report draft 3.21 v5 · 2*...

30
UNIVERSITY OF WASHINGTON Informing Conservation Decisions Based on Ecosystem Services Prepared for the Regional Open Space Strategy of Central Puget Sound by John CrawfordGallagher, Melissa Martin, Ayse Nal, Neil Ratliff 3/1/2014 Keystone project for the Environmental Management Certificate administered by the Program on the Environment, University of Washington

Upload: others

Post on 25-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

UNIVERSITY  OF  WASHINGTON  

Informing  Conservation  Decisions                                        Based  on  Ecosystem  Services  

Prepared  for  the  Regional  Open  Space  Strategy                                                                                                of  Central  Puget  Sound  

by  John  Crawford-­‐Gallagher,  Melissa  Martin,  Ayse  Nal,  Neil  Ratliff  

3/1/2014        

Keystone  project  for  the  Environmental  Management  Certificate  administered  by  the  Program  on  the  Environment,  University  of  Washington    

Page 2: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

 

Table  of  Contents  Introduction:  Regional  Open  Space  Strategy  .................................................................................  1  

Scope  of  Work  ................................................................................................................................  2  

Approach  1:  InVEST  ........................................................................................................................  4  

Models  .......................................................................................................................................  4  

Overlap  Analysis  Model  ..........................................................................................................  4  

Carbon  Storage  and  Sequestration  Model  .............................................................................  6  

Biodiversity  Model  .................................................................................................................  8  

Managed  timber  production  model  .......................................................................................  9  

Approach  2:  Valuing  Ecosystem  Services  Together  (VEST)  ..........................................................  11  

Using  VEST  ................................................................................................................................  11  

VEST  Results  and  Feedback  ......................................................................................................  12  

Benefits  and  Limitations  ..............................................................................................................  14  

Invest  Benefits  ..........................................................................................................................  14  

Invest  Limitations  .....................................................................................................................  14  

VEST  Benefits  ...........................................................................................................................  15  

VEST  Limitations  .......................................................................................................................  15  

Conclusion:  Applying  InVEST  and  VEST  to  the  ROSS  ....................................................................  16  

Appendix  A:  InVEST  Models  .........................................................................................................  17  

Overlap  Analysis  Model  ............................................................................................................  17  

Carbon  Model  ..........................................................................................................................  18  

Biodiversity  Model  ...................................................................................................................  20  

Managed  Timber  Production  Model  ........................................................................................  23  

Appendix  B:  VEST  Instructions  .....................................................................................................  25  

Appendix  C:  Annotated  Bibliography  ...........................................................................................  27  

             

Page 3: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

1  

Introduction:  Regional  Open  Space  Strategy  As  the  Puget  Sound  region  continues  to  experience  rapid  growth  and  development,  policy  mak-­‐ers,  developers,  advocacy  groups  and  others  need  a  regional  strategy  to  address  and  balance  a  disparate  set  of  interests.  Central  to  this  strategy  is  how  the  region  will  value,  use,  and  interact  with  open  space,  including  parks,  trails,  farmlands,  forests,  recreation  areas,  waterways,  and  green  storm  water  infrastructure,  all  of  which  provide  essential  and  valuable  benefits  and  ser-­‐vices  to  all  inhabitants  of  the  region.  As  a  project  team  of  graduate  students  in  the  University  of  Washington  Environmental  Management  Certificate  program  we  prepared  this  report  for  the  Regional  Open  Space  Strategy  (ROSS).  Our  intent  was  to  assist  the  ROSS  in  achieving  the  follow-­‐ing  two  goals:      

• Communicate  the  value  of  conserving  open  space,  and  • Prioritize  conservation  based  on  that  value.  

 The  Bullitt  Foundation,  the  Green  Futures  Lab,  the  Northwest  Center  for  Livable  Communities,  and  the  UW  College  of  Built  Environments  are  working  in  collaboration  with  regional  partners  and  stakeholders  to  develop  a  strategy  to  “conserve  and  enhance  open  space  systems  that  con-­‐tribute  to  ecological,  economic,  recreational,  and  aesthetic  vitality,”  within  the  Puget  Sound  area1.  Coordinating  at  a  regional  level,  they  hope  to  identify  the  most  effective  projects  and  then  promote  and  direct  resources  to  them.  Our  work  is  part  of  a  pilot  project  that  the  ROSS  is  conducting  in  the  Puyallup-­‐White  watershed  that  will  be  the  basis  for  expanding  the  strategy  throughout  the  Central  Puget  Sound  region.        Evaluating  and  communicating  the  value  of  open  spaces  and  the  services  and  benefits  they  pro-­‐vide  is  a  complex  task  considering  the  varied  interests  of  stakeholders  making  decisions  around  the  acquisition  and  development  of  open  space.  As  stakeholders  plan  development,  conserva-­‐tion,  and  resource  use  in  the  Puget  Sound  region  they  need  a  process  that  will  allow  them  to  prioritize  options  that  include  the  consideration  of  the  four  key  interest  areas  identified  as  part  of  the  ROSS:    

•  Ecosystems;  •  Recreation  and  Trails;  •  Rural  and  Resource  Lands;  and  •  Urban  and  Community  Development.  

 Ecosystem  Services  In  order  to  prioritize  conservation  efforts,  the  ROSS  intends  to  evaluate  the  benefits  provided  by  open  space  and  identify  areas  with  overlapping  benefits  that  address  the  ROSS’s  key  interest  areas.  Valuing  and  quantifying  ecosystem  services  can  be  thus  a  valuable  approach  for  ROSS  to  meet  its  goals.  As  described  in  the  Millennium  Ecosystem  Assessment  report  prepared  by  the   1  Preliminary  Comprehensive  Strategy.  Central  Puget  Sound  Regional  Open  Space  Strategy.  

http://rossgfl.wordpress.com/anticipated-­‐products-­‐outcomes/preliminary-­‐comprehensive-­‐strategy/  2012  

Page 4: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

2  

UNDP,  ecosystem  services  are  “benefits  people  obtain  from  ecosystems”2.    The  report  catego-­‐rizes  ecosystem  services  into  four  areas:  provisioning  services  such  as  water  and  timber,  regu-­‐lating  services  such  as  water  quality,  cultural  services  such  as  recreational  areas  and  supporting  services  such  as  soil  formation.  Other  environmental  institutes  such  as  TEBB  (The  Economics  of  Ecosystems  and  Biodiversity)  have  developed  similar  but  slightly  different  categories  for  ecosys-­‐tem  services3.    Our  work  was  influenced  by  a  combination  of  these  categorizations.    Services  can  be  quantified  and  then  translated  to  some  common  measure  that  allows  research-­‐ers  to  compare  and  evaluate  the  value  of  ecosystem  services  provided  by  a  certain  area.  Re-­‐search  resulting  from  valuation  of  ecosystem  services  can  be  used  to  influence  decision  makers  and  direct  policy.  The  valuation  of  ecosystem  services  is  a  relatively  new  field  that  has  arisen  because  of  a  need  to  quantify  benefits  from  natural  resources  that  decision  makers  can  use  when  evaluating  land  use  issues.    The  frameworks  and  tools  used  to  guide  researchers  in  this  field  are  still  being  developed  and  there  is  not  currently  an  accepted  universal  standard.  Re-­‐searchers  must  decide  on  methods  to  use  and  which  services  to  quantify.  Workers  in  the  field  are  beginning  to  propose  standards  of  practice  to  fulfill  this  need.  One  such  document  outlines  principles  for  researchers  to  follow  that  emphasize  the  need  for  rationale  of  methods,  stake-­‐holder  involvement,  an  interdisciplinary  approach,  the  consideration  of  resilience  of  the  ser-­‐vices  in  question,  and  accessibility  of  the  work  to  stakeholders.4  The  ROSS  will  contribute  to  the  ongoing  conversation  about  ecosystem  service  valuation,  as  it  will  apply  valuations  to  a  large  region  and  use  that  information  to  promote  conservation  of  priority  land  areas.      The  ROSS  team  and  the  UW  Keystone  Project  team  both  believe  that  natural  and  built  green  infrastructure  are  necessary  investments  –  worthy  of  public  and  private  resources  –  which  should  shape  future  development  decisions.  The  challenge  is  to  communicate  their  importance  based  on  sound  methods  and  evidence.  We  acknowledge  and  challenge  the  limitations  of  a  human-­‐centered  focus  when  evaluating  the  environment,  but  we  understand  that  this  method  is  a  necessary  communication  strategy  when  appealing  to  a  variety  of  stakeholders.  

Scope  of  Work  The  ROSS  asked  our  team  to  research  tools  and  approaches  that  could  contribute  to  communi-­‐cating  the  value(s)  of  ecosystem  services  to  promote  public  understanding  of  these  values,  and  prioritizing  these  services  in  order  to  inform  investment  decisions  for  the  ROSS.  We  focused  on  two  separate  approaches  that  would  inform  these  goals.  First,  we  tested  computer  models  that  quantify  and  valuate  ecosystem  services  in  a  spatially  explicit  way.  Second,  we  designed  a  tool  to  elicit  expert  opinion  about  how  various  land  conservation  types  contribute  to  ecosystem  services.    

2  Ecosystems  and  Human  Well-­‐being:  A  framework  for  assessment.  Millennium  Ecosystem  Assessment  

United  Nations  Environment  Proramme.  http://www.unep.org/maweb/en/Framework.aspx.  2005  3 Ecosystem  Services. http://www.teebweb.org/resources/ecosystem-services/ 4  Ervin,  D.,  et  al.  Principles  to  Guide  Assessments  of  Ecosystem  Service  Values.  Ecosystem  Services  Valua-­‐

tion  Workshop.  2013  

Page 5: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

3  

 Our  work  focused  only  on  the  Puyallup-­‐White  watershed  to  pilot  the  approaches  for  incorporat-­‐ing  ecosystem  services  into  conservation  decisions.  The  Puyallup-­‐White  is  located  in  Pierce  County  with  small  portions  in  King  and  Thurston  Counties  and  is  bordered  by  the  Green-­‐Duwamish  Watershed  to  the  North  and  Nisqually  River  Watershed  to  the  South.  We  chose  a  smaller  group  of  sub-­‐basins  within  the  watershed  to  focus  our  computer  modeling  because  we  believed  limiting  our  geographic  area  would  reduce  the  difficulty  of  collecting  data  needed  to  run  the  models.  We  selected  the  area  based  on  its  potential  for  future  conservation  actions.      Our  first  approach,  modeling,  used  the  InVEST  (Integrated  valuation  of  environmental  services  and  tradeoffs)  models,  created  by  the  Natural  Capital  Project,  to  valuate  selected  ecosystem  services.  This  group  of  models  is  designed  to  quantify  ecosystem  services,  both  biophysical  pro-­‐cesses  and  processes  with  commercial  (monetary)  value.  Many  of  the  models  display  the  results  on  a  map  of  the  geographic  area  of  focus.  These  programs  require  spatially  explicit,  Geographic  Information  Systems  (GIS)  data,  as  well  as  data  describing  the  biophysical  properties  of  land  use/land  cover  (LULC)  types.    We  researched  and  performed  trials  on  four  of  the  InVEST  mod-­‐els:  Overlap  Analysis,  Managed  Timber  Production,  Biodiversity,  and  Carbon  Storage  and  Se-­‐questration.  We  reached  varying  degrees  of  success  with  each  individual  model.      The  modeling  approach  is  time  intensive  and  requires  knowledge  of  lo-­‐cal  ecology  as  well  as  technical  skill  with  geospatial  software.    These  fac-­‐tors  would  make  basing  decisions  about  conservation  solely  on  the  results  of  modeling  difficult  without  the  appropriate  skillsets  and  fund-­‐ing  support.    Therefore,  we  also  explored  a  survey  approach  that  would  capitalize  on  the  knowledge  and  expertise  of  the  ROSS  participants.      The  second  approach  we  explored  resulted  in  our  team  designing  a  sur-­‐vey-­‐like  tool  we  call  VEST  (Valuing  Ecosystem  Services  Together).  VEST  asks  members  of  the  ROSS  Ecosystem  Service  Committee  and  its  various  Task  Forces  to  judge  the  relative  contributions  of  different  land  invest-­‐ment  types  to  ecosystem  services.  These  relative  values  could  be  used  to  determine  priority  land  investment  types  or  strategies.  VEST  can  be  completed  in  a  relatively  short  amount  of  time,  but  requires  the  partici-­‐pation  of  experts.  Because  the  ROSS  has  already  successfully  recruited  local  experts,  this  approach  is  more  easily  achieved.  However,  VEST  is  a  very  coarse  tool  that  does  not  factor  in  spatial  components  and  can  only  reveal  relative  values  of  ecosystem  services,  rather  than  estimates  of  actual  value.    After  completing  our  investigations  of  these  two  approaches  we  have  outlined  the  benefits  and  limitations  of  each  approach  and  outlined  a  process  by  which  the  ROSS  could  combine  both  approaches  and  maxim-­‐ize  their  resources.    

Figure 1. Complete list of InVEST models with trial models highlighted  

Page 6: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

4  

 

Approach  1:  InVEST  InVEST  is  a  free  software  program  developed  by  the  Natural  Capital  Project  to  model  and  quan-­‐tify  ecosystem  services.  At  the  suggestion  of  our  faculty  mentor  we  chose  to  use  InVEST  as  our  primary  method  of  quantifying  ecosystem  services  due  to  its  accessibility  and  familiarity  to  those  who  work  in  the  field  of  ecosystem  service  valuation.  InVEST  has  sixteen  models  that  val-­‐uate  ecosystem  services  listed  in  Figure  1.  Each  model  requires  inputs  relevant  to  the  ecosys-­‐tem  service  of  interest  and  LULC  data.  Most  models’  outputs  are  a  series  of  maps  that  represent  relative  values  for  the  aggregate  data  over  the  area  of  interest.      We  chose  a  specific  focus  area  for  these  models  within  the  Puyallup-­‐White  Watershed  that  in-­‐cludes  several  sub-­‐basins  (Figure  2).  To  select  the  area  we  considered  the  2011  report  by  the  Pierce  County  Open  Space  Task  Force  that  contains  recommendations  and  priorities  for  the  fol-­‐lowing  10  years  for  open  space  categories,  including  parks,  trails,  forests,  biodiversity  (habitat),  freshwater  (rivers,  lakes  and  streams),  marine  shoreline  and  agricultural  land.5  Our  focus  area  

included  as  many  of  these  open  space  categories  as  possible  so  that  the  ROSS  can  eventually  use  our  experience  as  a  test  case  to  model  their  future  sce-­‐narios.      We  chose  four  InVEST  models  to  focus  our  initial  valuation  of  ecosystem  services  based  on  the  rele-­‐vance  of  the  outputs  to  the  ROSS  priorities  and  the  difficulty  of  running  the  model.  We  used  the  Biodi-­‐versity  model  to  assess  threats  to  biodiversity;  the  Carbon  model  to  analyze  carbon  capture  from  for-­‐ests;  the  Timber  model  to  analyze  potential  timber  production  yields;  and  the  Overlap  Analysis  model  to  examine  connectivity  between  parks  and  recrea-­‐

tional  trails.  We  used  the  ROSS  geodatabase,  a  collection  of  local  GIS  data  relevant  to  the  ROSS,  and  other  publicly  available  data  to  complete  the  models.    Specific  information  about  the  input  requirements  and  outputs  of  each  model  are  outlined  in  Appendix  A.      

Models  Overlap  Analysis  Model  The  InVEST  model  most  appropriate  for  valuing  human  recreation  and  trails  is  the  Overlap  Ana-­‐lysis  Model  (OAM).  This  model  is  designed  specifically  to  evaluate  geographic  areas  based  on  the  weighted  importance  of  human  activities  that  occur  within  its  boundaries.  It  does  this  by  

5  Report  and  Recommendations:  July  18,  2011.  Pierce  County  Open  Space  Task  Force.  http://www.co.pierce.wa.us/DocumentCenter/View/3732.  2011.  

Figure 2. Puyallup-White Watershed  

Page 7: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

5  

examining  areas  designated  as  commons,  wherein  multiple  activities  of  different  weighted  im-­‐portance  occur  within  the  same  space  and  therefore  overlap  –  for  example,  coastal  areas  that  facilitate  recreational  swimming,  commercial  fishing,  and  commerce  from  tourism.  This  InVEST  tool  is  capable  of  identifying  what  activities  occur  in  an  area  and  where  these  activities  overlap,  therefore  helping  to  prioritize  those  spaces  that  enable  the  most  human  activities  of  the  most  importance.    The  models  compute  in  two  different  ways.  In  the  default  process,  the  user  designates  areas  wherein  a  specific  activity  occurs  –  perhaps  boating,  hiking,  or  recreational  fishing  –  incorporat-­‐ing  different  activity  layers  within  the  area  of  interest.  InVEST  then  calculates  areas  of  overlap,  and  scores  each  point  on  the  map  based  only  on  the  number  of  activities  it  facilitates;  the  prior  example  of  a  coastal  beach  that  allows  for  multiple  commercial  and  recreational  behaviors  would  therefore  by  deemed  more  important,  for  example,  than  a  landform  or  vista  reachable  only  by  a  single  hiking  trail.      

However,  the  model  also  allows  for  more  complex  analysis  wherein  the  activities  themselves  are  weighted  by  importance.  This  is  especially  helpful  for  prioritizing  zones  not  only  by  the  level  or  amount  of  recreation  they  make  possible,  but  also  by  the  expected  benefits  that  protection  of  these  zones  would  produce.  For  example,  an  area  that  harbors  only  a  bike  trail  would  be  giv-­‐en  a  default  value  of  1.  But,  using  the  weighted  model,  this  area  might  be  given  significantly  more  status  if  that  bike  trail  completes  a  commuter  corridor,  or  connects  to  a  chief  transporta-­‐tion  hub,  or  leads  to  a  scenic  vista  for  tourists.      The  model  weights  inputs  by  three  categories:  Intra-­‐Activity,  wherein  activities  within  a  zone  are  scored  (for  example,  hiking  trails  indexed  by  popularity  or  fishing  grounds  categorized  by  catch  productions);  Inter-­‐Activity,  wherein  each  activity  itself  is  assigned  a  score;  and  Points  of  

Figure 3. Overlap analysis map layers  

Page 8: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

6  

Human  Use  Hubs,  wherein  spaces  are  assigned  value  based  on  their  distance  from  key  hubs  of  activity  (bus  stations,  boat  ramps,  ranger  stations,  etc.).      This  model  produces  values  for  areas  based  on  the  two  principles  of  frequency  and  importance.  The  intra-­‐activity  values  will  reveal  the  number  of  recreational  activities  that  take  place  on  each  point  on  the  map.  The  inter-­‐activity  and  human-­‐use  hub  inputs  allows  one  to  valuate  areas  based  on  one's  designated  importance  of  those  activities.    For  our  project,  we  analyzed  pedestrian  trails  through  the  Puyallup-­‐White  Watershed.  These  trails  were  categorized  into  three  types:  Regional  trails,  Sub-­‐regional  trails,  and  Connector  trails.  Using  GIS  data  from  Pierce  County  Parks  and  Recreation  inputed  into  the  Overlap  Analysis  mo-­‐del,  we  superimposed  this  trail  network  onto  our  area  of  focus,  and  weighted  the  trails  by  im-­‐portance  (Regional  trails  were  given  a  value  of  three,  while  Sub-­‐regional  and  Connectors  were  given  values  of  two  point  five  and  two,respectively)  (Figure  3).  The  InVEST  output  produced  a  map  of  the  trail  network  coded  by  a  color  gradient,  which  revealed  areas  of  greater  activity  (where  two  types  of  trails  met,  for  example,  or  where  connectors  linked  multiple  regional  trails  together).  This  map  clearly  and  simply  articulated  these  trails  by  importance,  guided  by  our  weighting  criteria.    Simple  actions  like  this  can  illuminate  a  great  deal.  Hypothetically,  the  Overlap  Analysis  model  has  limitless  applications  for  ecosystem  service  valuation,  and  our  small-­‐scale  test  certainly  proved  its  usability  for  analyzing  recreational  trail  networks.  If  a  project  wished  to  identify  those  areas  with  the  most  trails,  or  the  trails  of  greatest  importance  (according  to  stakeholder  criteria),  or  the  proximity  of  trails  to  nearby  public  parks  or  public  transportation  hubs,  for  in-­‐stance,  this  model  would  be  perfectly  suited  to  the  task.  For  this  model  to  be  used  for  trail  ana-­‐lysis,  we  found  input  requirements  to  be  minimal  and  the  process  relatively  straightforward.    

Carbon  Storage  and  Sequestration  Model  This  model  measures  the  amount  of  carbon  stored  by  various  types  of  land  cover.  It  has  the  ability  to  measure  carbon  storage  at  a  given  point  in  time  and  can  measure  a  change  in  car-­‐bon  storage  given  past  or  future  scenarios.  The  model  can  also  monetize  stored  carbon  based  on  prices  in  carbon  markets.    The  model  requires  LULC  GIS  data  as  well  as  a  list  of  measurements  of  the  amount  of  carbon  stored  in  each  LULC  type  in  the  dataset.  For  ex-­‐ample,  if  the  GIS  data  contains  Douglas  Fir  forest  the  carbon  pool  list  must  indicate  the  amount  of  carbon  that  Douglas  Fir  forests  typically  store  in  

Figure 4. Carbon model output  

Page 9: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

7  

megagrams  per  hectare  (Mg  ha-­‐1)  a  common  measurement  of  the  volume  of  carbon.    Running  the  model  produces  several  outputs  that  may  be  useful  to  the  ROSS.  It  can  provide  to-­‐tals  of  the  number  of  tons  of  carbon  currently  stored  and  the  number  of  tons  to  be  stored  in  a  future  scenario.  It  can  also  provide  maps  to  visually  demonstrate  the  differences  between  cur-­‐rent  and  future  scenarios,  as  well  as  carbon  storage  totals  for  each  of  the  individual  carbon  pools.      As  a  result  of  our  trials  we  were  able  to  produce  a  map  of  our  focus  area  within  the  Puyallup-­‐White  watershed  (Figure  4).  The  map  displays  the  relative  volume  of  stored  carbon  using  a  col-­‐or  gradient  scale.  Dark  shades  of  green  represent  higher  levels  of  carbon  storage,  while  light  green  and  white  represent  low  levels  of  carbon  storage.  We  used  carbon  pool  values  from  an  ecosystem  services  valuation  of  Joint  Base  Lewis  McChord.6  While  these  values  (Table  1)  can  be  used  for  modeling  in  the  Pacific  Northwest  we  recommend  expanding  the  list  to  include  the  ex-­‐act  LULC  types  in  a  given  focus  area.  The  values  we  used  for  the  purpose  of  our  trial  were  ap-­‐proximate  matches  and  yielded  inaccurate  results.      

 Table  1.  Volume  of  carbon  stored  by  LULC  types.  

 The  Carbon  model  is  one  of  the  simplest  InVEST  models  and,  with  the  appropriate  data,  can  be  very  useful  to  the  ROSS.  The  maps  it  produces,  the  ability  to  compare  scenarios,  and  the  ability  to  monetize  stored  carbon  can  help  decision-­‐makers  understand  the  value  of  preserving  partic-­‐ular  pieces  of  land.      

6  Ma,  S.,  Duggan,  J.,  Eichelberger,  B.,  McNally,  B.,  Foster,  J.,  Pepi,  E.,  Conte,  M.,  Daily,  G.,  Ziv,  G.  (prepub-­‐lication)  Valuation  of  Ecosystem  Services  to  Inform  Military  Base  Management:  The  Case  of  Joint  Base  Lewis  McChord.  

Page 10: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

8  

Biodiversity  Model  The  Biodiversity  model  assesses  relative  habitat  degradation,  habitat  quality,  and  habitat  rarity  within  the  defined  geography.  It  can  be  used  to  evaluate  how  different  scenarios  of  changes  in  land  cover  or  habitat  threats  might  affect  the  availability  of  quality  habitat,  and  consequently  biodiversity.  Specific  requirements  of  the  model  are  outlined  in  appendix  A.  The  model  com-­‐piles  data  over  the  geography  of  interest  and  results  in  maps  showing  the  relative  measures  of  habitat  degradation,  habitat  quality,  and  habitat  rarity  as  predicted  by  the  model.    Running  the  model  requires  an  in-­‐depth  understanding  of  the  local  ecology  of  the  region  of  in-­‐terest.  The  model  includes  the  threats  to  habitat  in  the  area  of  interest  and  the  distance  those  threats  would  have  an  effect.  Figure  5  provides  a  simplistic  representation  of  the  model  inputs.  The  size  of  the  circles  around  the  threats  represents  their  distance  of  influence  on  habitat  quali-­‐ty.    Some  examples  of  potential  threats  are  roads,  invasive  species,  or  mines.  One  must  also  in-­‐clude  information  about  the  sensitivity  of  each  land  cover  type  to  the  threat,  represented  in  figure  5  by  the  color  of  the  threat  cir-­‐cle.  The  accuracy  and  relevance  of  the  information  included  in  the  model  will  affect  its  usefulness  in  predicting  habi-­‐tat  quality.    In  addition,  the  model  requires  geo-­‐spatial  data.  First,  habitats  are  defined  by  different  land  cover  types,  so  basic  land  cover  data  is  needed.    Second,  spatial  distribution  of  the  threats  is  needed,  so  one  would  need  spatial  data  for  all  of  the  threats  included  in  the  model.  For  example,  if  there  were  an  invasive  species  that  was  considered  a  threat  to  a  habitat,  a  GIS  data  layer  would  need  to  exist  with  the  distribution  of  that  species.  It  has  the  ability  to  consider  legal  land  protections  as  well  as  physical  barriers  that  may  affect  how  much  an  impact  threats  to  habitat  may  have.  If  including  these  considerations,  one  would  need  GIS  maps  of  these  protected  areas  and  infor-­‐mation  about  their  relative  protective  effects.      The  model  can  be  used  for  different  purposes.  It  could  be  designed  to  look  at  the  habitat  of  a  specific  species,  including  only  land  covers  and  threats  that  are  relevant  to  the  species  of  inter-­‐est.  Alternatively,  the  model  can  be  used  more  generically  to  estimate  how  common  threats  affect  all  types  of  viable  habitat  in  the  defined  area.  Because  this  model  does  not  provide  quan-­‐tification  for  biodiversity,  it  is  not  directly  useful  for  the  ROSS  goal  of  communicating  a  specific  value  of  preserving  an  area.  However,  it  would  be  useful  for  prioritizing  conservation.  If  future  scenarios  for  development  or  other  threats  to  habitat  were  developed,  predictions  could  be  made  using  the  model  of  how  those  changes  in  threats  in  the  future  would  affect  habitat.    Those  habitats  most  threatened  in  future  scenarios  might  be  priorities  for  conservation.    

Figure 5. Representation of Biodiversity model inputs  

Page 11: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

9  

In  the  context  of  the  ROSS,  we  attempted  to  use  the  model  to  assess  general  habitat  rarity  and  quality  within  our  focus  area.  All  types  of  land  covers  that  were  open  space  were  classified  as  habitat.  Threats  considered  in  the  model  were  roads,  highway,  trails,  and  developed  land.  The  relative  sensitivities  of  land  cover  to  these  threats  used  in  the  model  were  placeholders  since  conclusive  data  for  these  values  could  not  be  found.  Ultimately,  we  could  not  run  the  model,  even  as  a  trial,  because  of  technical  issues.  The  InVEST  software  displayed  an  error  that  the  GIS  data  used  did  not  cover  the  same  geographic  space.  While  this  was  not  the  case,  our  team  did  not  resolve  the  issue  in  time  for  this  report.      Managed  timber  production  model    The  InVEST  timber  model  has  been  developed  to  measure  the  amount  and  volume  of  the  tim-­‐ber  produced  over  a  time  period  and  to  calculate  the  net  present  value  of  that.  The  amount  of  timber  harvests  from  both  natural  forests  and  managed  plantations  can  be  estimated  by  using  this  model.    The  model  requires  vector  GIS  data,  information  about  harvest  levels,  frequency  of  harvest,  costs  of  harvesting  and  management  practices  for  each  timber  harvest  parcel.  The  model  can  make  two  types  of  calculations  in  terms  of  the  selected  time  period:  the  timber  par-­‐cel  map  can  be  related  either  to  a  current  map  or  to  a  future  scenario  map.      The  timber  model  can  be  especially  useful  for  one  of  the  ROSS’  key  areas:  “Rural  and  Resource  Lands”.    Since  the  model  gives  as  output  the  amount  and  volume  of  the  timber  produced  over  a  period  of  time  and  that  harvest’s  net  present  value,  it  can  be  beneficial  in  terms  of  calculating  the  opportunity  costs  of  preserving  a  forestland  or  opening  it  up  for  development.      The  Washington  State  Department  of  Natural  Resources  has  GIS  spatial  data  sets  about  forest  practices  where  the  timber  harvest  areas  can  be  seen  in  polygons.  The  information  about  the  volume  of  timber  produced  is  available  too.  However,  in  order  to  be  able  to  run  the  model  oth-­‐er  data  needs  (such  as  frequency  of  harvesting,  percentage  of  harvesting,  maintenance  cost,  and  harvesting  cost)  need  to  be  collected  from  the  timber  parcel  owners.    While  running  trial  of  this  model  we  discovered  that  in  order  to  find  the  necessary  data  men-­‐tioned  above  to  run  the  model  we  would  need  to  conduct  a  field  study  and  collect  the  infor-­‐mation  from  each  parcel  owner.  As  our  time  to  complete  the  study  was  limited,  we  could  not  conduct  a  field  study.  It  may  be  possible  in  the  future  to  use  sustainable  forest  practices  infor-­‐mation  to  estimate  for  example  the  frequency  of  timber  harvesting  in  Pierce  County.  However,  we  learned  that  the  definition  of  sustainable  forest  practices  may  vary  from  one  landowner  to  another  and  that  we  cannot  generalize  one  model  for  each  timber  harvest.  Thus,  as  a  result  we  could  not  run  the  model.      Figure  6  provides  an  example  for  how  the  model  output  can  be  used  in  visualization  of  different  scenarios.  The  last  column  in  the  figure  entitled  “market  value  of  commodity  production”  in-­‐cludes  the  value  of  the  timber  produced  in  that  area.  The  greenest  color  represents  the  highest  production  of  ecosystem  services  and  the  pinkest  color  represents  the  lowest  value  of  them.  For  example,  in  the  conservation  scenario  it  can  be  seen  that  the  market  value  of  the  commodi-­‐ty  produced  is  lowest  whereas  carbon  sequestration  has  the  highest  value  in  that  scenario.  By  

Page 12: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

10  

using  these  kinds  of  visual  maps,  InVEST  models  can  be  used  to  communicate  the  outputs  of  different  scenarios  in  a  clear  and  comprehensive  way.      

 Figure  6.  Source:  Nelson  et  al.,  20097  

7 Nelson, Erik, et al. "Modeling multiple ecosystem services, biodiversity conservation, commodity pro-duction, and tradeoffs at landscape scales."Frontiers in Ecology and the Environment 7.1 (2009): 4-11.

Page 13: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

11  

Approach  2:  Valuing  Ecosystem  Services  Together  (VEST)  Our  second  approach  focuses  on  gathering  expert  opinion  to  collect  general  information  about  ecosystem  services.  It  may  be  used  to  consider  general  effects  of  conservation  types  on  ecosys-­‐tem  services  or  to  assess  specific  projects  in  specific  geographic  areas.  We  developed  a  tool  for  the  ROSS  Ecosystem  Services  Committee  to  use  in  making  conservation  decisions  and  prioritiz-­‐ing  further  research.  VEST  is  a  survey-­‐like  tool  that  the  ROSS  can  distribute  as  a  spreadsheet  to  subject  matter  experts.  The  experts  assign  points  to  indicate  the  relative  effects  of  conservation  actions  on  ecosystem  services  allowing  the  Ecosystem  Services  Committee  to  identify  which  conservation  activities  may  have  greater  impacts  on  ecosystem  services.    Using  VEST  VEST  is  a  matrix  with  columns  that  represent  types  of  potential  conservation  activities  and  rows  that  represent  various  ecosystem  services.  We  chose  the  conservation  types  based  on  the  Pierce  County  Ten  Year  Priorities  and  ecosystem  services  from  the  Millennial  Ecosystem  As-­‐sessment.8      Respondents  complete  one  row  at  a  time,  allotting  points  to  each  land  investment  type  based  on  its  relative  contribution  to  the  corresponding  ecosystem  service.  More  points  indicate  a  greater  contribution.  Respondents  may  allot  points  as  they  see  fit,  including  allotting  unique  values  for  each  land  investment  or  allotting  all  points  to  only  one  land  investment  type.  We  originally  intended  for  respondents  to  allot  36  across  each  row,  which  would  allow  each  cell  to  receive  a  unique  value.  Some  respondents  in  our  initial  trial  reported  difficulty  with  this  number  of  points.  To  address  this  problem  the  ROSS  could  adjust  the  instructions  to  request  a  more  us-­‐er-­‐friendly  100  percentage  points.  Figure  7  shows  a  sample  distribution  of  points  for  four  of  the  twenty  ecosystem  services  included  in  the  tool.  The  full  VEST  tool  can  be  found  in  Figure  8.        

 Figure  6.  Example  data  with  selected  ecosystem  services  

 Our  instructions  (Appendix  B)  include  the  following  assumptions  that  respondents  should  use  as  they  assign  values:    

1. All  investments  will  be  made  by  public  or  not-­‐for-­‐profit  organizations  with  the  intention  of  public  benefit.  Private  benefits  may  result  from  the  investment,  but  the  analysis  is  based  on  the  intention  of  public  benefit.  

8 Ecosystems  and  Human  Well-­‐being:  A  framework  for  assessment.  Millennium  Ecosystem  Assessment  United  Nations  Environment  Proramme.  http://www.unep.org/maweb/en/Framework.aspx.  2005

Page 14: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

12  

2. Agencies  will  follow  best  management  practices  in  perpetuity  for  their  land  investments.  While  this  may  not  be  realistic,  it  will  allow  for  easier  comparisons.    

3. Only  consider  effects  on  ecosystem  services  that  are  generated  directly  from  the  ac-­‐quired  land  type,  absent  of  additional  investment.  For  example,  forest  acquisition  pro-­‐vides  carbon  sequestration  and  timber  production,  but  would  not  necessarily  provide  aesthetic  value  or  recreational  opportunities  without  further  investments  in  trail  build-­‐ing  or  campgrounds.  

4. Do  not  consider  opportunity  costs  that  may  be  forgone  by  making  one  type  of  invest-­‐ment  over  another.    

 We  recognize  that  some  of  the  ecosystem  services,  such  as  aesthetics,  require  subjective  judg-­‐ment.  Others  call  on  expert  opinions  about  the  function  of  ecosystems.  For  this  reason,  we  al-­‐low  respondents  to  opt  out  of  individual  rows  if  they  are  not  comfortable  assigning  points  for  a  particular  ecosystem  service.  For  reference  we  included  the  definitions  of  each  ecosystem  ser-­‐vice  with  the  VEST  survey.      Based  on  the  ROSS’s  structure  that  includes  committees  of  experts  we  intend  for  VEST  to  be  used  by  a  team.  Each  expert  will  complete  their  own  VEST  survey  and  an  analyst  will  aggregate  the  results.  The  combined  spreadsheet  should  show  “hotspots”  where  experts  think  certain  in-­‐vestment  areas  would  have  larger  relative  effects  on  ecosystem  services,  both  in  the  number  of  ecosystem  services  each  conservation  type  provides  and  the  extent  to  which  they  provide  eco-­‐system  services.  Alternatively,  a  team  could  complete  one  survey  together  as  a  way  to  discuss  and  debate  potential  effects  on  ecosystem  services.  Another  approach  would  be  to  assign  the  task  to  an  individual  researcher  or  small  research  team  who  would  complete  a  more  rigorous  analysis  of  each  conservation  type  and  assign  values  in  the  VEST  tool  accordingly.  The  ROSS  may  choose  their  preferred  completion  method  based  on  the  number  and  type  of  available  experts  as  well  as  their  need  for  general  or  exact  results.    An  important  feature  of  VEST  that  should  be  useful  for  the  ROSS  is  that  it  can  be  customized  depending  on  the  ROSS’s  needs.  Our  team  chose  conservation  types  and  ecosystem  services  based  on  existing  projects  and  literature.  The  ROSS  could  change  the  conservation  types  to  as-­‐sess  particular  projects  that  may  be  under  consideration.  It  could  also  add  or  subtract  ecosys-­‐tem  services  to  align  with  the  values  of  the  ROSS  or  particular  stakeholders.      VEST  Results  and  Feedback  In  order  to  test  this  approach,  we  distributed  the  tool  to  members  of  the  ROSS  Ecosystem  Ser-­‐vices  Committee.    We  received  three  completed  surveys,  one  partially  complete  survey,  and  several  comments  on  the  tool’s  usability.  While  we  were  not  able  to  get  a  large  sample  size  of  responses  that  would  allow  us  to  assess  the  range  of  opinions  within  the  ROSS  participants,  we  were  able  to  make  some  recommendations  for  how  the  tool  could  be  most  useful,  and  how  it  might  be  adjusted  for  future  use.    The  point  distributions  of  the  three  sample  responses  were  very  similar  in  their  distribution  of  points.  An  average  of  these  responses  can  be  viewed  in  Appendix  C.  In  addition  to  our  intended  

Page 15: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

13  

benefits  of  the  tool,  examining  the  different  responses  highlighted  other  potential  uses.  We  be-­‐lieve  the  tool  could  be  useful  in  revealing  areas  of  disagreement  about  the  degree  of  benefits  provided  by  a  certain  type  of  land  investment,  and  also  identify  substitute  land  investments  that  provide  similar  ecosystem  services.    For  example,  participants  in  different  specialty  areas  might  account  for  ecosystem  service  benefits  of  a  land  type  differently.    Going  through  the  pro-­‐cess  of  combining  opinions  in  a  tool  like  VEST  would  facilitate  a  conversation  about  those  dif-­‐ferences.  Also,  if  a  committee  has  a  certain  ecosystem  priority  in  mind,  the  tool  could  be  useful  in  identifying  potential  substitute  land  investments  to  achieve  the  same  goal.  The  recreation  and  ecotourism  service  is  a  good  example  of  a  service  that  can  be  achieved  through  multiple  types  of  land  investments.    While  trail  building  and  parks  are  easily  identifiable  land  invest-­‐ments  that  provide  recreation,  farmland  tours  and  biodiversity  attractions  could  also  achieve  those  aims  while  providing  more  of  other  types  of  ecosystem  services  than  trail  or  park  invest-­‐ments  could.      

 Figure  7.  Combined  responses  from  VEST  trial  

 Based  on  the  feedback  from  participants,  we  can  also  make  the  following  suggestions  for  how  to  improve  the  tool  for  future  use:    

• The  distribution  of  36  points  was  confusing  for  some.  We  recommend  distributed  100  percentage  points  instead.  Percentages  are  more  familiar  to  people  and  would  allow  a  more  accurate  allocation  of  points.    

• The  ecosystem  services  considered  should  be  refined  for  the  ROSS.  For  example,  the  “recreation  and  ecotourism”  service  might  be  separated  into  two  rows  so  that  the  

Page 16: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

14  

health  benefits  of  recreation  could  be  accounted  for  separately  from  the  entertainment  and  educational  value  of  ecotourism.    

• The  ROSS  could  request  that  participants  assign  relative  weights  to  ecosystem  services  to  account  for  which  ecosystem  services  have  a  greater  value  to  the  team.  

• Information  about  how  to  equate  the  land  investments  would  be  useful.  This  would  re-­‐quire  research  about  what  certain  monetary  investments  might  yield  in  a  particular  land  investment  type.  For  example,  one  might  research  the  number  of  miles  of  trail  that  could  be  built  with  $100,000  and  the  number  of  acres  of  forest  that  could  be  acquired  with  the  same  amount  of  money.    As  a  result  users  would  better  understand  the  effi-­‐ciency  of  an  investment  type  for  the  ecosystem  services  yielded.    

Benefits  and  Limitations      Invest  Benefits  The  InVEST  model  enables  users  to  monetize  and/or  quantify  many  of  the  ecosystem  services  such  as  carbon  sequestration,  timber  production  or  the  value  of  the  pollinators  to  agricultural  production.  Secondly,  through  the  maps  created  by  using  GIS  and  InVEST  models,  different  land  use  and  land  cover  scenarios  can  be  visualized  and  compared  in  terms  of  their  provision  of  cer-­‐tain  ecosystem  services.  Thirdly,  InVEST  uses  scientific  data  to  relate  human  actions  to  envi-­‐ronmental  outcomes.      Invest  Limitations  However,  there  are  significant  limitations  of  the  InVEST  model.  First,  the  resources  required  to  run  the  models  with  high  quality  data  may  not  be  feasible  for  the  ROSS  and,  as  with  all  models,  the  quality  of  the  data  determine  the  quality  of  the  outputs.  Using  computer  modeling  to  valu-­‐ate  ecosystem  services  can  be  challenging  because  a  project  of  this  nature  requires  a  cross-­‐section  of  experts  and  professionals  who  are  proficient  in  a  variety  of  disciplines,  in  addition  to  the  significant  data  requirements.  Accurate  service  valuation  requires  expertise  in  spatially  ex-­‐plicit  information,  such  as  GIS  mapping,  as  well  as  biophysical  expertise  (knowledge  of  terrain,  flora,  fauna,  climate,  etc.).  The  information  needed  for  some  models  is  not  readily  available  and  field  research  would  need  to  be  conducted  which  requires  time  and  labor.  The  technical  profi-­‐ciency  and  infrastructure  needed  for  a  project  of  this  kind  is  also  substantial:  actors  must  be  competent  in  programs  such  as  GIS  and  InVEST,  and  require  access  to  data  that  can  be  expen-­‐sive,  generated  from  multiple  sources,  or  even  nonexistent.      A  second  limitation  of  InVEST  is  that  it  has  a  limited  number  of  models  and  those  models  may  not  be  able  to  address  the  full  scope  of  the  ROSS.  For  example,  ecosystem  services  provided  in  urban  areas  cannot  be  measured  with  the  current  models  available.      Among  the  most  obvious  shortcomings  of  the  InVEST  tool  that  we  have  identified  is  considera-­‐tion  of  urban  areas  and  social  equity.  We  have  identified  the  following  tools  that  may  assist  the  ROSS  in  considering  social  equity:    

Page 17: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

15  

• STAR  Community  Rating  System:  STAR  measures  livability  and  sustainability  of  commu-­‐nities  by  providing  “a  framework  for  sustainability  encompassing  the  social,  economic  and  environmental  dimensions  of  community.”9  

• Kirwan  Institute  for  the  Study  of  Race  and  Ethnicity  Opportunity  Maps:  Opportunity  maps  allow  researchers  to  determine  the  effect  of  place  on  opportunities  for  education,  health,  and  other  indicators  of  social  equity.  There  are  currently  maps  available  for  King  County,  WA,  the  Puget  Sound,  and  several  other  jurisdictions  throughout  the  U.S.  10  

• Genuine  Progress  Indicator:  The  State  of  Maryland  developed  a  tool  to  measure  progress  beyond  the  traditional  economic  indicators  (i.e  Gross  Domestic/State  Products).  It  measures  the  effects  of  development  activities  on  long-­‐term  prosperity  indicators.11    

• LEED-­‐ND:  LEED  for  Neighborhood  Development  is  the  U.S.  Green  Building  Council’s  rating  system  for  environmental  and  social  conditions.  It  seeks  to  promote  green  building  practices  with  urban  neighborhood  development  best  practices  that  consider  social  equity,  parks  access,  and  community  building.12  

 Finally,  some  consider  it  controversial  to  assign  values  to  ecosystem  services.  Some  conserva-­‐tion  proponents  argue  that  existence  value  of  open  space  is  beyond  measurement.  So,  the  tool  itself  could  alienate  potential  partners  of  the  ROSS.  This  may  also  be  a  limitation  of  the  VEST  tool.    VEST  Benefits  The  VEST  tool  condenses  many  opinions  or  sources  in  one  table.  It  requires  a  lower  cost  and  time  commitment  overall  while  considering  a  large  range  of  ecosystem  services.  Moreover,  it  is  customizable.  The  ecosystem  services  can  be  added  or  removed  from  the  table  according  to  the  priority  areas  of  the  projects.  The  ecosystem  services  can  be  also  weighted  differently  depend-­‐ing  on  project  needs.    VEST  Limitations  However,  the  VEST  model  has  also  some  limitations.  Unlike  InVEST,  which  quantifies  absolute  values,  the  VEST  tool  quantifies  relative  values.  It  also  relies  on  participation  of  different  experts  and/or  stakeholders  who  may  or  may  not  base  their  responses  on  expertise.  Finally,  the  criteria  to  fill  in  the  form  must  be  very  clear  in  order  to  reduce  ambiguities.    

9  STAR  Communities.  (2013).  The  Rating  System.  Retrieved  from  

http://www.starcommunities.org/rating-­‐system.  10  Kirwan  Institute  for  the  Study  of  Race  and  Ethnicity.  (2013).  Opportunity  Mapping  Initiative  and  Pro-­‐

ject  Listing.  Retrieved  from  http://kirwaninstitute.osu.edu/opportunity-­‐communities/mapping/.  11  State  of  Maryland.  (2013).  Maryland  Genuine  Progress  Indicator.  Retrieved  from  

http://www.dnr.maryland.gov/mdgpi/index.asp.  12  U.S.  Green  Building  Council.  (2013).  Neighborhood  Development.  Retrieved  from  

http://www.usgbc.org/neighborhoods.  

Page 18: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

16  

In  sum,  the  InVEST  model  requires  more  time,  money,  technical  expertise  and  infrastructure,  whereas  the  VEST  tool  can  condense  opinions  in  a  shorter  time  period  and  merge  common  pri-­‐ority  areas  of  different  stakeholders.  However,  the  process  of  filling  out  of  the  VEST  tool  and  compiling  the  information  can  be  subjective  or  unclear.  

Conclusion:  Applying  InVEST  and  VEST  to  the  ROSS  The  ROSS  can  use  the  two  approaches  we  explored  to  inform  the  goals  of  valuing  ecosystem  services  produced  by  conserved  land  and  prioritizing  conservation.  Computer  modeling  (In-­‐VEST)  and  surveying  (VEST)  are  complementary  approaches  that  work  best  in  tandem  in  order  to  prioritize  land  acquisition  and  valuate  ecosystem  services.      VEST  requires  relatively  small  investments  of  time,  labor,  and  money,  and  the  results  can  quick-­‐ly  reveal  information  that  can  better  mold  project  objectives.  Obstacles  encountered  with  this  approach  (clarity  of  directions,  delayed  responses,  omissions/additions)  can  be  rapidly  ad-­‐dressed.  The  VEST  tool  can  also  help  highlight  possible  challenges  very  early  on  into  a  project.      Computer  modeling  for  ecosystem  service  valuation,  because  of  its  significant  time,  labor,  and  capital  requirements,  should  be  used  only  after  information  is  collected  via  survey.  By  prioritiz-­‐ing  lands  for  acquisition  or  prioritizing  ecosystem  services  during  the  initial  stages  of  a  project,  resources  for  modeling  can  be  utilized  more  effectively  (by  identifying  optimal  models  and  re-­‐vealing  what  type  of  data  will  be  needed.      Based  on  our  research  and  trials  of  computer  modeling  and  the  survey  tool  we  recommend  that  the  ROSS  use  the  VEST  surveying  approach  at  the  beginning  of  a  project  to  help  identify  useful  InVEST  models.  This  will  allow  the  ROSS  to  set  priorities  before  engaging  in  time  and  resource  intensive  computer  modeling.    

Page 19: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

17  

Appendix  A:  InVEST  Models    

Overlap  Analysis  Model  The  InVEST  model  most  appropriate  for  valuing  human  recreation  and  trails  is  the  Overlap  Ana-­‐lysis  Model  (OAM).  This  model  is  designed  specifically  to  evaluate  geographic  areas  based  on  the  weighted  importance  of  human  activities  that  occur  within  its  boundaries.  It  does  this  by  examining  areas  designated  as  commons,  wherein  multiple  activities  of  different  weighted  im-­‐portance  occur  within  the  same  space  and  therefore  overlap  –  for  example,  coastal  areas  that  facilitate  recreational  swimming,  commercial  fishing,  and  commerce  from  tourism.  This  InVEST  tool  is  capable  of  identifying  what  activities  occur  in  an  area  and  where  these  activities  overlap,  therefore  helping  to  prioritize  those  spaces  that  enable  the  most  human  activities  of  the  most  importance.    Input  Needs  The  OAM  model  computes  in  two  different  ways.  In  the  default  process,  the  user  designates  areas  wherein  a  specific  activity  occurs  –  perhaps  boating,  hiking,  or  recreational  fishing  –  in-­‐corporating  different  activity  layers  within  the  area  of  interest.  InVEST  then  calculates  areas  of  overlap,  and  scores  each  point  on  the  map  based  only  on  the  number  of  activities  it  facilitates;  the  prior  example  of  a  coastal  beach  that  allows  for  multiple  commercial  and  recreational  be-­‐haviors  would  therefore  by  deemed  more  important  than,  say,  a  landform  or  vista  reachable  only  by  a  single  hiking  trail.      However,  the  model  also  allows  for  more  complex  analysis  wherein  the  activities  themselves  are  weighted  by  importance.  This  is  especially  helpful  for  prioritizing  zones  not  only  by  the  level  or  amount  of  recreation  they  make  possible,  but  also  by  the  expected  benefits  that  protection  of  these  zones  would  produce.  For  example,  an  area  that  harbors  only  a  bike  trail  would  be  giv-­‐en  a  default  value  of  1.  But,  using  the  weighted  model,  this  area  might  be  given  significantly  more  status  if  that  bike  trail  completes  a  commuter  corridor,  or  connects  to  a  chief  transporta-­‐tion  hub,  or  leads  to  a  scenic  vista  for  tourists.      The  model  weights  inputs  by  three  categories:  Intra-­‐Activity,  wherein  activities  within  a  zone  are  scored  (for  example,  hiking  trails  indexed  by  popularity  or  fishing  grounds  categorized  by  catch  productions);  Inter-­‐Activity,  wherein  each  activity  itself  is  assigned  a  score;  and  Points  of  Human  Use  Hubs,  wherein  spaces  are  assigned  value  based  on  their  distance  from  key  hubs  of  activity  (bus  stations,  boat  ramps,  ranger  stations,  etc.).      Outputs  This  model  will  produce  values  for  areas  based  on  the  two  principles  of  frequency  and  im-­‐portance.  The  intra-­‐activity  values  will  reveal  the  number  of  recreational  activities  that  take  place  on  each  point  on  the  map.  The  inter-­‐activity  and  human-­‐use  hub  inputs  allows  one  to  val-­‐uate  areas  based  on  one's  designated  importance  of  those  activities.  

Page 20: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

18  

General  data  needs  Outline  of  focus  area,  Land  Use  Land  Cover    Model-­‐specific  data  needs  Shape/layer  files  that  identify  areas  of  activity  (location  of  bicycle  trails,  location  of  parks,  etc.).For  weighting,  a  spreadsheet  designating  the  assigned  values  to  the  assigned  activity.    Recommendations  Contacting  local  government  agencies  for  GIS  data  is  highly  recommended.  In  many  cases,  the  government  professionals  are  more  than  willing  to  provide  (public  and  free)  resources  when  asked.  In  addition,  research  for  activity  weighting  is  helpful.  Have  similar  agencies  weighted  the  activities  you  are  modeling?  Chances  are  good  that  they  have,  and  can  provide  background  and  analysis  on  how  and  why  they  generated  their  activity  rankings.  For  example,  our  team  used  the  OAM  to  analyze  bicycle  trails  that  intersected  our  area  of  focus.  With  a  little  research,  we  discovered  that  state  agencies  in  Florida  had  similarly  prioritized  trails  within  their  state  based  on  criteria  that  were  carefully  produced,  and  (better  yet)  were  fully  applicable  to  our  modeling.      

Carbon  Model      Model  description  The  carbon  model  measures  the  amount  of  carbon  stored  by  various  types  of  land  cover.  It  has  the  ability  to  measure  carbon  storage  at  a  given  point  in  time  as  well  as  a  change  in  carbon  storage  given  past  or  future  scenarios.  The  model  can  monetize  stored  carbon  based  on  prices  in  carbon  markets,  but  the  Natural  Capital  Project  recommends  that  users  focus  on  the  social  value  of  stored  carbon.  According  to  the  model’s  user  manual,    

[t]he  social  value  of  a  sequestered  ton  of  carbon  is  equal  to  the  so-­‐cial  damage  avoided  by  not  releasing  the  ton  of  carbon  into  the  atmosphere.  Calculations  of  social  cost  are  complicated  and  con-­‐troversial,  but  have  resulted  in  value  estimates  that  range  from  USD  $9.55  to  $84.55  per  metric  ton  of  CO2  released  into  the  at-­‐mosphere.13  

Our  research  avoided  monetization  and  focused  instead  on  measuring  the  amount  of  carbon  under  present  and  potential  future  scenarios  based  on  the  proposed  Pierce  County  Ten  Year  Priorities  and  in  order  to  discover  which  conservation  investments  have  the  highest  potential  for  carbon  sequestration.  

13  Natural  Capital  Project.  (2012)  Carbon  Storage  and  Sequestration  User  Manual.  Retrieved  from  

http://ncp-­‐dev.stanford.edu/~dataportal/invest-­‐releases/documentation/current_release/carbonstorage.html.  

Page 21: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

19  

 Preparing  the  Workspace  The  user  should  create  a  folder  that  will  comprise  the  workspace.  Within  the  workspace  create  a  folder  called,  “Input.”  InVEST  will  create  folders  for  outputs  when  it  completes  the  model.    The  Input  folder  should  contain  the  files  described  below.      Input  Needs  The  model  requires  the  following  inputs  in  order  to  measure  carbon  sequestration.  • Current  land  use/land  cover  (LULC):  This  is  the  foundation  of  the  model.  InVEST  requires  

a  raster  file  which  identifies  each  type  of  land  cover  with  a  numeric  code.  The  codes  may  be  arbitrarily  assigned  numbers,  but  should  correspond  with  the  codes  in  the  car-­‐bon  pool  file  described  next.  Each  analysis  cell  must  contain  a  code.  The  user  should  al-­‐so  identify  the  year  (if  running  future  scenarios)  and  spatial  resolution  of  the  data.    

• Carbon  pools:  The  model  measures  carbon  stored  in  four  carbon  pools  (with  an  optional  fifth)  using  a  table  of  LULC  classes  and  carbon  storage  measurements.  Possible  sources  of  LULC  classification  include  the  Intergovernmental  Panel  on  Climate  Change,  which  provides  generic  values,  or  more  local  data,  which  would  provide  classifications  specific  to  the  Pacific  Northwest.  The  model  considers  the  following  carbon  pools:  o Aboveground  biomass;  o Belowground  biomass;  o Soil;  o Dead  organic  matter;  o (Optional)  Parcels  with  harvested  wood  products  (represents  amount  of  carbon  

saved  by  a  product).  The  user  must  create  a  table  indicating  the  amount  of  carbon  stored  (in  Mg  ha-­‐1)  by  each  of  the  land  cover  types.  Rows  consist  of  land  cover  types;  columns  consist  of  car-­‐bon  pools.  If  measurements  for  a  carbon  pool  are  not  available,  the  user  should  assign  a  zero  value,  as  in  the  example  table  below.  Values  in  the  column  labeled  “lucode”  should  correspond  with  the  land  cover  codes  in  the  LULC  raster.  The  table  below  may  be  used  as  a  model.  The  carbon  pool  values  in  the  table  were  taken  from  an  ecosystem  services  valuation  of  Joint  Base  Lewis  McChord  and  can  be  used  for  modeling  in  the  Pacific  Northwest.14    

14  Ma,  S.,  Duggan,  J.,  Eichelberger,  B.,  McNally,  B.,  Foster,  J.,  Pepi,  E.,  Conte,  M.,  Daily,  G.,  Ziv,  G.  (prepub-­‐lication)  Valuation  of  Ecosystem  Services  to  Inform  Military  Base  Management:  The  Case  of  Joint  Base  Lewis  McChord.  

Page 22: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

20  

 • Future  scenario(s):  The  model  analyzes  proposed  changes  to  LULC  in  order  to  measure  a  

change  in  carbon  storage  and  sequestration.  The  user  must  obtain  a  second  LULC  raster  or  change  the  original  raster  to  depict  the  future  scenario.    

 Outputs  To  date,  our  team  has  only  run  the  model  to  measure  the  present  amount  of  carbon  stored  in  our  focus  area.  Running  the  model  this  way  produces  two  outputs,  a  summary  file  with  the  to-­‐tal  amount  of  carbon  stored,  and  a  .tif  file  (viewable  in  ArcMap)  to  which  the  user  may  assign  a  graduated  color  scale  to  visually  depict  carbon  storage  by  pixel.      When  using  a  future  scenario  the  model  will  provide  totals  of  the  number  of  tons  of  carbon  cur-­‐rently  stored  and  the  number  of  tons  to  be  stored  in  a  future  scenario.  It  will  also  provide  a  map  that  shows  the  differences  between  current  and  future  scenarios,  as  well  as  carbon  storage  to-­‐tals  for  each  of  the  individual  carbon  pools.      Recommendations  The  Carbon  model  is  relatively  simple  compared  to  other  InVEST  models.  However,  the  user  should  take  care  if  it  is  necessary  to  convert  the  LULC  file  to  a  raster.  In  our  work  the  conversion  tool  in  changed  the  order  and  values  of  the  LULC  types  in  the  attributes  table  so  it  no  longer  corresponded  with  our  carbon  pool  table.  This  can  be  easily  resolved  by  adjusting  the  carbon  pool  table  to  match  the  attributes  table  of  the  converted  LULC  raster.      

Biodiversity  Model  The  Biodiversity  model  measures  habitat  degradation,  habitat  quality,  and  habitat  rarity  within  the  defined  geography.    It  can  be  used  to  evaluate  how  different  scenarios  can  lead  to  condi-­‐tions  that  threaten  habitat  and  therefore  threaten  biodiversity.  It  has  the  ability  to  consider  le-­‐gal  land  protections  as  well  as  physical  barriers  that  may  affect  how  much  an  impact  threats  to  habitat  may  have.      Input  Needs  

Page 23: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

21  

In  order  to  determine  a  relative  measure  of  these  variables  across  the  area,  several  inputs  are  needed.  The  model  requires  the  habitat  types  in  the  area  and  their  relative  sensitivity  to  threats.  In  addition,  the  threats  to  those  habitats  are  defined  and  the  distance  those  threats  affect  habi-­‐tats.  Users  should  determine  priority  species  and  their  habitats  in  order  to  identify  the  land  co-­‐vers  of  interest  and  the  threats  to  those  habitats.      The  numbers  used  in  the  example  data  spreadsheets  below  are  estimates  and  should  not  be  used  for  analysis.      For  the  Puyallup-­‐White  watershed,  we  have  focused  on  using  the  model  to  add  rarity  and  quali-­‐ty  ratings  to  areas  already  identified  for  biodiversity  conservation.  The  model  will  only  consider  roads,  trails  and  urban  development  as  threats  to  the  habitat.  Roads  provide  human  access  to  habitat  and  introduce  potentially  harmful  runoff.  Trails  introduce  a  threat  of  spread  of  invasive  species  along  the  trail.  Human  activities  such  as  production  of  waste  and  disturbance  of  land  in  developed  areas  also  threaten  habitat.      The  different  land  covers  in  our  geography  will  be  affected  differently  by  the  threats,  which  will  be  accounted  for  in  the  model  by  weighting.  The  differences  in  a  threat’s  distance  of  influence  are  also  included  in  the  model.    For  example,  roads  will  affect  habitat  only  in  close  proximity,  where  developed  areas  will  have  a  wider  ranging  overall  effect.  Also  incorporated  into  the  model  are  legal  and  physical  barriers  to  threats  such  as  parks  or  preserves        GIS  Data  Needs  Outline  of  focus  area  Land  Use  Land  Cover  with  habitats  of  species  of  interest  Pierce  County  Biodiversity  Corridors  and  Connectors  10  year  priorities  (or  other  the  ROSS  priori-­‐ty  boundary  areas)  Separate  maps  for  the  threats  to  the  habitats  of  species  of  interest     -­‐High,  medium,  and  low  density  developed  areas     -­‐Roads     -­‐Trails    Protected  areas     -­‐preserves/parks    Model  Specific  Data  Needs:  For  each  threat:  

-­‐“The  maximum  distance  over  which  each  threat  affects  habitat  quality  (measured  in  km).  “15  

-­‐“The  impact  of  each  threat  on  habitat  quality,  relative  to  other  threats…  Weights  can  range  from  1  at  the  highest,  to  0  at  the  lowest.”16  The  distance  of  the  threat  of  road  and  

15  InVEST  Online  User’s  Guide.  Retrieved  from:  http://ncp-­‐dev.stanford.edu/~dataportal/invest-­‐releases/documentation/current_release/.  Accessed  March  2014.  16  Ibid.  12  

Page 24: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

22  

highway  are  based  on  a  study  of  indicators  of  threats  to  biodiversity.17    The  distance  of  the  threat  of  development  was  assumed  to  be  greater  than  highway.  

             rd=roads,  hwy=highway,  trl=trail,  dvp=developed  land    For  each  habitat:  

-­‐”The  relative  sensitivity  of  each  habitat  type  to  each  threat.  Values  range  from  0  to  1,  where   1  represents  high  sensitivity  to  a  threat  and  0  represents  no  sensitivity.”  Land  cover  that  is  potential  habitat  is  indicated  with  a  “1”  in  the  habitat  column.  Sensitivities  in  the  table  below  were  based  loosely  on  the  findings  of  Alkemade  et  al.  18  

LULC   NAME   HABITAT   L_rd   L_hwy   L_trl   L_dvp  11   Open  Water   0   0   0   0   0  21   Developed,  Open  Space   0   0   0   0   0  22   Developed,  Low  Intensity   0   0   0   0   0  23   Developed,  Medium  Intensi-­‐

ty  0   0   0   0   0  

24   Developed,  High  Intensity   0   0   0   0   0  31   Barren  Land  (rock/sand/clay)   0   0   0   0   0  41   Deciduous  Forest   1   0.3   0.4   0.3   0.5  42   Evergreen  Forest   1   0.3   0.4   0.2   0.4  43   Mixed  Forest   1   0.3   0.4   0.3   0.5  52   Shrub/Scrub   1   0.3   0.4   0.5   0.7  71   Grassland/Herbaceous   1   0.3   0.4   0.5   0.7  81   Pasture/Hay   0   0   0   0   0  82   Cultivated  Crops   0   0   0   0   0  90   Woody  Wetlands   1   0.5   0.6   0.4   0.6  95   Emergent  Herbaceous  Wet-­‐

lands  1   0.5   0.6   0.4   0.6  

 For  each  type  of  protected  area:  

-­‐The  relative  accessibility  of  the  area  to  degradation.  Areas  with  the  no  restrictions  on  accessibility  are  given  a  value  of  1.  Areas  that  are  protected  or  have  limited  accessibility  

17  Stoms,  David  M.  "GAP  management  status  and  regional  indicators  of  threats  to  biodiversity."  Land-­‐scape  Ecology  15.1  (2000):  21-­‐33.  18  Alkemade,  Rob,  et  al.  "Applying  GLOBIO  at  different  geographical  levels."  Ch  8  (2011):  150-­‐170.  

MAX_DIST   WEIGHT   THREAT  100   0.5   rd  250   0.7   hwy  30   0.3   trl  500   0.7   dvp  

Page 25: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

23  

are  given  a  value  less  than  1  relative  to  the  amount  of  protection.  Protected  areas  were  not  incorporated  into  this  model.  

 Outputs  The  model  will  compile  this  data  over  the  geography  of  interest  and  result  in  maps  showing  the  relative  measures  of  habitat  degradation,  habitat  quality,  and  habitat  rarity  as  predicted  by  the  model.  After  other  future  scenarios  are  determined  and  run  in  the  model,  the  different  out-­‐comes  should  be  compared  to  determine  better  and  worse  results  for  biodiversity.  

 Limitations  and  Recommendations  The  model  in  this  study  was  designed  specifically  to  provide  a  coarse  measure  of  habitat  rarity  and  quality  to  prioritize  the  conservation  of  land  already  designated  to  preserve.    However,  this  model  could  be  used  to  assess  the  overall  habitat  rarity  for  specific  species  of  interest  through-­‐out  the  entire  watershed.  This  would  require  more  specific  research  and  knowledge  of  the  spe-­‐cies  and  habitat  in  question.        

Managed  Timber  Production  Model    This  InVEST  model  has  been  developed  to  measure  the  amount  and  volume  of  the  timber  pro-­‐duced  over  a  time  period  and  to  calculate  the  timber’s  net  present  value.  The  amount  of  timber  harvests  from  both  natural  forests  and  plantations  that  are  managed  can  be  estimated  by  using  this  model.  On  the  other  hand,  the  model  can  only  be  applied  to  legally  harvested  timber  by  the  government,  local  groups  like  tribes,  private  companies  and  communities.  Timber  harvested  without  legal  rights  cannot  be  calculated  with  this  model,  but  the  Open  Access  Timber  and  Non-­‐Timber  Products  InVEST  models  that  will  be  released  soon  can  also  be  applied  in  our  project  in  order  to  deal  with  this  type  of  timber  harvesting.  One  of  the  key  areas  of  the  the  ROSS  project  is  “Rural  and  Resource  Lands”.  The  managed  tim-­‐ber  production  model  can  be  beneficial  in  this  project  in  terms  of  calculating  the  opportunity  costs  of  preserving  a  forestland  or  opening  it  up  for  development.      General  Data  Needs  GIS  polygon  file  (a  vector  database)  where  the  forest  practices  (timber  harvesting  parcels)  can  be  seen.    Model-­‐specific  Data  Needs  The  model  first  of  all  requires  a  vector  GIS  dataset  that  shows  on  the  map  the  parcels  where  timber  is  harvested  or  planned  for  future  harvest.  Secondly,  the  information  about  harvest  lev-­‐els,  frequency  of  harvest  and  harvest  and  management  costs  for  each  timber  harvest  parcel  is  needed.  Thirdly,  the  period  of  time  for  which  the  calculation  will  be  made  should  be  selected.  The  model  can  make  two  types  of  calculations  in  this  regard:  either  the  timber  parcel  map  can  be  related  to  the  current  map  or  to  a  future  scenario  map.  For  calculating  the  volume  of  the  harvested  wood  an  expansion  factor  (BCEF)  is  used  in  the  model  that  transforms  the  mass  of  harvested  wood  into  volume.  

Page 26: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

24  

In  order  to  calculate  the  value  of  the  timber  produced  the  marketplace  value  of  the  wood  should  be  given  into  the  table  of  the  model.  In  addition  to  that,  market  discount  rate  is  being  used  while  making  calculations  about  the  value  of  timber  produced.    Example  spreadsheet  of  the  data  input  

Par-­‐cel_ID  

Parcl_area  

Perc_harv  

Freq_harv  

Harv_mass  

Price  

Maint_cost  

Harv_cost  

T   Immed_harv  

BCEF  

1   1000   2.22   1   80   300   190   50   50  

Y   1  

2   1000   2.22   1   70   200   260   124   50  

Y   1  

3   1000   25   20   70   200   310   225   50  

N   1  

4   500   100   1   95   350   180   45   1   Y   1  5   500   20   2   95   400   190   105   1

0  Y   1  

 Timber  model  outputs  can  be  viewed  in  this  power  point  presentation  in  more  detail:  http://ncp-­‐dev.stanford.edu/~dataportal/training_feb2012_stanford/Timber%20model_ShanMa_12feb9.pdfWebsites:  Washington  Department  of  Natural  Resources  has  a  special  section  about  Forest  Practices:  http://www.dnr.wa.gov/  There  are  GIS  Spatial  Data  Sets  available  about  the  Forest  Practices  where  the  timber  harvest  areas  can  be  seen  in  polygons.  The  information  about  the  volume  of  timber  produced  is  availa-­‐ble  too,  however  for  other  data  needs  (such  as  frequency  of  harvesting,  percentage  of  harvest-­‐ing,  maintenance  cost,  and  harvesting  cost)  information  from  landowners  is  needed.    Outputs  This  model  gives  as  an  output  the  amount  and  volume  of  the  timber  produced  over  a  time  peri-­‐od  and  the  timber’s  net  present  value.      Recommendations  The  model  runs  based  on  estimated  values,  such  as  the  percentage  of  the  harvested  forest,  the  mass  of  harvested  timber,  the  frequency  of  harvesting.  The  harvesting  and  maintenance  costs  are  thought  to  stay  unchanged  throughout  the  time  period  selected.  However,  these  numbers  can  change  due  to  several  factors  such  as  changes  in  the  mixture  of  tree  species  in  harvest  are-­‐as.  Thus,  it  can  be  argued  that  the  length  of  time  period  selected  for  the  calculations  can  play  a  role  in  determining  the  accuracy  of  the  estimations  made  by  the  model.      

Page 27: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

25  

Appendix  B:  VEST  Instructions    

Valuing  Ecosystem  Service  Together  (VEST)    We  are  a  group  of  UW  graduate  students  working  to  identify  methods  and  tools  that  could  aid  the  Regional  Open  Space  Strategy  (the  ROSS)  in  the  prioritization  of  land  conservation.  The  as-­‐signment  of  the  value  of  ecosystem  services  provided  by  different  land  types  is  very  difficult  and  often  not  clearly  defined  in  literature.    In  order  to  help  the  ROSS  ecosystem  services  com-­‐mittee  identify  where  resources  might  be  best  used  to  investigate  ecosystem  valuation  more  specifically  in  the  watersheds,  we  call  on  the  ROSS  team  to  contribute  their  expertise  to  this  col-­‐laborative  effort.  We  appreciate  your  help  in  exploring  how  this  new  tool  could  assist  the  ROSS.      Directions  Please  fill  in  the  table  and  information  about  you  in  the  attached  excel  document.  When  you  are  finished,  save  the  file  as  “[your  last  name_ESframework]”  and  attach  it  to  an  email  sent  to  Jenny  Duggan  ([email protected]).    Please  respond  by  March  3rd.      Types  of  land  investments  are  listed  by  column  and  ecosystem  services  are  listed  by  row  in  the  excel  document.  For  each  row,  please  allot  points  to  each  land  investment  type  based  on  its  relative  contribution  to  the  corresponding  ecosystem  service.  More  points  indicate  a  greater  contribution.  There  are  36  points  to  allot  for  each  row.  You  can  allot  each  land  investment  dif-­‐ferently  (ex.  rank  1-­‐8),  give  all  the  points  to  only  one  land  investment  type,  or  distribute  points  in  any  other  way  you  like.  Some  of  the  ecosystem  services  such  as  “aesthetics”  require  more  subjective  judgments.  Others  call  on  your  expert  opinion  about  the  function  of  ecosystems.  If  you  do  not  feel  comfortable  assigning  points  for  a  particular  ecosystem  service,  you  may  leave  that  row  blank.  However,  if  you  choose  to  assign  points  to  one  land  investment  in  a  particular  row,  you  must  distribute  the  rest  of  the  36  points  in  the  row.    The  definitions  of  each  ecosystem  service  can  be  found  in  the  second  tab  of  the  excel  document.    We  used  the  Millennium  Ecosystem  Assessment  framework  to  develop  this  tool.      Assumptions    1.  All  investments  will  be  made  by  public  or  not-­‐for-­‐profit  organizations  with  the  intention  of  public  benefit.  Private  benefits  may  result  from  the  investment,  but  the  analysis  is  based  on  the  intention  of  public  benefit.  2.  Agencies  would  follow  best  management  practices  in  perpetuity  for  their  land  investments.  While  this  may  not  be  realistic,  it  will  allow  for  easier  comparisons.    3.  Only  consider  effects  on  ecosystem  services  that  are  generated  directly  from  the  acquired  land  type,  absent  of  additional  investment.  For  example,  forest  acquisition  provides  carbon  se-­‐questration  and  timber  production,  but  would  not  necessarily  provide  aesthetic  value  or  recrea-­‐tional  opportunities  without  further  investments  in  trail  building  or  campgrounds.  

Page 28: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

26  

4.  Do  not  consider  opportunity  costs  that  may  be  forgone  by  making  one  type  of  investment  over  another.    

Page 29: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

27  

 

Appendix  C:  Annotated  Bibliography    Alcamo,  Joseph,  et  al.  "Ecosystems  and  human  well-­‐being:  a  framework  for  assessment."  (2003).  

This  paper  outlines  a  framework  that  divides  services  into  provisioning,  regulating,  cultural,  and  supporting.    It  also  includes  a  discussion  of  robustness  of  ecosystems  and  different  stabi-­‐lization  states  as  well  as  ways  to  account  for  substitution  services.  

 Batker,  D.,  Schmidt,  R.,  Harrison-­‐Cox,  J.,  Christin,  Z.  The  Puyallup  River  Watershed:  An  Ecological  Economic  Characterization.  Earth  Economics.  2011.  

This  is  an  overview  of  land  cover  types  and  biodiversity  in  the  watershed.  It  proposes  a  gen-­‐eral  plan  for  approaching  the  valuation  of  ecosystem  services  in  the  area.  

 Chan,  Kai  MA,  et  al.  "Conservation  planning  for  ecosystem  services."  PLoS  biology  4.11  (2006):  e379.  

This  study  looks  at  how  targeting  conservation  by  different  prioritizations  (i.e.  biodiversity  or  pollination)  will  result  in  overall  ecosystem  services  benefits.    They  used  MARXAN  as  a  valua-­‐tion  tool.  

 Díaz,  Sandra,  et  al.  "Linking  functional  diversity  and  social  actor  strategies  in  a  framework  for  interdisciplinary  analysis  of  nature's  benefits  to  society."  Proceedings  of  the  National  Academy  of  Sciences  108.3  (2011):  895-­‐902.  

This  is  a  framework  for  evaluating  ES  using  social  actor  priorities  as  a  guide.  They  argue  that  biodiversity  by  itself  doesn't  mean  much  to  people  and  doesn't  always  have  quantifiable  re-­‐sults.  They  propose  having  different  kinds  of  social  actors  describe  how  different  compo-­‐nents  of  the  ecosystem  are  important  to  them  and  using  those  to  prioritize  ES.    This  approach  allows  them  to  integrate  social  information  and  ecological  information  and  also  potentially  conflicting  land  use  strategies.    

 Fürst,  Christine,  Katrin  Pietzsch,  and  Franz  Makeschin.  "Pimp  your  landscape."  Sustainable  De-­‐velopment  2005  (2008):  2014.  

A  generic  approach  for  integrating  regional  stakeholder  needs  into  land  use  planning.    Goldstein,  J.  H.,  et  al.  “Integrating  ecosystem-­‐service  tradeoffs  into  land-­‐use  decisions.”  Pro-­‐ceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  109.  19  (2012):  7565-­‐70.    

This  study  quantifies  ecosystem-­‐service  values  for  a  land-­‐use  development  plan  in  Hawaii  by  using  InVEST  tools.  The  financial  and  environmental  impacts  of  seven  planning  scenarios  are  evaluated  that  include  different  land  use  types  such  as  biofuel  feedstock,  food  crops,  forest-­‐ry,  livestock  and  residential  development.  Three  metrics  that  are  being  used  for  comparison  are:  carbon  storage,  water-­‐quality  improvement,  and  financial  return.  The  researchers  found  

Page 30: Report draft 3.21 v5 · 2* UNDP,*ecosystem*services*are*“benefits*people*obtain*from*ecosystems”2.**The*reportcatego rizes*ecosystem*services*into*four*areas:*provisioning)services*such

28  

out  that  there  are  trade-­‐offs  between  carbon  storage  and  water  quality  and  between  finan-­‐cial  gain  and  environmental  improvement.  In  the  end  it  was  decided  to  implement  a  plan  that  will  improve  carbon  storage  (0.5%  increase)  but  that  will  have  negative  effects  on  water  quality  (15.4%  increase  in  nitrogen  export).  There  are  also  some  plans  to  reduce  this  nitro-­‐gen  increase  by  using  vegetation  buffers  that  will  reduce  the  increase  to  a  4.9%  level.  

 Halpern,  Benjamin  S.,  et  al.  “Achieving  the  triple  bottom  line  in  the  face  of  inherent  tradeoffs  among  social  equity,  economic  return,  and  conservation.”  Proceedings  of  the  National  Academy  of  Sciences  110.15  (2013):  6229-­‐6234.  

This  study  uses  three  case  studies  to  develop  a  theory  of  how  to  formally  include  equity  in  conservation  planning  and  prioritization.    

 Machado,  E.A.,  et  al.  “Prioritizing  farmland  preservation  cost-­‐effectively  for  multiple  objec-­‐tives.”    Journal  of  Soil  and  Water  Conservation  61.5  (2006):  250-­‐258.  

In  this  study  the  researchers  present  a  framework  they  have  created  in  order  to  prioritize  farmland  conservation  projects.  The  framework  includes  the  social  benefits  of  farmlands  and  a  ranking  system  based  on  the  following  criteria  is  used:  objectives,  priorities,  farmland  val-­‐ue  expected  to  be  lost  to  development,  secured  farmland  value  and  the  cost  of  farmland  conservation.  

 Menzel,  Susanne;  Teng,  Jack.  “Ecosystem  services  as  a  stakeholder-­‐driven  concept  for  conserva-­‐tion  science.  

The  authors  contend  that  ES  valuation  as  used  today  introduces  conflict  rather  than  facilitat-­‐ing  communication  because  it  strengthens  the  power  of  those  (experts  and  scientists)  who  already  hold  it.    They  argue  that  true  sustainable  solutions  will  have  to  incorporate  local  user  values  and  preferences.    

 Naidoo,  Robin,  et  al.  "Global  mapping  of  ecosystem  services  and  conservation  priorities."  Pro-­‐ceedings  of  the  National  Academy  of  Sciences  105.28  (2008):  9495-­‐9500.  

This  study  mapped  four  basic  ecosystem  services:  Carbon  sequestration,  Carbon  storage,  Grassland  production  of  livestock,  Water  provision.  They  found  that  choosing  conservation  based  on  biodiversity  produced  no  more  ecosystem  services  than  random  plots.  However,  there  is  value  in  choosing  win-­‐win  sections  that  have  both.