royal belgian institute of marine engineers propeller … and increases the ship’s response to...

2
Advanced propeller designs suit slow revving engines Advanced propeller designs such as the NPT, Kappel and CLT find their worth with ultra slow speed diesel engines, writes Wendy Laursen dvanced propeller designs are sometimes criticised for being expensive and difficult to manufacture, but they are facilitating the move to ultra slow speed diesel engines which offer improved propulsion efficiency and therefore reduced emissions. Design theory dictates that efficiency improves if low rpm engines are combined with larger diameter propellers but conventional propeller designs can result in an oversized, impractical solution. Advanced designs then, offer an alternative for the new range of longer stroke and lower engine speed engines under development by manufacturers such as Wärtsilä and MAN Diesel and Turbo. Stone Marine Propulsion is currently working on orders and developing designs to combine its ‘new profile technology’ (NPT) propellers with the new technology engines from both of these manufacturers. “For a given rpm the NPT is smaller than a conventional propeller,” says Toby Ramsay, technical manager at Stone. “Or for the same diameter a lower, more efficient rpm can be selected. Gains of up to 10% are achievable if the engine rpm can be optimised to suit the NPT optimum diameter in this way.” The secret to the improved performance of the NPT propeller is in the special blade sections, says Mr Ramsay. The blades were developed jointly in Japan and the UK by Dr Noriyaki Sasaki, formerly chief hydrodynamicist at Sumitomo Heavy Industries in Japan. Much of the research was done at the UK’s Newcastle University. Stone claims the NPT propeller has higher efficiency than conventional propellers (around 4%), but without the complex tip geometry and the high production costs associated with other high efficiency propeller types. A smaller diameter and blade surface area than conventional propellers means a lower weight, which is better for the shafting design, and bigger hull clearances, which result in lower vibrations. “The cost of the NPT is the same or cheaper than a conventional propeller because of this weight advantage and the lack of complex geometry,” says Mr Ramsay. Around 50 NPT propellers have been supplied by Stone Marine Propulsion. Last year, sea trials of a 32,000dwt bulk carrier delivered to DS Norden by Jiangmen Nanyang Shipyard demonstrated power savings of about 6% compared to a sister vessel with a conventional propeller, both ships having a standard, not low revving engine. Stone is currently working on several orders to supply optimal diameter NPT propellers for vessels that will have very low revving engines installed. In these cases, the equivalent conventional propeller would not fit the ship unless it was heavily restricted from its optimum diameter. “We are seeing an increasing number of newbuilds that have a lot less power than corresponding ships built a few years ago and the reason for that is to try and save fuel. They were basically overpowered before so power is being trimmed right down to a minimum now, and these new engines are part of that trend.” It is possible to install boss cap fins on the NPT propeller for further energy savings, and rudder bulbs can also be used. MAN Diesel and Turbo took ownership of the Kappel propeller, another advanced design, in April this year. The technology will be implemented across a range of fuel saving and energy optimisation solutions including the company’s Gtype ultralong stroke low speed engines, rudder bulbs, highefficiency rudders, hull flow guiding devices and ducts. MAN Diesel and Turbo claims that by combining a Kappel propeller with a Gtype engine, fuel consumption can be reduced by up to 10%. Fuel savings of up to 6% are possible with just a Kappel propeller and conventional engine compared to conventional propeller designs. This is achieved through a reduction in pressure impulses which in turn means that a bigger and more efficient propeller can be used with reduced clearance between hull and propeller tip. The Kappel design minimises water flow over the blade tip as a result of tip vortices which form due to the difference in pressure between the pressure and suction side of the propeller. With flow over the tip minimised, the outer region of the Kappel propeller maintains a higher efficiency. “Tip clearance is one of the parameters which determine how large a propeller diameter can be fitted to a specific vessel and as a larger propeller will have a better open water efficiency, designers seek to maximise the propeller diameter,” says Karsten Borneman, senior sales manager for propellers and aft ship systems at MAN Diesel and Turbo. “An advantage of the Kappel propeller is that the propeller induced pressure impulses are lower than conventional propellers. Today we normally suggest using the same Kappel propeller diameter as a conventional propeller as the design is often based on a conventional propeller, but for future projects where the initial vessel design can be based on Kappel propellers, the propeller diameter can actually be slightly larger with less tip clearance and still keep same pressure impulses, hereby offering the largest possible propulsion efficiency.” A Royal Belgian Institute of Marine Engineers

Upload: doannhu

Post on 22-May-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Royal Belgian Institute of Marine Engineers propeller … and increases the ship’s response to rudder action. The propellers have end plates fitted to the blade tips on the pressure

AdvancedpropellerdesignssuitslowrevvingenginesAdvanced propeller designs such as the NPT, Kappel and CLT find their worth with ultra slow speed diesel engines, writes Wendy Laursen  

dvanced  propeller  designs  are  sometimes  criticised for being expensive and difficult to manufacture, but they  are  facilitating  the move  to  ultra  slow  speed 

diesel  engines which  offer  improved  propulsion  efficiency and  therefore  reduced  emissions.  Design  theory  dictates that  efficiency  improves  if  low  rpm  engines  are  combined with  larger diameter propellers but  conventional propeller designs  can  result  in  an  oversized,  impractical  solution. Advanced  designs  then,  offer  an  alternative  for  the  new range  of  longer  stroke  and  lower  engine  speed  engines under development by manufacturers such as Wärtsilä and MAN Diesel and Turbo.    Stone Marine  Propulsion  is  currently  working  on  orders and  developing  designs  to  combine  its  ‘new  profile technology’  (NPT)  propellers  with  the  new  technology engines from both of these manufacturers. “For a given rpm the NPT is smaller than a conventional propeller,” says Toby Ramsay,  technical  manager  at  Stone.  “Or  for  the  same diameter a lower, more efficient rpm can be selected. Gains of  up  to  10%  are  achievable  if  the  engine  rpm  can  be optimised to suit the NPT optimum diameter in this way.”    The  secret  to  the  improved  performance  of  the  NPT propeller  is  in  the  special blade  sections,  says Mr Ramsay. The blades were developed jointly in Japan and the UK by Dr Noriyaki  Sasaki,  formerly  chief  hydrodynamicist  at Sumitomo Heavy  Industries  in  Japan. Much of the research was done at the UK’s Newcastle University. Stone claims the NPT  propeller  has  higher  efficiency  than  conventional propellers  (around  4%),  but  without  the  complex  tip geometry  and  the  high  production  costs  associated  with other high efficiency propeller types. A smaller diameter and blade  surface  area  than  conventional  propellers means  a lower weight, which  is  better  for  the  shafting  design,  and bigger hull clearances, which result in lower vibrations. “The cost of the NPT is the same or cheaper than a conventional propeller because of  this weight advantage and  the  lack of complex geometry,” says Mr Ramsay.    Around  50 NPT  propellers  have  been  supplied  by  Stone Marine Propulsion. Last year, sea trials of a 32,000dwt bulk carrier  delivered  to  DS  Norden  by  Jiangmen  Nanyang Shipyard  demonstrated  power  savings  of  about  6% compared  to  a  sister  vessel with  a  conventional propeller, both ships having a standard, not low revving engine. Stone  is  currently  working  on  several  orders  to  supply optimal diameter NPT propellers  for  vessels  that will have very  low  revving  engines  installed.  In  these  cases,  the equivalent  conventional  propeller  would  not  fit  the  ship unless  it was heavily restricted from  its optimum diameter. “We  are  seeing  an  increasing  number  of  newbuilds  that have a  lot  less power  than corresponding ships built a  few years  ago  and  the  reason  for  that  is  to  try  and  save  fuel. They were basically overpowered before so power  is being trimmed right down to a minimum now, and these new engines are part of that trend.” 

It is possible to install boss cap fins on the NPT propeller for further energy savings, and rudder bulbs can also be used. MAN  Diesel  and  Turbo  took  ownership  of  the  Kappel propeller,  another  advanced design,  in April  this  year. The technology  will  be  implemented  across  a  range  of  fuel saving  and  energy  optimisation  solutions  including  the company’s  G‐type  ultra‐long  stroke  low  speed  engines, rudder  bulbs,  high‐efficiency  rudders,  hull  flow  guiding devices and ducts. MAN Diesel  and  Turbo  claims  that by  combining  a Kappel propeller  with  a  G‐type  engine,  fuel  consumption  can  be reduced by up to 10%. Fuel savings of up to 6% are possible with  just  a  Kappel  propeller  and  conventional  engine compared  to  conventional  propeller  designs.  This  is achieved through a reduction in pressure impulses which in turn means that a bigger and more efficient propeller can be used with reduced clearance between hull and propeller tip.    The Kappel design minimises water flow over the blade tip as a result of tip vortices which form due to the difference in pressure  between  the  pressure  and  suction  side  of  the propeller.  With  flow  over  the  tip  minimised,  the  outer region of the Kappel propeller maintains a higher efficiency.    “Tip clearance  is one of  the parameters which determine how  large  a  propeller  diameter  can be  fitted  to  a  specific vessel  and  as  a  larger  propeller  will  have  a  better  open water efficiency, designers  seek  to maximise  the propeller diameter,” says Karsten Borneman, senior sales manager for propellers  and  aft  ship  systems  at MAN Diesel  and  Turbo. “An advantage of the Kappel propeller  is that the propeller induced  pressure  impulses  are  lower  than  conventional propellers.  Today  we  normally  suggest  using  the  same Kappel propeller diameter as a conventional propeller as the design  is often based on  a  conventional propeller, but  for future projects where the initial vessel design can be based on Kappel propellers, the propeller diameter can actually be slightly  larger  with  less  tip  clearance  and  still  keep  same pressure  impulses,  hereby  offering  the  largest  possible propulsion efficiency.” 

A

Royal Belgian Institute of Marine Engineers

Page 2: Royal Belgian Institute of Marine Engineers propeller … and increases the ship’s response to rudder action. The propellers have end plates fitted to the blade tips on the pressure

   MAN Diesel  and Turbo optimises  its propeller designs  to suit  individual  ships  and  takes  a  holistic  approach  that includes specified maximum continuous rating (SMCR) fine‐tuning,  turbocharger  layout,  PTO  solutions  and  boosting solutions. Via its VibraSafe concept, the company also takes a holistic approach  to vibration control. This  includes main engine  turning,  shaft  line  dimensions,  propeller  blade number  and  phasing  of  propeller  and  firing  order. Computerised Optimisation of Propulsion     Systems  (COPS) is  an  expert  system  that  ensures  more  accurate  pre‐optimisation of hydrodynamic and mechanical aspects of a propulsion  system  by  integrating  statistical  data  and torsional vibration data.    Mr  Borneman  sees  big  fuel  saving  potential  in  replacing existing  propeller  designs  with  the  latest  state‐of‐the‐art propeller designs especially if the vessel profile  is changing, for example due to slow steaming. MAN Diesel & Turbo has established  a  special  department  which  looks  into  these retrofit matters  and  claims  the  payback  time  is  often  less than two years.    Sistemar  offers  another  advanced  propeller  design,  the contracted  loaded  tip  (CLT)  propeller, which  the  company claims  is  tip‐vortex  free  so  the  downstream  overpressure produced  by  a  CLT  propeller  is  higher  than  for  equivalent conventional propellers. This  increases  the pressure on the rudder and  increases  the  ship’s  response  to  rudder action. The propellers have  end plates  fitted  to  the blade  tips on the pressure side of the blade and act as a barrier avoiding the communication of water across the tips. The end plates are positioned so that they cause minimal viscous resistance and therefore are parallel to the  incoming flow and shaped to the relative motion of the water, taking into account the fluid  vein  contraction.  CLT  propellers,  due  to  their  higher efficiency,  help  reduce  fuel  consumption,  emissions  and both  the  energy  efficiency  design  index  and  the  energy efficiency  operational  index  without  requiring  any modification  to  the  vessel,  says  Juan  González‐Adalid, managing director of Sistemar.  AP Møller‐Maersk  and  Sistemar  are  currently  involved  in the TRIPOD research project (TRIple Energy Saving by Use of CRP, CLT and PODded Propulsion), together with a number of  other  organisations  including  ABB,  VTT,  Cehipar  and Cintranaval‐Defcar. Currently most  ship propellers  installed on  cargo  vessels  are  thought  to waste  about  40%  of  the energy  generated,  through  rotational  losses  in  the  wake, 

vortex  generation,  noise  production  and  cavitation.  The project  aims  to  contribute  to  a  more  environmentally friendly  use  of  energy  by  improving  propulsion  efficiency and  is  studying  the  installation  of  CLT  propellers  and propulsion  pods  on  large  container  vessels  in  a  contra‐rotating  configuration.  These  three  existing  technologies have  been  used  separately  and  are  known  to  improve 

overall ship propulsion efficiency compared to conventional propulsion.  However,  they  have  never  been  combined together  in  a  single  propulsion  package.  Results  from  the project are expected next year.  CRUISE SHIP GAINS 10% EFFICIENCY Rolls‐Royce has designed a special propeller hub for its standard Kamewa propellers which increases thrust by recovering previously wasted energy from the flow of the hub vortex. In conjunction with a rudder bulb, the system can be retrofitted to single or twin screw vessels. This Promas Lite system is claimed to improve propulsive efficiency by 5% to 15%. The company says that vessels that have changed their operating profile so that the propeller blade specification is no longer ideal, or propellers that were designed without computational fluid dynamics techniques, have the most to gain.    Norwegian Cruise Lines’ 78,000gt vessel Norwegian Sun was fitted with Promas Light in January. The existing 5.8m twin Kamewa controllable pitch propellers were fitted with new blades and hub caps. Rudder bulbs were also fitted. Efficiency was improved by more than 10 per cent at cruising speeds of between 17 and 21 knots. Norwegian Cruise Lines has now placed an order to upgrade Norwegian Spirit during the vessel’s next drydocking.  ICE DESIGN LEADS TO LARGER PROPELLERS Steerprop of Finland is conducting research into the use of larger and more powerful azimuthing dual‐end contra‐rotating propellers (CRP) in both open water and ice‐going applications with the aim of bringing the improved efficiency of CRP propulsion to even larger vessels operating even further north.    Steerprop has conducted a series of ice basin model tests together with Aker Arctic Technology involving propulsors with simulated power ratings of 2.5MW, 6.5MW, 15MW and 20MW in a variety of vessel type and propulsion configurations.    The development process together with the ice basin tests revealed a number of new possibilities to use the higher thrust in addition to better efficiency of CRP propulsors in comparison to the traditional single‐propeller propulsors currently used in ice‐going applications. In particular the different nature of the CRP propellers’ slipstream has provided novel possibilities in ice‐management operations that will be further tested in upcoming ice‐basin tests.  Source:  www.motorship.com   Aug 2012