516 2 617.516 2617.516

0.0871 2 620.314 0.087 2 620.401

2.3664 2 622.680 2.366 2 620.314 2 620.314 2620.313

0.3526 2 622.327 0.353 2 622.680

2.7545 2 625.082 2.754 2 622.328 2 622.328 2622.327

0.1306 2 624.951 0.131 2 625.082

2.9261 2 627.877 2.926 2 624.952 2 624.951 2624.951

0.2279 2 627.650 0.228 2 627.878

2.8653 2 630.515 2.865 2 627.650 2 627.650 2627.649

0.0906 2 630.424 0.091 2 630.515

2.935 2 633.359 2.935 2 630.424 2 630.424 2630.424

0.0316 2 633.328 0.032 2 633.359

2.8033 2 636.131 2.803 2 633.328 2 633.328 2633.327

0.1588 2 635.972 0.159 2 636.131

2.9153 2 638.887 2.915 2 635.972 2 635.972 2635.972

1.2642 2 637.623 1.264 2 638.888

2.4164 2 640.040 2.416 2 637.624 2 637.623 2637.623

0.14 2 639.900 0.140 2 640.040

2.8065 2 642.706 2.807 2 639.900 2 639.900 2639.899

0.1304 2 642.576 0.130 2 642.707

2.6712 2 645.247 2.671 2 642.576 2 642.576 2642.575

0.389 2 644.858 0.389 2 645.247

2.9433 2 647.801 2.943 2 644.858 2 644.858 2644.857

0.1511 2 647.650 0.151 2 647.802

2.7582 2 650.408 2.758 2 647.650 2 647.650 2647.650

0.9105 2 649.498 0.911 2 650.409

0.0066 2 649.504 0.007 2 649.498 2 649.498 2649.497

2.7414 2 646.763 2.742 2 649.505

0.9697 2 647.733 0.970 2 646.763 2 646.763 2646.762

0.0454 2 647.687 0.045 2 647.733

2.4924 2 650.180 2.492 2 647.687 2 647.687 2647.687

NP A 4 0.2782 2 649.902 NP A 4 0.278 2 650.180 2 649.902 2 649.902 2649.901

SUMATORIA 74.090 30.645 Dh 43.446 SUMATORIA 30.645 74.090 Dh -43.445

Promedio Dh : 43.445 # CAMBIOS 36

ERROR 0.0007 Compensacion 0.00002

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE

CALDAS

CUADRO DE CALCULO: NIVELACION DEL TRANSLADO DE COTA PARA RECTIFICAR PLACA NP-6E1

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

SEDE VIVERO Y RECURSOS NATURALES

COTA AJUSTADA

CD-866 (Plaza Bolviar) - NP-A4 (Quinta De Bolivar)RECORRIDO

C#25

C#26

C#27

CT-1436

C#19

C#20

C#21

COTA MEDIA

C#33

C#34

DISTANCIA

C#28

C#29

C#30

C#31

C#32

C#24

C#22

C#23

C#14

C#15

C#16

C#17

C#18

C#9

C#10

C#11

C#12

C#13

C#4

C#5

C#6

C#7

C#8

C#34

C#28

C#29

C#30

C#31

C#32

C#33

CT-1436

C#17

C#18

C#19

C#20

C#21

C#22

C#23

C#24

C#25

C#26

C#27

NIVELACION CONTRANIVELACIÓN

C#1

C#2

C#3

C#1

C#2

C#3

C#4

C#16

C#5

C#6

C#7

C#8

C#9

C#10

C#11

C#12

C#13

C#14

C#15

Page 58: RED GEODÉSICA FAMARENA 2014

58

Tabla 4: Nivelación entre los vértices NP6-E1 y NPA4

Fuente: Los autores, 2015

PUNTO V+ V- ALTURA COTA PUNTO V+ V- ALTURA COTA

NP-6E1 2.6721 2 675.9855 2 673.3134 NP-6E1 2.672 2673.3134 2 673.3134 2673.3130

1.0829 2 674.9026 1.083 2 675.985

2.1963 2 677.0989 2.1966 2674.9024 2 674.903 2674.9022

1.7105 2 675.3884 1.7105 2 677.099

1.8337 2 677.2221 1.8336 2675.3885 2 675.388 2675.3881

1.0211 2 676.2010 1.0213 2 677.222

1.4922 2 677.6932 1.4921 2676.2008 2 676.201 2676.2006

0.9877 2 676.7055 0.9875 2 677.693

1.016 2 677.7215 1.016 2676.7054 2 676.705 2676.7052

2.7159 2 675.0056 2.7159 2 677.721

0.7788 2 675.7844 0.7788 2675.0055 2 675.006 2675.0053

2.8402 2 672.9442 2.8402 2 675.784

0.6744 2 673.6186 0.6744 2672.9441 2 672.944 2672.9439

2.8366 2 670.7820 2.8365 2 673.619

0.4236 2 671.2056 0.4236 2670.782 2 670.782 2670.7818

2.2768 2 668.9288 2.2768 2 671.206

0.1832 2 669.1120 0.1833 2668.9288 2 668.929 2668.9286

2.8759 2 666.2361 2.8759 2 669.112

0.0353 2 666.2714 0.035 2666.2362 2 666.236 2666.2360

2.9528 2 663.3186 2.9528 2 666.271

0.2592 2 663.5778 0.2593 2663.3184 2 663.319 2663.3183

2.878 2 660.6998 2.8779 2 663.578

0.3252 2 661.0250 0.3253 2660.6998 2 660.700 2660.6996

2.7435 2 658.2815 2.7435 2 661.025

0.2413 2 658.5228 0.2414 2658.2816 2 658.282 2658.2814

2.867 2 655.6558 2.867 2 658.523

0.4967 2 656.1525 0.4967 2655.656 2 655.656 2655.6558

2.6717 2 653.4808 2.6717 2 656.153

0.3226 2 653.8034 0.3226 2653.481 2 653.481 2653.4808

2.9409 2 650.8625 2.941 2 653.804

0.372 2 651.2345 0.372 2650.8626 2 650.863 2650.8625

2.918 2 648.3165 2.918 2 651.235

0.537 2 648.8535 0.537 2648.3166 2 648.317 2648.3165

2.8469 2 646.0066 2.8468 2 648.854

1.3065 2 647.3131 1.3064 2646.0068 2 646.007 2646.0067

0.0439 2 647.2692 0.044 2 647.313

2.8077 2 650.0769 2.8076 2647.2692 2 647.269 2647.2692

NPA4 0.176 2 649.9009 NPA4 0.176 2650.0768 2649.901 2649.9008

SUMATORIA 17.974 41.386 Dh -23.413 SUMATORIA 41.386 17.974 Dh 23.413

Promedio Dh : -23.413 # CAMBIOS 19

ERROR 0.0001 Compensacion 0.00001

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

SEDE VIVERO Y RECURSOS NATURALES

CUADRO DE CALCULO: NIVELACION DEL TRANSLADO DE COTA PARA RECTIFICAR PLACA NP-6E1

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE

CALDAS

C # 13

C # 14

C # 15

C # 16

C # 17

C # 8

C # 9

C # 10

C # 11

C # 12

C # 3

C # 4

C # 5

C # 6

C # 7

NIVELACIONDISTANCIA

CONTRANIVELACIÓN

RECORRIDO

C # 3

C # 4

C # 5

C # 6

C # 7

C # 2 C # 2

C # 18C # 18

C # 13

C # 14

C # 15

C # 16

C # 17

C # 8

C # 9

C # 10

C # 11

C # 12

C # 1 C # 1

COTA AJUSTADA

NP-6E1 (Pilastra Media Torta) - NPA4 (Quinta De Bolivar)

COTA MEDIA

Page 59: RED GEODÉSICA FAMARENA 2014

59

DEFINICION DE COTA GEOMETRICA BASE PARA EL AJUSTE DE LA RED VERTICAL FAMARENA 2014:

Teniendo un punto base con cota fija NP6-E1 se diseña la red de nivelación secundaria, con dos criterios fundamentales:

Asignar una cota fija a otro vértice de la red ubicado estratégicamente en el lote A para distribución de caminos de la red principal (NP59-CD).

Obtener cotas ajustadas realizando un ajuste matemático matricial de las placas NP6E-1 y NP-59CD, es de vital importancia debido que a partir de estos dos vértices se densifico la red principal.

Figura 12: Esquema de POLÍGONO SECUNDARIO y nivelación de enlace con el vértice CD-866. Escala aprox. 1:1000

Fuente: Los autores

NOTA: Con el fin de comprobar la veracidad de la cota suministrada por el "Instituto Geografico Agustin Codazzi", se realizo una nivelacion y contra

nivelacion a partir del punto mas cercano certificado por el "IGAC", el cual se encuentra ubicado en la plaza bolivar de Bogota. Como resultado se

concluyo y decidio utilizar para el ajuste de la red de nivelacion "FAMARENA2014" la cota nivelada en campo y establecer como nodo principal la

placa NPA4, por dos razones principales: 1- El error de nivelacion es de en promedio 0.0004m (medio milimetro) 2- La diferencia es de tan solo 1cm

aprox, y teniendo en cuenta la variacion que puede sufrir la placa NP-6E1 por ambientes externos.

COMPARACION IGAC Vs. COTA NIVELADA DESDE CD-866

1.296 cm

COTA NP-6E1 (PILASTRA)

COTA CERTIFICADA INSTITUTO

GEOGRAFICO AGUSTIN CODAZZI

COTA TRANSLADADA A PARTIR DEL

PUNTO CD-866 UBICADO EN LA PLAZA

BOLIVARDE BOGOTA D.C.

Discrepancia De Nivel

0.013 m

2673.32599 m.s.n.m.

2673.313031 m.s.n.m.

Page 60: RED GEODÉSICA FAMARENA 2014

60

Para el ajuste de esta red se toma como cota fija y punto conocido el vértice NPA4

ubicado en la casa Museo Quinta de Bolívar, a partir de este se deriva una serie

de itinerarios abarcando los puntos más externos de la red y tomando como

obligación los puntos fijos NP59-CD y NP6-E1 del lote A y B de la Facultad. Para

cada itinerario se realiza una nivelación y contra nivelación compuesta, se verifica

en campo el error de cada tramo por número de vistas y los cierres de polígonos

que estén por debajo de 1cm para cada caso (ver tabla , numeral)

Concluida la recolección de información en campo para la finalización del polígono secundario, se realiza la planeación en campo y diseño de la red de nivelación principal, también teniendo tres aspectos fundamentales a considerar:

Los puntos más externos deben ser nodos obligatorios de la red Tantos números de caminos necesarios, para que en la nivelación de cada

uno se pueda asignar cota geométrica a todo el inventario de vértices de la Facultad del Medio Ambiente, sobre todo los vértices de nuestra red geodésica primaria y red interna geodésica “pares topográficos” FAMARENA 2014.

Tener especial atención en que los vértices fijos de cotas conocidas NP59-CD y NP6-E1 debe distribuir de forma uniforme cota geométrica a los demás nodos de la red.

Figura 13: Esquema de la RED VERTICAL PRINCIPAL. Escala aprox. 1:1000

Fuente: Los autores

Page 61: RED GEODÉSICA FAMARENA 2014

61

De igual manera se realiza la nivelación y contra nivelación con el nivel digital

TOPCON DL-102C, y se verifica en campo los errores y cierres de cada polígono,

para poder llevar un control de que caminos de la red no son aceptables para

nuestra precisión del trabajo, está determinada por el error del equipo por cada

100m expresado en el marco teórico del presente trabajo de = 0.00073mm

5.3 ETAPA III – PROCESAMIENTO DE LA INFORMACIÓN

5.3.1 Ajuste por mínimos cuadrados de la Red Vertical FAMARENA 2014 Para el cálculo de la RED principal y secundaria se empleó la metodología del criterio de compensación de los errores basado en el principio de los mínimos cuadrados, todo ello con las herramientas de cálculo proporcionadas por el álgebra lineal y la teoría de matrices. Formulación De Matrices:

Para cada caso en particular polígono principal y polígono secundario, se realizó el

mismo estudio y cálculo matricial, dos métodos se utilizaron: el método por

ecuaciones paramétricas y de condición, para tener mayor certeza de los

resultados del ajuste.

Ajuste Ecuaciones Paramétricas:

En matemáticas, una ecuación paramétrica permite representar una o varias

curvas o superficies en el plano o en el espacio, mediante valores arbitrarios o

mediante una constante, llamada parámetro, en lugar de mediante una variable

independiente de cuyos valores se desprenden los de la variable dependiente.50

Pasos de formulación:

1. A: Se realiza la matriz A teniendo en cuenta al grafico de caminos y

sentidos de la red. Obteniendo una matriz para polígono principal y total de

8x4 y 36x15 respectivamente.

2. K (Matriz de constantes): De igual manera se formula la matriz K,

teniendo en cuenta las diferencias de nivel y las cotas conocidas para cada

caso negativas. Obteniendo una matriz para polígono secundario y principal

de 8x1 y 36x1 respectivamente, que coinciden con el número de caminos

para cada caso.

3. Aᵗ: Ahora bien, de la matriz A se obtiene su transpuesta (Aᵗ) consiste en

invertir el número de filas y columnas.

50 Es.wikipedia.org

Page 62: RED GEODÉSICA FAMARENA 2014

62

4. E: Producto matricial entre Aᵗ y K

5. B: Producto matricial entre Aᵗ y A

6. Bˉ¹: Matriz inversa dentro de una matriz

7. V(Matriz De Errores): Producto matricial Bˉ¹ x E

Esta última nos determina el valor de cada cota ajustada en la red con signos

negativos, en última instancia se pasa a positivo cada valor altimétrico, y

obtenemos como punto final el valor en m.s.n.m. de cada placa de acuerdo al

orden inicial de las matrices.

Ajuste Ecuaciones De Condición:

En este método matemático se utiliza y plantea una seria de ecuaciones

condicionantes en la cuales la cantidad de las mismas tienen que abarcar todos

los caminos de la red, cada polígono planteado se debe obtener su cierre teórico.

1. Se debe establecer las ecuaciones condicionantes de acuerdo a cado

específico, de acuerdo a los siguientes datos y ecuaciones.

Tabla 5: Determinación del numero de ecuaciones necesarias para conformar una matriz A

ITEM N° DE ECUACIONES NECESARIAS MATRIZ A

A # De vértices de la red -o-

B # De vértices conocidos -o-

C # De caminos de la red -o-

# EUACIONES PLANTEADAS C- (A-B) Fuente: Los autores, 2015

2. A: Esta matriz tendrá el número de filas de acuerdo a la cantidad de

ecuaciones planteadas y tantas columnas como caminos de la red; para

cada caso se debe seguir un código binario de (1, -1 y 0) de acuerdo a la

información gráfica. Signos positivos caminos que van en sentido de las

manecillas del reloj, signo negativo en zona-contra horario, y “0” cuando el

camino no es involucrado en la ecuación. Obteniendo una matriz para

polígono secundario y principal de 3x8 y 21x36 respectivamente.

3. K: Esta matriz debe llevar los errores de cierre de cada ecuación planteada.

4. Aᵗ: Ahora bien, de la matriz A se obtiene su transpuesta (Aᵗ) consiste en

invertir el número de filas y columnas.

5. C: Producto matricial entre Bˉ¹ x K

6. B: Producto matricial entre A y Aᵗ

7. Bˉ¹: Matriz inversa dentro de una matriz

8. V(Matriz De Errores): Producto matricial Aᵗ y C

Page 63: RED GEODÉSICA FAMARENA 2014

63

La matriz final, como su lo nombre indica nos indica la corrección de cada delta de

nivel, para su ajuste ideal y cierre de cada polígono. Solo queda aplicar esta

corrección a cada desnivel de los caminos teniendo en cuenta los signos

propuestos.

Posteriormente se realiza con las cotas ajustadas los cierres de polígonos y se

verifica que todos tengan un error de cierre de “0”, si la anterior apreciación es

correcta todas las cotas de cada punto individual sin importar porque itinerario se

llegue debe tener el mismo valor en los cuadros de cálculo, a continuación.

AJUSTE POLIGONO SECUNDARIO ECUACIONES PARAMETRICAS

Figura14. Datos base ajuste ecuaciones paramétricas

Fuente: Los autores, 2015

NP-A4

Tramo Δ Nivel Unidad

37 -64.238 m

38 -40.814 m

39 -23.413 m

40 43.445 m

41 -40.278 m

42 -39.679 m

43 0.573 m

44 0.537 m

POLIGONO CIERRE (m) (mm)

U -0.012 -11.65

V 0.000 0

W 0.025 24.85

CUADRO DE ALCULO AJUSTE DE RED PRINCIPAL ECUACIONES PARAMETRICAS

SEDE VIVERO Y RECURSOS NATURALES

COTA BASE (m.s.n.m.)

2649.9008

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

AJUSTE RED DE NIVELACION POLGINO PRINCIPAL-METODO DE ECUACNES PARAMETRICAS

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

BOSQUEJO GUIA DE NIVELACION POLIGONO PRINCIPAL

Page 64: RED GEODÉSICA FAMARENA 2014

64

Figura 15. Calculo matricial parametrización POLIGONO SECUNDARIO

Fuente: Los autores, 2015

ECUACIONES DE CONDICION

Figura 16. Datos base ajuste ecuaciones de condición POLIGONO SECUNDARIO

Fuente: Los autores, 2015

NP-59CD NP-6E1 GR3 CD-555

37 -1 0 0 0 37 2714.139 -

38 -1 1 0 0 38 40.814 - (Dh38)

39 0 -1 0 0 39 2673.313 -

40 0 0 0 0 40 -43.445 - (Dh40)

41 -1 0 1 0 41 40.278 - (Dh41)

42 -1 0 0 1 42 39.679 - (Dh42)

43 0 0 -1 1 43 -0.573 - (Dh43)

44 0 -1 1 0 8x4 44 -0.537 8x1 - (Dh44)

37 38 39 40 41 42 43 44

NP-59CD -1 -1 0 0 -1 -1 0 0 -2834.9103

NP-6E1 0 1 -1 0 0 0 0 -1 -2631.96265

GR3 0 0 0 0 1 0 -1 1 40.3144

CD-555 0 0 0 0 0 1 1 0 4x8 39.10605 4x1

4 -1 -1 -1 0.619 0.381 0.524 0.571

-1 3 -1 0 0.381 0.619 0.476 0.429

-1 -1 3 -1 0.524 0.476 0.905 0.714

-1 0 -1 2 4x4 0.571 0.429 0.714 1.143 4x4

-2714.13353 NP-59CD 2714.134 m

-2673.31897 NP-6E1 2673.319 m

-2673.86074 GR3 2673.861 m

-2674.44411 4x1 CD-555 2674.444 m

B (ATxA) B¯¹

V (B¯¹x E)COTAS

AJUSTADAS

Aᵗ E:(AT x K)

(Cota NP-A41 - Dh39)

KA

Cota NP-A41 - Dh37

NP-A4

Tramo Δ Nivel Unidad

37 -64.238 m

38 -40.814 m

39 -23.413 m

40 43.445 m

41 -40.278 m

42 -39.679 m

43 0.573 m

44 0.537 m 8x1

POLIGONO CIERRE (m) (mm)

U 0.012 11.65

V 0.000 0

W 0.025 24.85

2649.9008

3# EUACIONES PLANTEADAS

COTA BASE (m.s.n.m.)

# De vertices de la red

# De vertices conocidos

# De caminos de la red

N° DE ECUACIONES NECESARIAS MATRIZ A

5

7

1

BOSQUEJO GUIA DE NIVELACION POLIGONO PRINCIPAL

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

CUADRO DE CALCULO AJUSTE DE RED PRINCIPAL ECUACIONES DE CONDICION

SEDE VIVERO Y RECURSOS NATURALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

Page 65: RED GEODÉSICA FAMARENA 2014

65

Figura 17. Calculo matricial ecuaciones de condición POLIGONO SECUNDARIO

Fuente: los autores, 2015

Como resultado final en ambos cálculos las cotas ajustadas para los vértices NP59CD y NP6E1 es 2714.134m y 2673.319m respectivamente, con las anteriores cotas se procede a realizar el ajuste la RED DE NIVELACIÓN PRINCIPAL de acuerdo a toda la información obtenida en campo y teniendo máximo cuidado en los sentidos de cada camino de nivelación y polígono completo (de acuerdo al esquema de la Red Vertical de la Figura 11). Antes de realizar el cálculo matricial se verifica que los cierres de cada polígono nombrado alfabéticamente desde la letra A hasta la T.

U 0.012

37 38 39 40 41 42 43 44 V 0.000

U -1 1 1 0 0 0 0 0 W 0.025 3x1

V 0 -1 0 0 1 0 0 -1

W 0 0 0 0 -1 1 -1 0 3x8

-1 0 0 3 -1 0

1 -1 0 -1 3 -1

1 0 0 0 -1 3 3x3

0 0 0

0 1 -1

0 0 1 0.3810 0.1429 0.0476 0.00562143

0 0 -1 0.1429 0.4286 0.1429 0.00521429

0 -1 0 8x3 0.0476 0.1429 0.3810 3x3 0.01002143 3x1

Tramo Δ Nivel Unidad Tramo Δ Nivel Unidad

-0.006 37 -64.238 m 37 -64.233 m

0.000 38 -40.814 m 38 -40.815 m

0.006 39 -23.413 m 39 -23.418 m

0.000 40 43.445 m 40 43.445 m

-0.005 41 -40.278 m 41 -40.273 m

0.010 42 -39.679 m 42 -39.689 m

-0.010 43 0.573 m 43 0.583 m

-0.005 8x1 44 0.537 m 44 0.542 m

ID COTA U 0.012 11.65 U 0.000 0

NP-59CD 2714.134 V 0.000 0 V 0.000 0

NP-6E1 2673.319 W 0.025 24.85 W 0.000 0

GR3 2673.861

CD-555 2674.444

V (AT x C)

Matriz De

Errores

Datos En Campo Datos Ajustados

Cotas Ajustadas

K

Aᵗ

B (AxAT)

B¯¹

A

C(B¯¹x K)

Page 66: RED GEODÉSICA FAMARENA 2014

66

Tabla 6: Error de cierre poligonos RED VERTICAL PRINCIPAL

POLG. CIERRE (m)

(mm)

A 0.003 2.900

B -0.001 -1.400

C -0.002 -2.205

D -0.006 -5.595

E -0.003 -3.290

F -0.007 -7.105

G 0.003 2.975

H 0.006 6.230

I 0.005 5.365

J -0.004 -4.410

K 0.010 10.335

L -0.008 -8.050

M 0.010 9.550

N -0.005 -4.515

O 0.000 -0.200

P -0.005 -4.850

Q 0.003 3.300

R -0.016 -15.955

S 0.014 13.955

T 0.003 2.750

Fuente: Los autores, 2015

Con los datos anteriores y tomando como vértices con cota geométrica conocida NP-6E1 y NP-59CD, se realizó el ajuste por mínimos cuadrados de la RED VERTICAL PRINCIPAL por el método de ecuaciones de parametrización y ecuaciones de condición.

Page 67: RED GEODÉSICA FAMARENA 2014

67

ECUACIONES PARAMETRICAS

Figura 18. Calculo matricial parametrización RED VERTICAL PRINCIPAL

Tramo Δ Nivel Unidad

1 6.110 m

2 11.977 m

3 -5.870 m

4 -15.872 m

5 10.003 m POLG.CIERR

E (m) (mm)

6 6.497 m A 0.003 2.900

7 5.483 m B -0.001 -1.400

8 2.157 m C -0.002 -2.205

9 -7.643 m D -0.006 -5.595

10 -8.633 m E -0.003 -3.290

11 -1.377 m F -0.007 -7.105

12 -17.554 m G 0.003 2.975

13 11.052 m H 0.006 6.230

14 3.416 m I 0.005 5.365

15 -6.473 m J -0.004 -4.410

16 3.053 m K 0.010 10.335

17 -6.345 m L -0.008 -8.050

18 -9.402 m M 0.010 9.550

19 -21.145 m N -0.005 -4.515

20 11.753 m O 0.000 -0.200

21 -5.716 m P -0.005 -4.850

22 6.029 m Q 0.003 3.300

23 -20.511 m R -0.016 -15.955

24 14.472 m S 0.014 13.955

25 -35.621 m T 0.003 2.750

26 -17.944 m

27 18.154 m

28 -36.103 m

29 -29.993 m

30 -26.288 m

31 -8.131 m

32 -2.692 m

33 -10.821 m

34 0.537 m

35 -10.270 m

36 -40.280 m

2673.319

2714.134

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

AJUSTE DE RED TOTAL- METODO ECUACIONES DE PARAMETRIZACION

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

SEDE VIVERO Y RECURSOS NATURALES

COTA BASE (m.s.n.m.)

NP-6E1

NP-59CD

BOSQUEJO GUIA DE NIVELACION POLIGONO " U"

Viv-05TT-7Vivero-1TT-5 TT-3 V6 V6-F V6-A V2 GR2NP60-UD.95NP6-UD.95CN3 GR1 GR3 1 -2720.24 -Cota NP-59CD (Dh1)

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -2726.11 -Cota NP-59CD(Dh2)

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5.87 (Dh3)

3 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 15.87 (Dh4)

4 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 5 -10.00 (Dh5)

5 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 6 -2720.63 -Cota NP-59CD(Dh6)

6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 7 -5.48 (Dh7)

7 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 8 -2.16 (Dh8)

8 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 9 7.64 (Dh9)

9 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 10 8.63 (Dh10)

10 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 11 1.38 (Dh11)

11 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 12 2731.69 Cota NP-59CD(Dh12)

12 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 13 -11.05 (Dh13)

13 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 14 -3.42 (Dh14)

14 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 15 6.47 (Dh15)

15 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 16 -3.05 (Dh16)

16 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 17 6.34 (Dh17)

17 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 18 9.40 (Dh18)

18 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 19 21.14 (Dh19)

19 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 20 -11.75 (Dh20)

20 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 21 5.72 (Dh21)

21 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 22 -6.03 (Dh22) -2752.55

22 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 23 20.51 (Dh23) -2716.67

23 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 24 -14.47 (Dh24) -27.25

24 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 25 35.62 (Dh25) -2696.45

25 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 26 17.94 (Dh26) 0.09

26 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 27 -18.15 (Dh27) -10.44

27 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 28 36.10 (Dh28) -2676.94

28 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 29 -2684.14 -Cota NP-59CD(Dh29) 1.72

29 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 30 26.29 (Dh30) -24.45

30 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 31 8.13 (Dh31) 20.82

31 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 32 2676.01 Cota NP-6E1(Dh32) -70.60

32 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 33 2684.14 Cota NP-6E1(Dh33) -26.50

33 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 34 -2673.86 -Cota NP-6E1(Dh34) -5332.42

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 35 10.27 (Dh35) -2641.59

35 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 36 -2673.85 -Cota NP-59CD(Dh36)36X1 -5337.44 15x1

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 36x15

E

AK

Page 68: RED GEODÉSICA FAMARENA 2014

68

Fuente: Los autores, 2015

ECUACIONES DE CONDICIÓN

ID Δ Nivel

1 6.110 m

2 11.977 mPOLG.

CIERRE

(m)

3 -5.870 m A 0.003

4 -15.872 m B -0.001

5 10.003 m C -0.002

6 6.497 m D -0.006

7 5.483 m E -0.003

8 2.157 m F -0.007

9 -7.643 m G 0.003

10 -8.633 m H 0.006

11 -1.377 m I 0.005

12 -17.554 m J -0.004

13 11.052 m K 0.010

14 3.416 m L -0.008

15 -6.473 m M 0.010

16 3.053 m N -0.005

17 -6.345 m O 0.000

18 -9.402 m P -0.005

19 -21.145 m Q 0.003

20 11.753 m R -0.016

21 -5.716 m S 0.014

22 6.029 m T 0.003 Calculado Teorico

23 -20.511 m X 0.014 -40.800 -40.815

24 14.472 m

25 -35.621 m

26 -17.944 m

27 18.154 m

28 -36.103 m

29 -29.993 m

30 -26.288 m

31 -8.131 m

32 -2.692 m

33 -10.821 m

34 0.537 m

35 -10.270 m

36 -40.280 m

36

BOSQUEJO GUIA DE NIVELACION POLIGONO TOTAL

17

2

14.362

COTA BASE (m.s.n.m.)

NP-6E1

NP-59CD

N° DE ECUACIONES NECESARIAS MATRIZ A

# De vertices de la red

# De vertices conocidos

# De caminos de la red

2673.319

2714.134

2.750

21# EUACIONES PLANTEADAS

-15.955

13.955

-3.290

-7.105

-0.200

-4.850

3.300

6.230

5.365

-4.410

10.335

-8.050

9.550

-4.515

2.975

2.900

(mm)

-1.400

-2.205

-5.595

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

SEDE VIVERO Y RECURSOS NATURALES

AJUSTE DE RED TOTAL- METODO ECUACIONES DE CONDICION

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

Viv-05 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 0

TT-7 0 1 -1 0 -1 0 1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Vivero-1 0 0 0 -1 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TT-5 0 0 0 0 0 1 -1 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TT-3 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V6 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 -1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V6-F 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 -1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

V6-A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

GR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

NP60-UD.95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0

NP6-UD.95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -1 0 0 0 0 0 0

CN3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 -1 0 -1 0 -1 0

GR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 0 0 0 0

GR3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

15x36

5 -1 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0.32 0.14 0.20 0.08 0.11 0.13 0.09 0.10 0.09 0.09 0.09 0.17 0.10 0.09 0.03

-1 6 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0.14 0.34 0.24 0.19 0.23 0.24 0.17 0.20 0.19 0.19 0.18 0.07 0.04 0.04 0.01

-1 -1 3 0 0 -1 0 0 0 0 0 0 0 0 0 0.20 0.24 0.57 0.16 0.22 0.29 0.18 0.22 0.20 0.20 0.20 0.10 0.06 0.06 0.02

0 -1 0 4 -1 0 -1 0 0 0 0 0 0 0 0 0.08 0.19 0.16 0.42 0.26 0.21 0.22 0.21 0.22 0.22 0.22 0.04 0.03 0.02 0.01

0 -1 0 -1 4 -1 -1 0 0 0 0 0 0 0 0 0.11 0.23 0.22 0.26 0.52 0.31 0.28 0.29 0.28 0.28 0.28 0.06 0.03 0.03 0.01

0 -1 -1 0 -1 5 -1 -1 0 0 0 0 0 0 0 0.13 0.24 0.29 0.21 0.31 0.49 0.29 0.36 0.32 0.33 0.31 0.07 0.04 0.04 0.01

0 0 0 -1 -1 -1 7 -1 -1 0 -1 0 0 0 0 0.09 0.17 0.18 0.22 0.28 0.29 0.42 0.38 0.40 0.39 0.40 0.05 0.03 0.02 0.01

0 0 0 0 0 -1 -1 4 -1 -1 0 0 0 0 0 0.10 0.20 0.22 0.21 0.29 0.36 0.38 0.72 0.55 0.59 0.50 0.05 0.03 0.03 0.01

0 0 0 0 0 0 -1 -1 4 -1 -1 0 0 0 0 0.09 0.19 0.20 0.22 0.28 0.32 0.40 0.55 0.81 0.66 0.62 0.05 0.03 0.03 0.01

0 0 0 0 0 0 0 -1 -1 3 -1 0 0 0 0 0.09 0.19 0.20 0.22 0.28 0.33 0.39 0.59 0.66 0.97 0.67 0.05 0.03 0.03 0.01

0 0 0 0 0 0 -1 0 -1 -1 3 0 0 0 0 0.09 0.18 0.20 0.22 0.28 0.31 0.40 0.50 0.62 0.67 0.90 0.05 0.03 0.03 0.01

-1 0 0 0 0 0 0 0 0 0 0 3 -1 -1 0 0.17 0.07 0.10 0.04 0.06 0.07 0.05 0.05 0.05 0.05 0.05 0.52 0.16 0.23 0.05

-1 0 0 0 0 0 0 0 0 0 0 -1 6 -1 -1 0.10 0.04 0.06 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.16 0.25 0.14 0.08

0 0 0 0 0 0 0 0 0 0 0 -1 -1 3 0 0.09 0.04 0.06 0.02 0.03 0.04 0.02 0.03 0.03 0.03 0.03 0.23 0.14 0.45 0.05

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 3 15x15 0.03 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.08 0.05 0.36 15x15

-2720.24 m

-2726.11 m

-2736.12 m

-2720.63 m

-2728.27 m

-2734.74 m

-2731.69 m

-2741.08 m

-2752.83 m

-2746.80 m

-2767.31 m

-2702.30 m

-2684.14 m

-2676.01 m

-2673.86 15x1 m

V6

2726.112

Aᵗ

NP6-UD.95

NP60-UD.95

GR2

V2

V6-A

2673.859

2736.115

2720.630

2728.270

V6-F

TT-3

TT-5

Vivero-1

2676.008

2746.801

2767.308

2702.295

2684.138

GR3

GR1

CN3

2734.741

2731.686

2741.085

2752.834

2720.242

TT-7

B B¯¹

V (Matriz

De

Errores)

COTAS

PARAMETRICAS

Viv-05

Page 69: RED GEODÉSICA FAMARENA 2014

69

Figura 19. Calculo matricial ecuaciones de condición RED VERTICAL PRINCIPAL

Fuente: Los autores, 2015

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C 0 1 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 -1 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 -1 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 1

O -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A

27 28 29 30 31 32 33 34 35 36 A 0.003

A 0 0 0 0 0 0 0 0 0 0 B -0.001

B 0 0 0 0 0 0 0 0 0 0 C -0.002

C 0 0 0 0 0 0 0 0 0 0 D -0.006

D 0 0 0 0 0 0 0 0 0 0 E -0.003

E 0 0 0 0 0 0 0 0 0 0 F -0.007

F 0 0 0 0 0 0 0 0 0 0 G 0.003

G 0 0 0 0 0 0 0 0 0 0 H 0.006

H 0 0 0 0 0 0 0 0 0 0 I 0.005

I 0 0 0 0 0 0 0 0 0 0 J -0.004

J 0 0 0 0 0 0 0 0 0 0 K 0.010

K 0 0 0 0 0 0 0 0 0 0 L -0.008

L 0 0 0 0 0 0 0 0 0 0 M 0.010

M 0 0 0 0 0 0 0 0 0 0 N -0.005

N 0 0 0 0 0 0 0 0 0 0 O 0.000

O 0 -1 1 0 0 0 0 0 0 0 P -0.005

P 1 1 0 0 0 0 0 0 0 0 Q 0.003

Q -1 0 0 -1 1 0 0 0 0 0 R -0.016

R 0 0 -1 0 0 0 0 0 -1 1 S 0.014

S 0 0 0 0 0 0 -1 -1 1 0 T 0.003

T 0 0 0 0 -1 -1 1 0 0 0 X 0.014 21x1

X 0 0 1 0 0 0 0 -1 1 0 21x36

K

CO

NT

INU

AC

ION

MA

TR

IZ A

A B C D E F G H I J K L M N O P Q R S T X

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

2 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.001

9 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.002

10 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.002

11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.002

12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.001

13 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.003

14 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0.001

15 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0.002

16 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0.003

17 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0.001

18 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0.004

19 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0.000

20 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0.003

21 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0.001

22 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 -0.003

23 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -0.002

24 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0.001

25 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0.005

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0.004

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0.003

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 -0.001 21x1

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 1

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 1

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 36x21

CAᵀ

Page 70: RED GEODÉSICA FAMARENA 2014

70

Figura 20. Calculo matricial ecuaciones de condición RED VERTICAL PRINCIPAL

Fuente: Los autores, 2015

A B C D E F G H I J K L M N O P Q R S T X

A 3 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

B -1 3 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C -1 0 3 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D 0 0 -1 3 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

E 0 0 -1 0 3 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

F 0 -1 0 0 0 3 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 -1 -1 3 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 -1 -1 0 0 3 -1 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 -1 -1 3 -1 0 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 -1 3 -1 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 -1 3 -1 0 -1 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0 -1 3 -1 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 -1 3 -1 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 -1 0 -1 3 0 0 0 0 0 0 0

O -1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 -1 0 -1 0 0 1

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 3 -1 0 0 0 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 3 0 0 -1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 3 -1 0 -2

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 3 -1 2

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 3 0

X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -2 2 0 3 21x21

B

7E-01 3E-01 4E-01 2E-01 2E-01 1E-01 2E-01 2E-01 1E-01 6E-02 3E-02 1E-02 7E-03 1E-02 4E-01 1E-01 8E-02 3E-02 2E-01 9E-02 -2E-01

3E-01 5E-01 2E-01 1E-01 1E-01 2E-01 2E-01 1E-01 1E-01 4E-02 2E-02 8E-03 6E-03 8E-03 1E-01 6E-02 3E-02 1E-02 8E-02 4E-02 -9E-02

4E-01 2E-01 7E-01 4E-01 5E-01 2E-01 3E-01 4E-01 2E-01 1E-01 4E-02 2E-02 1E-02 2E-02 2E-01 8E-02 4E-02 2E-02 1E-01 5E-02 -1E-01

2E-01 1E-01 4E-01 6E-01 3E-01 1E-01 2E-01 4E-01 2E-01 9E-02 4E-02 2E-02 1E-02 2E-02 1E-01 4E-02 2E-02 9E-03 5E-02 2E-02 -6E-02

2E-01 1E-01 5E-01 3E-01 8E-01 2E-01 5E-01 5E-01 4E-01 1E-01 7E-02 3E-02 2E-02 3E-02 1E-01 5E-02 3E-02 1E-02 7E-02 3E-02 -8E-02

1E-01 2E-01 2E-01 1E-01 2E-01 5E-01 3E-01 2E-01 2E-01 7E-02 3E-02 1E-02 9E-03 1E-02 8E-02 3E-02 2E-02 7E-03 4E-02 2E-02 -5E-02

2E-01 2E-01 3E-01 2E-01 5E-01 3E-01 7E-01 4E-01 4E-01 2E-01 8E-02 3E-02 2E-02 3E-02 1E-01 4E-02 2E-02 9E-03 5E-02 2E-02 -6E-02

2E-01 1E-01 4E-01 4E-01 5E-01 2E-01 4E-01 8E-01 4E-01 2E-01 8E-02 3E-02 2E-02 3E-02 1E-01 4E-02 2E-02 1E-02 5E-02 3E-02 -6E-02

1E-01 1E-01 2E-01 2E-01 4E-01 2E-01 4E-01 4E-01 7E-01 3E-01 1E-01 6E-02 4E-02 6E-02 8E-02 3E-02 2E-02 7E-03 4E-02 2E-02 -5E-02

6E-02 4E-02 1E-01 9E-02 1E-01 7E-02 2E-01 2E-01 3E-01 5E-01 2E-01 1E-01 7E-02 1E-01 3E-02 1E-02 7E-03 3E-03 2E-02 7E-03 -2E-02

3E-02 2E-02 4E-02 4E-02 7E-02 3E-02 8E-02 8E-02 1E-01 2E-01 6E-01 2E-01 2E-01 2E-01 1E-02 6E-03 3E-03 1E-03 7E-03 3E-03 -9E-03

1E-02 8E-03 2E-02 2E-02 3E-02 1E-02 3E-02 3E-02 6E-02 1E-01 2E-01 5E-01 2E-01 2E-01 6E-03 2E-03 1E-03 6E-04 3E-03 1E-03 -4E-03

7E-03 6E-03 1E-02 1E-02 2E-02 9E-03 2E-02 2E-02 4E-02 7E-02 2E-01 2E-01 5E-01 2E-01 4E-03 2E-03 9E-04 4E-04 2E-03 1E-03 -2E-03

1E-02 8E-03 2E-02 2E-02 3E-02 1E-02 3E-02 3E-02 6E-02 1E-01 2E-01 2E-01 2E-01 5E-01 6E-03 2E-03 1E-03 6E-04 3E-03 1E-03 -4E-03

4E-01 1E-01 2E-01 1E-01 1E-01 8E-02 1E-01 1E-01 8E-02 3E-02 1E-02 6E-03 4E-03 6E-03 7E-01 3E-01 2E-01 7E-02 4E-01 2E-01 -5E-01

1E-01 6E-02 8E-02 4E-02 5E-02 3E-02 4E-02 4E-02 3E-02 1E-02 6E-03 2E-03 2E-03 2E-03 3E-01 5E-01 2E-01 2E-02 2E-01 1E-01 -2E-01

8E-02 3E-02 4E-02 2E-02 3E-02 2E-02 2E-02 2E-02 2E-02 7E-03 3E-03 1E-03 9E-04 1E-03 2E-01 2E-01 5E-01 -9E-03 2E-01 2E-01 -2E-01

3E-02 1E-02 2E-02 9E-03 1E-02 7E-03 9E-03 1E-02 7E-03 3E-03 1E-03 6E-04 4E-04 6E-04 7E-02 2E-02 -9E-03 6E-01 -1E-01 -5E-02 5E-01

2E-01 8E-02 1E-01 5E-02 7E-02 4E-02 5E-02 5E-02 4E-02 2E-02 7E-03 3E-03 2E-03 3E-03 4E-01 2E-01 2E-01 -1E-01 1E+00 4E-01 -9E-01

9E-02 4E-02 5E-02 2E-02 3E-02 2E-02 2E-02 3E-02 2E-02 7E-03 3E-03 1E-03 1E-03 1E-03 2E-01 1E-01 2E-01 -5E-02 4E-01 5E-01 -4E-01

-2E-01 -9E-02 -1E-01 -6E-02 -8E-02 -5E-02 -6E-02 -6E-02 -5E-02 -2E-02 -9E-03 -4E-03 -2E-03 -4E-03 -5E-01 -2E-01 -2E-01 5E-01 -9E-01 -4E-01 1E+00 21x21

B

¯¹

Page 71: RED GEODÉSICA FAMARENA 2014

71

Figura 21. Calculo matricial ecuaciones de condición RED VERTICAL PRINCIPAL

Fuente: Los autores, 2015

Tramo Δ Nivel Unidad Tramo Δ Nivel Unidad

1 0.002 1 6.110 m 1 6.108 m

2 -0.001 2 11.977 m 2 11.978 m

3 -0.001 3 -5.870 m 3 -5.870 m

4 0.002 4 -15.872 m 4 -15.873 m

5 -0.001 5 10.003 m 5 10.004 m

6 0.000 6 6.497 m 6 6.496 m

7 0.001 7 5.483 m 7 5.482 m

8 -0.002 8 2.157 m 8 2.158 m

9 -0.003 9 -7.643 m 9 -7.640 m

10 -0.004 10 -8.633 m 10 -8.629 m

11 -0.003 11 -1.377 m 11 -1.374 m

12 -0.002 12 -17.554 m 12 -17.553 m

13 -0.004 13 11.052 m 13 11.056 m

14 -0.001 14 3.416 m 14 3.416 m

15 -0.002 15 -6.473 m 15 -6.471 m

16 -0.002 16 3.053 m 16 3.055 m

17 -0.001 17 -6.345 m 17 -6.344 m

18 -0.003 18 -9.402 m 18 -9.399 m

19 0.003 19 -21.145 m 19 -21.148 m

20 0.004 20 11.753 m 20 11.749 m

21 0.000 21 -5.716 m 21 -5.716 m

22 -0.004 22 6.029 m 22 6.033 m

23 -0.003 23 -20.511 m 23 -20.507 m

24 -0.002 24 14.472 m 24 14.474 m

25 0.001 25 -35.621 m 25 -35.622 m

26 0.002 26 -17.944 m 26 -17.946 m

27 -0.003 27 18.154 m 27 18.157 m

28 0.001 28 -36.103 m 28 -36.104 m

29 0.002 29 -29.993 m 29 -29.995 m

30 -0.001 30 -26.288 m 30 -26.287 m

31 -0.001 31 -8.131 m 31 -8.130 m

32 -0.003 32 -2.692 m 32 -2.689 m

33 -0.002 33 -10.821 m 33 -10.819 m

34 -0.004 34 0.537 m 34 0.540 m

35 0.009 35 -10.270 m 35 -10.279 m

36 -0.005 36 -40.280 m 36 -40.274 m

V (

MA

TRIZ

DE

ERR

OR

ES)

Datos En Campo Datos AJUSTADOS

POLIG. CIERRE (m) POLIG CIERRE (m)

A 0.003 A 0.0000

B -0.001 B 0.0000

C -0.002 C 0.0000

D -0.006 D 0.0000

E -0.003 E 0.0000

F -0.007 F 0.0000

G 0.003 G 0.0000

H 0.006 H 0.0000

I 0.005 I 0.0000

J -0.004 J 0.0000

K 0.010 K 0.0000

L -0.008 L 0.0000

M 0.010 M 0.0000

N -0.005 N 0.0000

O 0.000 O 0.0000

P -0.005 P 0.0000

Q 0.003 Q 0.0000

R -0.027 R 0.0000

S 0.025 S 0.0000

T 0.003 T 0.0000

POLIGONOS AJUSTADOSPOLIGONOS CRUDOS

Page 72: RED GEODÉSICA FAMARENA 2014

72

Figura 22. Calculo matricial ecuaciones de condición RED VERTICAL PRINCIPAL

Fuente: Los autores, 2015

Viv-05 TT-7 Vivero-1 TT-5 TT-3 V6 V6-F V6-A V2 GR2 NP60-UD.95 NP6-UD.95 CN3 GR1 GR3

1 2720.242 1

2 2726.112 2

3 2720.242 2726.112 3

4 2720.242 2736.115 4

5 2726.112 2736.115 5

6 2720.630 6

7 2726.112 2720.630 7

8 2726.112 2728.270 8

9 2720.630 2728.270 9

10 2726.112 2734.741 10

11 2736.115 2734.741 11

12 2731.686 12

13 2720.630 2731.686 13

14 2728.270 2731.686 14

15 2728.270 2734.741 15

16 2734.741 2731.686 16

17 2734.741 2741.085 17

18 2731.686 2741.085 18

19 2731.686 2752.834 19

20 2741.085 2752.834 20

21 2741.085 2752.834 2746.801 21

22 2752.834 2746.801 22

23 2746.801 2767.308 23

24 2767.308 24

25 2731.686 2767.308 25

26 2720.242 2702.295 26

27 2702.295 2684.138 27

28 2720.242 2684.138 28

29 2684.138 29

30 2702.295 2676.008 30

31 2684.138 2676.008 31

32 2676.008 32

33 2684.138 33

34 2673.859 34

35 2684.138 2673.859 35

36 2673.859 36

CO

TAS

AJU

STA

DA

S

Page 73: RED GEODÉSICA FAMARENA 2014

73

Finalmente se hizo un análisis comparativo de cada método y se concluyeron las

cotas finales para cada Vértice Geodésico.

Tabla 7. Comparación de las cotas ajustadas obtenidas para los nodos de RED VERTICAL

PRINCIPAL por lo métodos de ecuaciones paramétricas y de condición

Fuente: Los autores, 2015

Para obtener las cotas geométricas de los vértices intermedios nivelados como

cambios obligados en la RED VERTICAL FAMARENA 2014, se calcula por el

método tradicional de altimetría y ajusta por # de cambios y error acumulativo (Ver

Anexo 10).

Viv-05 2720.242 m

TT-7 2726.112 m

Vivero-1 2736.115 m

TT-5 2720.630 m

TT-3 2728.270 m

V6 2734.741 m

V6-F 2731.686 m

V6-A 2741.085 m

V2 2752.834 m

GR2 2746.801 m

NP60-UD.95 2767.308 m

NP6-UD.95 2702.295 m

CN3 2684.138 m

GR1 2676.008 m

GR3 2673.859 m

Viv-05 2720.242 m

TT-7 2726.112 m

Vivero-1 2736.115 m

TT-5 2720.630 m

TT-3 2728.270 m

V6 2734.741 m

V6-F 2731.686 m

V6-A 2741.085 m

V2 2752.834 m

GR2 2746.801 m

NP60-UD.95 2767.308 m

NP6-UD.95 2702.295 m

CN3 2684.138 m

GR1 2676.008 m

GR3 2673.859 m

SEDE VIVERO Y RECURSOS NATURALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

COTAS

AJUSTADAS (ECUACIONES

PARAMETRICAS)

COTAS

AJUSTADAS (ECUACIONES

CONDICION)

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO

AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL

COTAS FINALES

Page 74: RED GEODÉSICA FAMARENA 2014

74

5.3.2. Procesamiento de los archivos crudos de ocupación de la Red

FAMARENA 2014

Para el desarrollo del post-proceso de los datos crudos en formato RINEX colectados en las jornadas de ocupación de los vértices de la Red se empleó el Software Topcon Tools. Posteriormente, los resultados obtenidos como producto del postproceso se someten a transformación de coordenadas para la obtención de las mismas referidas a la época 1995,4. Para esto se emplea la versión 3.0 del programa MAGNA-SIRGAS. En general, para el desarrollo de los post-procesos en el software Topcon Tools se estableció la siguiente configuración para la obtención de coordenadas referidas al DATUM MAGNA SIRGAS. Figura 23: Configuración de sistema de coordenadas para postprocesos con Topcon Tools

Fuente: Software Topcon Tools, 2015

Page 75: RED GEODÉSICA FAMARENA 2014

75

Además de los datos crudos (en formato RINEX) obtenidos con los receptores

Topcon en las jornadas de posicionamiento correspondientes, se contó con la

información de las estaciones permanentes ABPW y BOGT correspondiente al día

GPS 263 (primera jornada de ocupación), y con la información de las estaciones

permanentes ABCC, ABPD, ABPW, BOGA y BOGT correspondiente al día GPS

333 (segunda jornada de ocupación), las coordenadas de estas actualizadas por

el Sirgas y datos de efemérides precisas obtenidos del sitio web de la agencia

estadounidense NASA.

Como coordenadas conocidas para las estaciones permanentes empleadas para el desarrollo de los post-procesos se consultaron las soluciones semanales actualizadas disponibles en el sitio web de la organización SIRGAS.

Figura 24: Sitio web para la obtención de las soluciones semanales actualizadas para las estaciones de rastreo permanente

Fuente: Los autores, 2015

POSTPROCESO DE DATOS EN DORMATO RINEX JORNADA DE OCUPACIÓN RED GEODESICA SECUNDARIA

Una vez obtenidos los archivos RINEX de las estaciones de rastreo permanente de ABPD y ABPW, además de los descargados de los quipos empleados como receptores instalados sobre los vértices geodésicos en campo se procedió a cargar los archivos en el software Topcon Tools para verificar la simultaneidad en tiempos de rastreo.

Page 76: RED GEODÉSICA FAMARENA 2014

76

Figura 25: Verificación de simultaneidad de tiempos de rastreo RED INTERNA

Fuente: Software Topcon Tools, 2015

Verificada la simultaneidad de tiempos se precedió a configurar el sistema de coordenadas de referencia al DATUM MAGNA SIRGAS, y a ejecutar el postproceso y ajuste de los archivos correspondientes a las bases GR_1 y PILASTRA_NATURA con respecto a los puntos de control dados por las estaciones ABPD y ABPW.

Figura 26: Vectores de postproceso de los vértices Base, RED INTERNA

Fuente: Software Topcon Tools, 2015

Page 77: RED GEODÉSICA FAMARENA 2014

77

Una vez realizado el postproceso y ajuste de coordenadas se obtuvo su respectivo reporte de ajuste dando cuenta de indicadores estadísticos como RMS (error medio cuadrático) que dan cuenta de la calidad de las coordenadas obtenidas para los vértices GR_1 y PILASTRA_NATURA (a menor RMS mayor calidad en el resultado obtenido). Tabla 8. Errores Medios Cuadráticos los vectores postprocesados y ajustados, puntos Base

Tabla 9. Coordenadas geocéntricas de los puntos de control y los puntos ajustados

Fuente: Fuente: Software Topcon Tools, 2015

Con las coordenadas ajustadas obtenidas para las bases GR_1 y PILASTRA_NATURA se procesaron y ajustaron las coordenas correspondientes a los puntos Rover instalados en los restantes vértices geodésicos ocupados durante la jornada

Figura 27: Verificación de simultaneidad de tiempos de rastreo RED INTERNA

Fuente: Fuente: Software Topcon Tools, 2015

Page 78: RED GEODÉSICA FAMARENA 2014

78

Figura 28: Vectores de postproceso de los vértices Rover, RED INTERNA

Fuente: Fuente: Software Topcon Tools, 2015

El software Topcon Tools genero los siguientes datos en su reporte:

Tabla 10. Coordenadas geocéntricas de los puntos de control y los puntos ajustados

Fuente: Fuente: Software Topcon Tools, 2015

Name X (m) Y (m) Z (m) Code

GR_1 1746326,86577 -6115979,63666 508402,88905

PILASTRA_NATURA 1746311,73020 -6116080,55152 508013,73599

Control Points

Name X (m) Y (m) Z (m) Code

CN−1 1746190,43180 -6116056,64648 508207,03926

CN−3 1746195,40254 -6116036,71270 508270,16453

FAMARENA−1 1746348,79428 -6116062,25925 508020,57526

GR−04 1746403,64777 -6116080,89270 507895,68659

NP_59_CD 1746248,42469 -6116074,83730 508008,54721

TT−1 1746278,09842 -6116068,95860 508025,42046

TT−2 1746265,11539 -6116074,75215 508002,97790

TT−9 1746199,16446 -6116073,72590 508120,33977

TT−12 1746210,12860 -6116032,18234 508287,17262

TT−14 1746288,36382 -6116035,63719 508293,36441

TT−16 1746231,31323 -6116066,50525 508221,67089

TT−18 1746228,78853 -6116069,00629 508070,46103

TT−20 1746222,84627 -6116037,89268 508274,08304

V−1 1746390,52789 -6116061,46105 508030,78490

V−6 1746356,99138 -6116062,29143 508044,51954

VIV−2 1746316,86856 -6116072,60429 507967,62766

VIV−05 1746248,86030 -6116070,61217 508132,94506

VIV−6 1746308,77924 -6116065,30976 508066,01174

VIVERO−3 1746330,66130 -6116070,38331 507967,99005

VIVERO−08 1746178,51764 -6116044,92566 508250,89888

Adjusted Points

Page 79: RED GEODÉSICA FAMARENA 2014

79

Tabla 11. Errores Medios Cuadráticos de los vectores postprocesados y ajustados, puntos Rover RED INTERNA

Fuente: Software Topcon Tools, 2015

Name dN (m) dE (m) dHt (m) Horz RMS (m) Vert RMS (m)

CN-1−CN-3 64,320 10,255 -12,693 0,002 0,002

CN-1−GR_1 198,079 152,288 -20,787 0,006 0,009

CN-1−GR_1 198,072 152,261 -20,761 0,002 0,002

CN-1−PILASTRA_NATURA -197,106 110,028 40,616 0,001 0,001

CN-1−TT-20 67,532 36,301 -3,730 0,001 0,001

CN-1−VIVERO-3 -242,506 131,249 31,946 0,073 0,113

CN-3−GR_1 133,749 142,022 -8,085 0,002 0,003

CN-3−GR_1 133,738 142,017 -8,098 0,004 0,006

CN-3−PILASTRA_NATURA -261,428 99,785 53,295 0,001 0,002

CN-3−TT-20 3,209 26,056 8,954 0,002 0,002

CN-3−VIVERO-3 -306,641 120,769 45,045 0,008 0,010

FAMARENA-1−GR_1 387,768 1,590 -54,528 0,003 0,006

FAMARENA-1−PILASTRA_NATURA -7,415 -40,649 6,838 0,003 0,005

FAMARENA-1−VIV-2 -52,846 -33,516 -3,101 0,005 0,008

FAMARENA-1−VIV-6 45,925 -39,291 -4,352 0,004 0,010

GR-04−GR_1 514,841 -46,021 -77,408 0,001 0,002

GR-04−NP_59_CD 116,329 -147,537 -39,222 0,002 0,004

GR-04−PILASTRA_NATURA 119,665 -88,253 -16,023 0,001 0,001

GR-04−V-1 136,381 -7,315 -11,329 0,009 0,015

GR-04−VIV-05 240,587 -145,958 -33,201 0,001 0,001

GR_1−NP_59_CD -398,523 -101,512 38,145 0,002 0,003

GR_1−PILASTRA_NATURA -395,177 -42,235 61,381 0,001 0,001

GR_1−TT-1 -381,919 -71,379 41,983 0,002 0,004

GR_1−TT-2 -404,428 -85,460 42,200 0,004 0,010

GR_1−TT-9 -285,961 -148,564 32,559 0,004 0,008

GR_1−TT-12 -116,778 -126,623 9,132 0,001 0,002

GR_1−TT-14 -112,601 -52,376 34,347 0,004 0,008

GR_1−TT-16 -185,155 -115,679 42,565 0,002 0,005

GR_1−TT-18 -335,946 -118,789 32,135 0,004 0,007

GR_1−TT-20 -130,539 -115,966 17,040 0,001 0,002

GR_1−V-6 -364,091 6,275 58,723 0,002 0,004

GR_1−VIV-2 -440,618 -35,114 51,472 0,003 0,005

GR_1−VIV-05 -274,254 -99,937 44,205 0,001 0,002

GR_1−VIV-6 -341,858 -40,897 50,130 0,005 0,010

GR_1−VIVERO-3 -440,392 -21,247 53,142 0,003 0,005

GR_1−VIVERO-08 -153,207 -160,501 9,787 0,001 0,002

NP_59_CD−PILASTRA_NATURA 3,336 59,278 23,225 0,002 0,005

NP_59_CD−V-1 20,052 140,263 27,842 0,005 0,010

NP_59_CD−VIV-05 124,258 1,577 6,035 0,001 0,002

PILASTRA_NATURA−TT-1 13,277 -29,144 -19,377 0,002 0,003

PILASTRA_NATURA−TT-2 -9,252 -43,225 -19,175 0,005 0,011

PILASTRA_NATURA−TT-9 109,197 -106,354 -28,799 0,010 0,007

PILASTRA_NATURA−TT-12 278,400 -84,386 -52,240 0,001 0,001

PILASTRA_NATURA−TT-14 282,582 -10,139 -27,022 0,003 0,006

PILASTRA_NATURA−TT-16 210,027 -73,443 -18,797 0,002 0,003

PILASTRA_NATURA−TT-18 59,233 -76,553 -29,228 0,003 0,005

PILASTRA_NATURA−TT-20 264,640 -73,731 -44,334 0,001 0,001

PILASTRA_NATURA−V-1 16,738 80,978 4,626 0,004 0,007

PILASTRA_NATURA−V-6 31,083 48,509 -2,657 0,002 0,004

PILASTRA_NATURA−VIV-2 -45,435 7,125 -9,892 0,002 0,004

PILASTRA_NATURA−VIV-05 120,922 -57,703 -17,173 0,001 0,001

PILASTRA_NATURA−VIV-6 53,322 1,343 -11,241 0,004 0,007

PILASTRA_NATURA−VIVERO-3 -45,210 20,988 -8,222 0,005 0,007

PILASTRA_NATURA−VIVERO-08 241,972 -118,266 -51,585 0,001 0,001

TT-1−TT-9 95,947 -77,174 -9,390 0,008 0,012

TT-1−TT-18 45,966 -47,407 -9,820 0,007 0,013

TT-1−V-6 17,805 77,666 16,723 0,004 0,006

TT-2−VIV-2 -36,202 50,188 9,317 0,015 0,035

TT-9−V-6 -78,139 154,821 26,179 0,005 0,008

TT-12−TT-14 4,183 74,248 25,217 0,003 0,006

TT-12−TT-16 -68,374 10,945 33,443 0,001 0,003

TT-12−VIVERO-08 -36,429 -33,880 0,654 0,001 0,001

TT-14−TT-16 -72,558 -63,304 8,244 0,004 0,008

TT-14−VIVERO-08 -40,609 -108,129 -24,566 0,003 0,006

TT-16−VIVERO-08 31,945 -44,824 -32,786 0,001 0,002

TT-18−V-6 -28,141 125,073 26,545 0,003 0,005

TT-20−VIVERO-3 -309,836 94,711 36,132 0,006 0,007

V-1−VIV-05 104,196 -138,674 -21,834 0,005 0,008

VIV-2−VIV-6 98,767 -5,779 -1,315 0,005 0,009

GPS Observation Residuals

Page 80: RED GEODÉSICA FAMARENA 2014

80

POSTPROCESO DE DATOS EN FORMATO RINEX JORNADA DE OCUPACIÓN RED GEODESICA PRINCIPAL

A los puntos escogidos como base: NP59_CD y NP6_UD_95 se les asignaron en el postproceso de la Red principal las coordenadas obtenidas en el postproceso de la RED SECUNDARIA puesto que se obtuvieron con bajos errores medios cuadráticos (RMS). Se configuro el software Topcon Tools con los parámetros del DATUM MAGNA SIRGAS, y al cargar los archivos RINEX se verifico la simultaneidad de tiempos de rastreo y se procedió al postproceso de los vectores de rastreo entre vértices para obtener sus coordenadas ajustadas.

Figura 29: Vectores de postproceso de los vértices, RED PRINCIPAL

Fuente: Software Topcon Tools, 2015

Page 81: RED GEODÉSICA FAMARENA 2014

81

Unas vez postprocesados y ajustados los archivos RINEX correspondientes a la ocupación de los vértices de la Red, el software Topcon Tools genero el correspondiente reporte de ajuste y de coordenadas ajustadas.

Tabla 12. Errores Medios Cuadráticos de los vectores postprocesados RED PRINCIPAL

Tabla 13. Coordenadas geocéntricas de los puntos de control y los puntos ajustados

Tabla 14. Errores Medios Cuadráticos de los vectores postprocesados RED PRINCIPAL

Tabla 15. Coordenadas geocéntricas de los puntos de control y los puntos ajustados

Fuente: Software Topcon Tools, 2015

Name dN (m) dE (m) dHt (m) Horz RMS (m) Vert RMS (m)

GR_1−GR_3 -268,445 -203,446 -2,152 0,001 0,002

GR_1−NP6_UD_95 -163,028 36,067 26,313 0,002 0,003

GR_1−NP59_CD -398,513 -101,514 38,087 0,001 0,002

GR_1−NP_6_E_1 -141,481 -193,032 -2,732 0,002 0,003

GR_3−NP6_UD_95 105,413 239,506 28,450 0,002 0,003

GR_3−NP59_CD -130,067 101,928 40,241 0,001 0,002

GR_3−NP_6_E_1 126,965 10,414 -0,578 0,002 0,003

NP6_UD_95−NP_6_E_1 21,546 -229,102 -29,052 0,003 0,005

NP59_CD−NP_6_E_1 257,048 -91,522 -40,795 0,002 0,004

GPS Observation Residuals

Name X (m) Y (m) Z (m) Code

NP6_UD_95 1746372,34296 -6116007,57138 508242,43135

NP59_CD 1746248,42455 -6116074,83755 508008,54466

Name X (m) Y (m) Z (m) Code

GR_1 1746326,87888 -6115979,70193 508402,89426

GR_3 1746136,48881 -6116054,22842 508135,03103

NP_6_E_1 1746143,55306 -6116041,02261 508261,59604

Control Points

Adjusted Points

Name dN (m) dE (m) dHt (m) Horz RMS (m) Vert RMS (m)

GR_2−NP59_CD -54,260 -196,469 -32,660 0,004 0,006

GR_2−NP60_UD-95 -195,510 -12,565 20,387 0,004 0,007

NP59_CD−NP60_UD-95 -141,240 183,889 53,069 0,004 0,006

GPS Observation Residuals

Name X (m) Y (m) Z (m) Code

NP59_CD 1746248,42455 -6116074,83755 508008,54466

Name X (m) Y (m) Z (m) Code

GR_2 1746445,16666 -6116047,99999 508065,27222

NP60_UD−95 1746442,95654 -6116086,07292 507871,94251

Control Points

Adjusted Points

Page 82: RED GEODÉSICA FAMARENA 2014

82

Con las coordenadas geocéntricas ajustadas se procedió a aplicar la corrección por velocidades para obtener las coordenadas referidas a la época 1995.4 a la cual está referida la cartografía oficial de Colombia. Los valores de corrección por velocidades para las coordenadas geocéntricas por año se determinaron con el software MAGNA SIRGAS versión 3.0 y se multiplicaron por el factor dado por la diferencia de épocas entre la época del día del correspondiente posicionamiento y la época 1995.4.

Figura 30: Interfaz del software MAGNA SIRGAS versión 3.0 para la determinación de la corrección en coordenadas geocéntricas de un punto para la transformación de

coordenadas de la época del posicionamiento a la época 1995,4

Fuente: Los autores

Las correcciones por velocidades se restaron de las coordenadas geocéntricas de los vértices, con lo cual se obtuvieron sus coordenadas geocéntricas referidas al DATUM MAGNA época 1995.4, las cuales posteriormente se transformaron en el software MAGANA SIRGAS a Geográficas, Planas Cartesianas de Bogotá y Planas Cartesianas Origen Vivero_2014 DATUM MAGNA (Ver Anexo 12).

Page 83: RED GEODÉSICA FAMARENA 2014

83

Figura 31: Interfaz del software MAGNA SIRGAS versión 3.0 para la transformación de archivos de coordenadas

Fuente: Los autores, 2015

Page 84: RED GEODÉSICA FAMARENA 2014

84

6 RESULTADOS.

6.1 RESULTADO DEL POST-PROCESO DE ARCHIVOS CRUDOS DE OCUPACIÓN DE LA RED GEODÉSICA FAMARENA 2014 Y AJUSTE MATRICIAL POR EL MÉTODO DE LOS MINIMOS CUADRADOS DE LA RED GEODESICA FAMARENA 2014

Como resultado final se presenta el catálogo de coordenadas obtenidas para los vértices que conforman la RED GEODESICA FAMARENA 2014. Las coordenadas se presentan referidas al DATUM MAGNA Época 1995.4 en los sistemas de coordenadas Geográficas, Geocéntricas y planas cartesianas Origen Vivero_2014 (ver anexo). También se presenta en el catálogo de coordenas referidas al sistema de coordenadas planas Vivero_2014 la cota geométrica obtenida para cada vértice de la Red.

Page 85: RED GEODÉSICA FAMARENA 2014

85

6.1.1 Coordenadas Geográficas de la RED GEODESICA FAMARENA 2014

Tabla 16. Coordenadas Geográficas RED FAMARENA 2014

Fuente: Los autores, 2015

NOMBRE DETERMINACION LATITUD LONGITUD RMS H H ELIPSOIDAL (m) RMS V NIVELACION

CN 1 GPS 4°35'56.15534"N 74°3'55.68716"W 0.003 2720.639 0.004 GPS

CN 3 GPS 4°35'58.24935"N 74°3'55.35468"W 0.003 2707.955 0.004 GPS

FAMARENA 1 GPS 4°35'49.97961"N 74°3'50.79891"W 0.005 2754.410 0.010 GPS

GR 1 GPS 4°36'2.60351"N 74°3'50.74705"W 0.002 2699.871 0.006 GPS

GR 2 GPS 4°35'51.39625"N 74°3'47.66679"W 0.006 2770.701 0.009 GPS

GR 3 GPS 4°35'53.86442"N 74°3'57.34774"W 0.006 2697.787 0.008 GPS

GR 04 GPS 4°35'45.84268"N 74°3'49.25435"W 0.003 2777.273 0.004 GPS

NP59 CD GPS 4°35'49.62979"N 74°3'54.04071"W 0.003 2738.033 0.005 GPS

NP6E 1 GPS 4°35'57.99783"N 74°3'57.00988"W 0.007 2697.210 0.011 GPS

NP6UD 95 GPS 4°35'57.29622"N 74°3'49.57766"W 0.003 2726.223 0.003 GPS

NP60UD 95 GPS 4°35'45.03146"N 74°3'48.07472"W 0.006 2791.094 0.009 GPS

PILASTRA NATURA GPS 4°35'49.73844"N 74°3'52.11754"W 0.002 2761.251 0.006 GPS

TT 1 - A GPS 4°35'50.18059"N 74°3'52.99441"W 0.004 2741.421 0.005 GPS

TT 2 GPS 4°35'49.43741"N 74°3'53.51949"W 0.009 2742.073 0.020 GPS

TT 9 GPS 4°35'53.29401"N 74°3'55.5669"W 0.007 2732.449 0.010 GPS

TT 12 GPS 4°35'58.80185"N 74°3'54.85514"W 0.003 2709.007 0.004 GPS

TT 14 GPS 4°35'58.93797"N 74°3'52.44628"W 0.004 2734.225 0.008 GPS

TT 16 GPS 4°35'56.57591"N 74°3'54.50012"W 0.003 2742.450 0.005 GPS

TT 18 GPS 4°35'51.66674"N 74°3'54.60111"W 0.005 2732.033 0.009 GPS

TT 20 GPS 4°35'58.35383"N 74°3'54.5094"W 0.002 2716.911 0.004 GPS

V 1 GPS 4°35'50.28289"N 74°3'49.49044"W 0.006 2765.885 0.011 GPS

V 6 GPS 4°35'50.75033"N 74°3'50.54359"W 0.004 2758.603 0.006 GPS

VIV 2 GPS 4°35'48.2591"N 74°3'51.88656"W 0.005 2751.344 0.008 GPS

VIV 5 GPS 4°35'53.6751"N 74°3'53.98951"W 0.002 2744.074 0.004 GPS

VIV 6 GPS 4°35'51.47441"N 74°3'52.07386"W 0.007 2750.024 0.012 GPS

VIVERO 3 GPS 4°35'48.26655"N 74°3'51.43668"W 0.007 2753.019 0.009 GPS

VIVERO 8 GPS 4°35'57.61593"N 74°3'55.95433"W 0.002 2709.662 0.004 GPS

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDASFACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

GEODESICO VALIDEZ ABRIL 2019 DATUM MAGNA: (GRS80 EPOCA 1995.4)

RED GEODESICA FAMARENA 2014 / CATALOGO DE COORDENADAS GEOGRAFICAS RED PRINCIPAL Y PARES TOPOGRAFICOS

Coordenadas referidas al Datum MAGNA (ÉPOCA 1995.4 - Elipsoide GRS80)

FAMARENA 2014 PROYECTO TECNOLOGIA EN TOPOGRAFIA

JUAN DAVID GUASCA GIL

JAIRO ALONSO SEGURA

Abril de 2015 SEBASTIAN CASTILLO VIVAS

Page 86: RED GEODÉSICA FAMARENA 2014

86

6.1.2 Coordenadas Geocéntricas de la RED GEODESICA FAMARENA

2014

Tabla 17. Coordenadas Geocéntricas RED FAMARENA 2014

Fuente: Los autores, 2015

NOMBRE DETERMINACION X(m) Y(m) RMS H Z (m) RMS V NIVELACION

CN 1 GPS 1746190.418 -6116056.672 0.003 508206.783 0.004 GPS

CN 3 GPS 1746195.389 -6116036.738 0.003 508269.909 0.004 GPS

FAMARENA 1 GPS 1746348.781 -6116062.285 0.005 508020.319 0.010 GPS

GR 1 GPS 1746326.852 -6115979.662 0.002 508402.633 0.006 GPS

GR 2 GPS 1746445.153 -6116048.025 0.006 508065.019 0.009 GPS

GR 3 GPS 1746136.475 -6116054.254 0.006 508134.778 0.008 GPS

GR 04 GPS 1746403.634 -6116080.918 0.003 507895.431 0.004 GPS

NP59 CD GPS 1746248.411 -6116074.863 0.003 508008.291 0.005 GPS

NP6E 1 GPS 1746143.540 -6116041.048 0.007 508261.343 0.011 GPS

NP6UD 95 GPS 1746372.329 -6116007.597 0.003 507871.689 0.003 GPS

NP60UD 95 GPS 1746442.943 -6116086.098 0.006 508242.178 0.009 GPS

PILASTRA NATURA GPS 1746311.717 -6116080.577 0.002 508013.480 0.006 GPS

TT 1 - A GPS 1746279.990 -6116067.947 0.004 508025.435 0.005 GPS

TT 2 GPS 1746265.102 -6116074.778 0.009 508002.722 0.020 GPS

TT 9 GPS 1746199.151 -6116073.751 0.007 508120.084 0.010 GPS

TT 12 GPS 1746210.115 -6116032.208 0.003 508286.917 0.004 GPS

TT 14 GPS 1746288.350 -6116035.663 0.004 508293.109 0.008 GPS

TT 16 GPS 1746231.300 -6116066.531 0.003 508221.415 0.005 GPS

TT 18 GPS 1746228.775 -6116069.032 0.005 508070.205 0.009 GPS

TT 20 GPS 1746222.833 -6116037.918 0.002 508273.827 0.004 GPS

V 1 GPS 1746390.514 -6116061.486 0.006 508030.529 0.011 GPS

V 6 GPS 1746356.978 -6116062.317 0.004 508044.264 0.006 GPS

VIV 2 GPS 1746316.855 -6116072.630 0.005 507967.372 0.008 GPS

VIV 5 GPS 1746248.847 -6116070.638 0.002 508132.689 0.004 GPS

VIV 6 GPS 1746308.766 -6116065.335 0.007 508065.756 0.012 GPS

VIVERO 3 GPS 1746330.648 -6116070.409 0.007 507967.734 0.009 GPS

VIVERO 8 GPS 1746178.504 -6116044.951 0.002 508250.643 0.004 GPS

GEODESICO VALIDEZ ABRIL 2019 DATUM MAGNA: (GRS80 EPOCA 1995.4)

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDASFACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE

LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

RED GEODESICA VIVERO2014 / CATALOGO DE COORDENADAS GEOCENTRICAS RED PRINCIPAL Y PARES TOPOGRAFICOS

Coordenadas referidas al Datum MAGNA (ÉPOCA 1995.4 - Elipsoide GRS80)

FAMARENA 2014 PROYECTO TECNOLOGIA EN TOPOGRAFIA

JUAN DAVID GUASCA GIL

JAIRO ALONSO SEGURA

Abril de 2015 SEBASTIAN CASTILLO VIVAS

Page 87: RED GEODÉSICA FAMARENA 2014

87

6.1.3 Coordenadas referidas al plano de proyección local Vivero_2014 y

cotas geométricas ajustadas de la RED GEODESICA FAMARENA 2014

Tabla 18. Coordenadas Planas Origen Vivero_2014 RED FAMARENA 2014

Fuente: Los autores, 2015

NOMBRE DETERMINACION NORTE ESTE RMS H ALTURA(m.s.n.m.) NIVELACION

CN 1 GPS 1000302.122 1001335.885 0.003 2696.775 GEOMETRICA

CN 3 GPS 1000366.471 1001346.137 0.003 2684.138 GEOMETRICA

FAMARENA 1 GPS 1000112.339 1001486.621 0.005 2730.581 GEOMETRICA

GR 1 GPS 1000500.276 1001488.220 0.002 2676.008 GEOMETRICA

GR 2 GPS 1000155.873 1001583.204 0.006 2746.801 GEOMETRICA

GR 3 GPS 1000231.721 1001284.678 0.006 2673.861 GEOMETRICA

GR 04 GPS 999985.210 1001534.250 0.003 2753.450 GEOMETRICA

NP59 CD GPS 1000101.589 1001386.655 0.003 2714.134 GEOMETRICA

NP6E 1 GPS 1000358.742 1001295.097 0.007 2673.319 GEOMETRICA

NP6UD 95 GPS 1000337.181 1001524.280 0.003 2702.295 GEOMETRICA

NP60UD 95 GPS 999960.281 1001570.626 0.006 2767.308 GEOMETRICA

PILASTRA NATURA GPS 1000104.928 1001445.959 0.002 2758.603 GPS-ELIPSOIDAL

TT 1 -A GPS 1000118.516 1001418.919 0.004 2741.421 GPS-ELIPSOIDAL

TT 2 GPS 1000095.677 1001402.728 0.009 2718.325 GEOMETRICA

TT 9 GPS 1000214.192 1001339.593 0.007 2708.588 GEOMETRICA

TT 12 GPS 1000383.450 1001361.541 0.003 2685.183 GEOMETRICA

TT 14 GPS 1000387.633 1001435.822 0.004 2710.380 GEOMETRICA

TT 16 GPS 1000315.046 1001372.489 0.003 2718.592 GEOMETRICA

TT 18 GPS 1000164.186 1001369.374 0.005 2708.177 GEOMETRICA

TT 20 GPS 1000369.682 1001372.203 0.002 2693.091 GEOMETRICA

V 1 GPS 1000121.659 1001526.970 0.006 2719.847 GEOMETRICA

V 6 GPS 1000136.024 1001494.494 0.004 2734.741 GEOMETRICA

VIV 2 GPS 1000059.468 1001453.082 0.005 2727.505 GEOMETRICA

VIV 5 GPS 1000225.903 1001388.234 0.002 2720.242 GEOMETRICA

VIV 6 GPS 1000158.275 1001447.306 0.007 2726.185 GEOMETRICA

VIVERO 3 GPS 1000059.696 1001466.954 0.007 2729.153 GEOMETRICA

VIVERO 8 GPS 1000347.006 1001327.646 0.002 2685.829 GEOMETRICA

GEODESICO VALIDEZ ABRIL 2019 DATUM MAGNA: (GRS80 EPOCA 1995.4)

PROYECTO

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDASFACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES

ACTUALIZACIÓN DE LA RED GEODESICA DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE

LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

RED GEODESICA FAMARENA 2014 / CATALOGO DE COORDENADAS CARTESIANAS RED PRINCIPAL Y PARES TOPOGRAFICOSCoordenadas referidas al sistema de Coordenadas Planas Cartesianas Origen Vivero_2014 Datum MAGNA ( Época 1995.4 - Elipsoide GRS80 ) Origen 4º35'53"

N y 74º03'53"W Falso N:1000205.157m y Falso E: 1001418.747m Plano de Proyección 2.740 m.s.n.m.

JUAN DAVID GUASCA GIL

JAIRO ALONSO SEGURA

SEBASTIAN CASTILLO VIVASAbril de 2015

FAMARENA 2014

Page 88: RED GEODÉSICA FAMARENA 2014

88

6.2 ANALISIS DE RESULTADOS

6.2.1 Comparación de las coordenadas vigentes para los vértices

Geodésicos de la facultad con las coordenadas obtenidas mediante la ejecución del proyecto de actualización

En las siguientes tablas se aprecian las variaciones en las coordenadas Norte y Este para los vértices de la Facultad. Se hace la comparación entre las coordenadas vigentes a la fecha para los vértices (Ver Anexo 15) y las coordenadas obtenidas mediante el desarrollo del proyecto de actualización. Las coordenadas están referidas al sistema de coordenadas Planas Cartesianas de Bogotá, Datum MAGNA, Época 1995.4 – Elipsoide GRS80, Origen 4º40'49.75" N y 74º08'47.30"W N: 109320,965m y E: 92334,879m Plano de Proyección 2,550m msnm.

Tabla 19. Coordenadas Vigentes para los vértices

Fuente: Los autores, 2015

N E

NP59_CD GPS 100098.815 101390.983

NP6-E 1 GPS 100355.861 101299.381

PILASTRA_NATURA GPS 100102.152 101450.253

VIV-2 GPS 100056.708 101457.368

VIVERO 8 GPS 100344.422 101332.028

TT2 TOPOGRAFIA 100092.957 101407.042

VIVERO 3 TOPOGRAFIA 100056.929 101471.344

VIV 05 TOPOGRAFIA 100223.109 101392.561

CN1 TOPOGRAFIA 100299.304 101340.197

CN3 TOPOGRAFIA 100363.753 101350.431

V1 TOPOGRAFIA 100118.650 101531.780

V6 TOPOGRAFIA 100133.290 101498.871

COORDENADAS

COORDENADAS VIGENTES

DETERMINACIÓN VERTICE

Page 89: RED GEODÉSICA FAMARENA 2014

89

Tabla 20. Coordenadas Actualizadas para los vértices

Fuente: Los autores, 2015

Tabla 21. Variaciones en coordenadas Este y Norte

Fuente: Los autores, 2015

Las variaciones en las coordenas de los vértices se atribuyen a factores como la diferencia en los métodos de determinación de las coordenadas vigentes pues algunas se han determinado con técnicas de navegación satelital y la mayoría

N E

NP_59_CD GPS 100098.949 101390.961

NP_6_E_1 GPS 100356.084 101299.375

PILASTRA_NATURA GPS 100102.295 101450.262

VIV-2 GPS 100056.836 101457.39

VIVERO 8 GPS 100344.352 101331.925

TT2 GPS 100093.039 101407.034

VIVERO 3 GPS 100057.067 101471.262

VIV 05 GPS 100223.26 101392.525

CN1 GPS 100299.47 101340.169

CN3 GPS 100363.819 101350.414

V1 GPS 100119.035 101531.269

V6 GPS 100133.395 101498.792

COORDENADAS

COORDENADAS ACTUALIZADAS

VERTICE DETERMINACIÓN

N E

NP_59_CD GPS -0.134 0.022

NP_6_E_1 GPS -0.223 0.006

PILASTRA_NATURA GPS -0.143 -0.009

VIV-2 GPS -0.128 -0.022

VIVERO 8 GPS 0.07 0.103

TT2 GPS -0.082 0.008

VIVERO 3 GPS -0.138 0.082

VIV 05 GPS -0.151 0.036

CN1 GPS -0.166 0.028

CN3 GPS -0.0664 0.017

V1 GPS -0.385 0.511

V6 GPS -0.105 0.079

VARIACIONES (m)VERTICE DETERMINACIÓN

VARIACIONES EN COORDENADAS

Page 90: RED GEODÉSICA FAMARENA 2014

90

mediante técnicas topográficas. Además se han presentado densificaciones en el catalogo vigente para periodos de tiempo de más de un año. Otro factor que ha influido en la determinación de coordenadas para vértices de la facultad mediante técnicas topográficas es el de la variación en altura del plano medio de proyección de coordenadas del Origen Cartesiano de Bogotá, que tiene un nivel medio de 2550 msnm y el plano medio de 2740 msnm al cual se encuentra el terreno de la Facultad del Medio Ambiente. La diferencia de altura entre el plano de proyección cartesiano Origen Bogotá y la altura media de los puntos de terreno de la Facultad de Medio Ambiente es de 190 m. A la luz de las medidas adoptadas en Chile para el desarrollo de proyectos de Ingeniería, el arrastre de coordenadas por métodos topográficos estaría en tolerancia de 1:40.000 o mejor, en tanto la altura del terreno no discrepe en más de 150 metros respecto al plano de proyección local al cual se refieran las coordenadas51, es decir, que el arrastre de coordenadas referidas al plano de proyección Origen Bogotá por métodos topográficos tendría aplicación entre los 2400 y 2700 m de altura, para precisión mejor o igual a 0.025 m/km. El nivel de precisión de las poligonales ejecutadas para la conformación de una Red topográfica empleada para asignar coordenadas a vértices que servirán de amarre para la generación de información espacial de calidad debe ser por lo menos del orden de 1:40.000. Las poligonales ejecutadas para tal fin en la Facultad del Medio Ambiente proyectadas en el sistema de coordenadas Cartesiano de Bogotá no alcanzaran la precisión del orden 1:40.000 puesto que la altura media de los puntos del terreno de la Facultad esta fuera del rango de variación en altura que garantizaría esa precisión o una mejor, por tanto los trabajos topográficos tendientes a la densificación de la Red geodésica de la Facultad deben referirse a un plano de proyección Local cuyo nivel medio en altura ofrezca diferencias de nivel inferiores a 150 m respecto a la altura media del terreno de la Facultad.

51 Zepeda René et al, 2010

Page 91: RED GEODÉSICA FAMARENA 2014

91

6.2.2 Propuesta para la adopción de un plano topográfico de proyección local para la Facultad de Medio Ambiente: Sistema Local de Proyección Vivero_2014

Se propone adoptar para la ejecución de trabajos topográficos en la Facultad de Medio Ambiente un sistema local de proyección referido a un plano cuya altura coincida con la altura media del terreno de la Facultad. El sistema de proyección ha sido creado con el nombre Vivero_2014 empleando el Software del Instituto Geográfico Agustín Codazzi Magna Sirgas Pro 3 Beta. El sistema de proyección cuenta con los siguientes parámetros: COORDENADAS ELIPSOIDALES Latitud: 4°35'53" N Longitud: 74°3'53" W A este origen se le han asignado las siguientes coordenadas planas cartesianas Norte: 1000205.157 m Este: 1001418.747 m Altura Plano de Proyección: 2740 m.s.n.m Valido para diferencias de alturas menores a 150 m.

Figura 32. Localización del origen Vivero_ 2014. Escala aprox. 1:1000

Fuente: Software Google earth, 2015

Page 92: RED GEODÉSICA FAMARENA 2014

92

Figura 33. Creación del origen vivero_2014 en el software Magna Sirgas Pro 3 Beta

Fuente: Los autores, 2015

Figura 34. Creación exitosa del origen vivero_2014

Fuente: Los autores, 2015

Page 93: RED GEODÉSICA FAMARENA 2014

93

6.2.3 Comparación de distancias entre vértices de la RED FAMARENA 2014 en sistemas de coordenadas planas cartesianas de Bogotá y Planas cartesianas Vivero_2014

A continuación se presentan las tablas de coordenadas correspondientes a los vértices geodésicos que determinan la Red principal de la RED GEODESICA FAMARENA 2014 referidas a los sistemas de coordenadas planas cartesianas Origen Vivero_2014 y Origen Bogotá Datum Magna Época 1995.4

Figura 35. Coordenadas de vértices

Fuente: Los autores, 2015

Figura 36. Distancias evaluadas. Escala aprox. 1:1000

Fuente: Software Google earth, 2015

Page 94: RED GEODÉSICA FAMARENA 2014

94

Con las distancias obtenidas calculadas por coordenadas entre las posibles parejas de puntos se obtienen las siguientes matrices de distancias:

Tabla 22. Distancias entre parejas de puntos Plano de proyección Origen Bogotá

Fuente: Los autores, 2015

Tabla 23. Distancias entre parejas de puntos Plano de proyección Origen Vivero_2014

Fuente: Los autores, 2015

VERTICE GR_1 NP_6_E_1 GR_3 NP6_UD_95 NP59_CD NP60_UD-95 GR_2

GR_1 0.000 239.423 336.962 167.032 411.409 546.235 357.254

NP_6_E_1 239.423 0.000 127.444 230.189 272.959 484.433 352.357

GR_3 336.962 127.444 0.000 261.777 165.324 394.255 308.003

NP6_UD_95 167.032 230.189 261.777 0.000 272.837 379.729 190.637

NP59_CD 411.409 272.959 165.324 272.837 0.000 231.971 203.902

NP60_UD-95 546.235 484.433 394.255 379.729 231.971 0.000 195.992

GR_2 357.254 352.357 308.003 190.637 203.902 195.992 0.000

MATIRZ DE DISTANCIAS COORDENADAS PLANAS CARTESIANAS BOGOTÁ (m)

VERTICE GR_1 NP_6_E_1 GR_3 NP6_UD_95 NP59_CD NP60_UD-95 GR_2

GR_1 0.000 239.431 336.971 167.037 411.420 546.250 357.265

NP_6_E_1 239.431 0.000 127.448 230.197 272.966 484.447 352.367

GR_3 336.971 127.448 0.000 261.785 165.329 394.267 308.012

NP6_UD_95 167.037 230.197 261.785 0.000 272.844 379.739 190.643

NP59_CD 411.420 272.966 165.329 272.844 0.000 231.978 203.907

NP60_UD-95 546.250 484.447 394.267 379.739 231.978 0.000 195.996

GR_2 357.265 352.367 308.012 190.643 203.907 195.996 0.000

MATIRZ DE DISTANCIAS COORDENADAS PLANAS ORIGEN VIVERO (m)

Page 95: RED GEODÉSICA FAMARENA 2014

95

Se verifican las variaciones en distancia en la siguiente Matriz:

Tabla 24. Variaciones de distancias

Fuente: Los autores, 2015

Es posible apreciar una mayor variación en las distancias obtenidas al proyectar las coordenadas en los planos de proyección Origen Bogotá y Origen Vivero_2014 para las parejas de vértices que cuentan con mayores diferencias de nivel.

Las distancias obtenidas en el plano de proyección Vivero_2014 corresponden más con las medidas reales en terreno debido a que el plano de proyección de 2740 msnm que lo define ofrece menos variaciones de nivel con el terreno de la Facultad del Medio Ambiente.

VERTICE GR_1 NP_6_E_1 GR_3 NP6_UD_95 NP59_CD NP60_UD-95 GR_2

GR_1 0.000 -0.007 -0.010 -0.005 -0.011 -0.015 -0.010

NP_6_E_1 -0.007 0.000 -0.003 -0.008 -0.007 -0.013 -0.010

GR_3 -0.010 -0.003 0.000 -0.008 -0.005 -0.012 -0.009

NP6_UD_95 -0.005 -0.008 -0.008 0.000 -0.007 -0.010 -0.005

NP59_CD -0.011 -0.007 -0.005 -0.007 0.000 -0.007 -0.005

NP60_UD-95 -0.015 -0.013 -0.012 -0.010 -0.007 0.000 -0.004

GR_2 -0.010 -0.010 -0.009 -0.005 -0.005 -0.004 0.000

MATRIZ DE DIFERENCIAS EN DISTANCIA (m)

Page 96: RED GEODÉSICA FAMARENA 2014

96

CONCLUSIONES.

1. A factores como la diferencia en métodos para la obtención de las

coordenadas vigentes de los vértices geodésicos de la Facultad y el tiempo

transcurrido entre jornadas posteriores de densificación de la Red vigente

por métodos topográficos, se suma otro importante factor: La inadecuada

proyección al plano de proyección Origen Bogotá, dado que las

deformaciones de las distancias reales en el terreno de la facultad, debidas

principalmente a la diferencia de nivel media de 190 m entre el terreno de la

Facultad y el plano de proyección Bogotá, constituyen una significativa

fuente de degradación de la precisión de cualquier poligonal empleada

para el arrastre de coordenadas en el terreno de la Facultad.

2. Las futuras jornadas de densificación de la RED GEODESICA FAMARENA

2014 por métodos topográficos (que se deben comenzar a efectuar) deben

contemplar el empleo de las coordenadas referidas al plano local de

proyección Origen Vivero_2014 para garantizar la ejecución de la

densificación de la RED por medio de poligonales con precisiones de mejor

orden a las dadas por la precisión 1:40000.

3. Con la divulgación del catálogo de coordenadas actualizadas como

desarrollo del presente trabajo, también se debe divulgar el empleo de las

coordenadas Origen Vivero_2014 para la ejecución de proyectos en la

Facultad del Medio Ambiente que impliquen la generación de información

espacial de calidad.

4. Los métodos matriciales de ajuste por mínimos cuadrados aplicados al

ajuste de Redes de Nivelación ofrecen una distribución uniforme de los

errores cometidos en los procesos de medición, aportando una mejor

calidad a los resultados obtenidos. El hecho de que dos métodos

matriciales diferentes: Ajuste por ecuaciones paramétricas y ajuste por

Page 97: RED GEODÉSICA FAMARENA 2014

97

ecuaciones de condición hayan ofrecido como resultado los mismos valores

para las cotas de los vértices geodésicos de la RED FAMARENA 2014

genera un mayor grado de confianza en los resultados obtenidos.

Page 98: RED GEODÉSICA FAMARENA 2014

98

RECOMENDACIONES.

1. Se sugiere visitas periódicas para el chequeo del Estado de cada uno de

los vértices de la RED GEODÉSICA FAMARENA 2014 del lote b de la

Facultad de Medio Ambiente y Recursos Naturales de la Universidad

Distrital Francisco José de Caldas ya que el terreno puede presentar

movimiento esto generando el posible desplazamiento de los vértices.

2. Se invita a los profesores que dictan Planimetría a que a sus estudiantes de

primer semestre conozcan cada uno de los vértices de la red (FAMARENA

2014) esto con el fin de la utilización plena de todos los vértices ya que esto

ayudara en sus prácticas.

3. se sugiere un mantenimiento constante de cada uno de los vértices ya que

algunos de ellos por su poca utilización se llenan de pasto y maleza con lo

cual no se pueden visualizar óptimamente.

Page 99: RED GEODÉSICA FAMARENA 2014

99

BIBLIOGRAFÍA.

ADOPCIÓN DE LA PROYECCIÓN LOCAL TRANSVERSAL DE MERCATOR

(LTM) EN CHILE. Zepeda R., Ortiz Diego. 2010. Disponible en:

http://mundogeo.com/blog/2000/01/01/adopcion-de-la-proyeccion-local-

transversal-de-mercator-ltm-en-chile/

ASPECTOS PRÁCTICOS DE LA ADOPCIÓN DEL MARCO GEOCÉNTRICO

NACIONAL DE REFERENCIA MAGNA-SIRGAS COMO DATUM OFICIAL DE

COLOMBIA. Octubre, 2004. Disponible en:

http://geoplanes.wikispaces.com/file/view/aspectos+practicos+adopcion+MAGNA_

SIRGAS+en+Colombia.pdf

GEODESIA BASICA PARA TOPOGRAFOS, Gustavo Nieto Villalobos 2008.

Disponible en: Universidad Nacional de Colombia (biblioteca ciencia y tecnología)

GPS Basics, Introducción al Sistema GPS (Sistema de Posicionamiento Global).

Leica Geosystems AG. 1999. Disponible en: http://es.slideshare.net/senarap/gps-

basics-es

GPS Posicionamiento Satelital. Huerta E., Mangiaterra A., Noguera G. 2005.

Disponible en: http://www.fceia.unr.edu.ar/gps/GGSR/libro_gps.pdf

Manual de NORMAS TÉCNICAS de Mensuras. MINISTERIO DE BIENES

NACIONALES, División del Catastro Nacional de los Bienes del Estado. Marzo,

2010. Disponible en: http://www.bienesnacionales.cl/wp-

content/uploads/2011/05/Norma_Tecnica_MBN_2010.pdf

METODOLOGIA CALCULO DE REDES TOPOGRAFICAS. 2013. Abellán María.

UNIVERSIDAD POLITECNICA DE CARTAGENA

METODOS TOPOGRAFICOS, Chueca Pazos Manuel.

Disponible en: Universidad Nacional de Colombia (biblioteca ciencia y tecnología)

MICROGEODESIA Y REDES LOCALES. Berné J., Ánquela A., Baselga S. 2002.

Disponible en:

www.upv.es/.../MICROGEODESIA%20Y%20REDES%20LOCALES%2

SISTEMA GNSS (GLOBAL NAVIGATION SATELLITE SYSTEM). GARCÍA D.

2008. DISPONIBLE en:

http://arantxa.ii.uam.es/~jms/pfcsteleco/lecturas/20080125DavidGarcia.pdf

Page 100: RED GEODÉSICA FAMARENA 2014

100

ANEXOS.

Page 101: RED GEODÉSICA FAMARENA 2014

101

ANEXO 1. Fotografía del receptor GPS Topcon Hiper Lite+

Page 102: RED GEODÉSICA FAMARENA 2014

102

Fuente: Archivo fotográfico catalogo web. Disponible en:

http://www.wadecompany.ca/old%20website/products/GPS.htm

Page 103: RED GEODÉSICA FAMARENA 2014

103

ANEXO 2. Fotografía del nivel digital Topcon DL-102C

Page 104: RED GEODÉSICA FAMARENA 2014

104

NIVEL DIGITAL TOPCON DL-120C

Fuente: Archivo fotográfico catalogo web. Disponible en:

http://www.directindustry.es/prod/topcon-europe-positioning/niveles-digitales-23468-

422560.html

Page 105: RED GEODÉSICA FAMARENA 2014

105

ANEXO 3. Formatos de Inspección de estado físico de los vértices Geodésicos de

la RED FAMARENA 2014

Page 106: RED GEODÉSICA FAMARENA 2014

106

ANEXO 4. Plano general Red Geodésica Principal FAMARENA 2014

Page 107: RED GEODÉSICA FAMARENA 2014

107

ANEXO 5. Plano general red Geodésica secundaria FAMARENA 2014

Page 108: RED GEODÉSICA FAMARENA 2014

108

ANEXO 6. Formatos de ocupación jornada de trabajo en campo Septiembre 20

Page 109: RED GEODÉSICA FAMARENA 2014

109

ANEXO 7. Formatos de ocupación jornada de trabajo en campo Noviembre 29

Page 110: RED GEODÉSICA FAMARENA 2014

110

ANEXO 8. Esquemas de la Red de Nivelación FAMARENA 2014

Page 111: RED GEODÉSICA FAMARENA 2014

111

ANEXO 9. Carteras de campo de nivelación

Page 112: RED GEODÉSICA FAMARENA 2014

112

ANEXO 10. Carteras de cálculo y ajuste de la Red de nivelación

Page 113: RED GEODÉSICA FAMARENA 2014

113

ANEXO 11. Certificados IGAC NP6 E 1 y CD-866

Page 114: RED GEODÉSICA FAMARENA 2014

114

ANEXO 12. Formato de Parámetros Sistema Cartesiano de Proyección Origen

Vivero_2014

Page 115: RED GEODÉSICA FAMARENA 2014

115

ANEXO 13. Formatos de coordenadas Vértices Geodésicos RED FAMARENA

2014

Page 116: RED GEODÉSICA FAMARENA 2014

116

ANEXO 14. Catálogo de coordenadas de los vértices geodésicos de la RED

FAMARENA 2014.

Page 117: RED GEODÉSICA FAMARENA 2014

117

ANEXO 15. Catálogo de coordenadas vigente para los vértices geodésicos de la

Facultad del Medio Ambiente