sensors for smartcity

20
Urban pipelines reliability monitoring, failure prediction and preventive maintenance IoT The Technology of Smart City

Upload: sergey-gumerov

Post on 24-Jan-2018

31 views

Category:

Engineering


2 download

TRANSCRIPT

Urban pipelines reliability monitoring,failure prediction and preventive maintenance

IoT

The Technology of Smart City

THE TEAM

2

Sergey Z.Gumerov

Sales & Marketing

10 years in IBM (SW, GBS)5 year in Orange (Equant) telecom

EugenySvalov

Finance & Operations

15 years in telecom business Orange (Equant)

Vladimir Mikhelson-Aladinsky

Research & Engineering

15 years in pipeline operators Transneft, Gasprom

THE GREAT TEAM

3

25 highly motivated and energized

5 – mechanical engineers7 – mathematician engineers 5 – software engineers5 – projects & operations

The goal generates the Team:...to boost the world by making math modeling great again…

THE TECHNOLOGY

Instrumented technical condition monitoring of urban pipelines is aimed to

significantly increase safety, reliability and cost efficiency utilities services due to:

- failure prediction & prevention maintenance planning

- discovery the weakest elements

- assignment of the best fitted time and type of maintenance operation

THE TECHNOLOGY

4

THE INFO MODEL

urban pipeline

information model

THE MATH MODEL

urban pipeline

mathematical model

THE DEVICE

portable device for

vibration monitoring

THE ARTIFICAL INTELLIGENCE

№ Pipeline type Average pipeline length,

in meters per citizen

Average length

of urban

distribution pipelines

in meters per citizen*

Average length of

in-house pipelines,

in meters per citizen

1 Totally, among them: 16.39 6.16 9.60

2 Heating 5.60 1.75 3.85

3 Natural gas 3.36 1.46 1.91

4 Water 3.26 1.37 1.92

5 Sewer 3.54 1.65 1.92

Average urban pipeline density in meters per citizen

* applicable for cities with centralized infrastructure5

THE PROBLEM SIZE

The estimation size of worldwide urban pipeline infrastructure > 30 mln. km

SIZE OF URBAN PIPELINE INFRASTRUCTURE

THE PROBLEM COST

The number of failures and costs

of urban pipeline maintenance

Benchmark for 5 mln. citizen city

6

№ Pipeline type Number of failures

per year

% of pipelines

for replacement

Annual pipeline

maintenance costs

usd per citizen

1 Totally, among them: 25 582 33,1 62

2 Heating 10 795 24 24

3 Natural gas 8 787 40 5

4 Water 1 682 39.5 13

5 Sewer 4 318 37.8 19

Pipeline’s

impact on life

quality

The worldwide annual expenditures on urban pipelines maintenance & reconstruction > 200 bln. USD

THE CAUSES OF THE PROBLEM

Failure causes on in-house networks

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2011 2012 2013 2014 2015 2016

Th

e n

um

be

r o

f fa

ilu

res p

er

yea

r

Теплоснабжение Water Sewer Natural gasHeating

Dynamic of failures on urban pipelines

Failure causes on urban distribution pipelines

7

Design features and defects

Low material properties Out-of-design dynamic load on pipes

35%

2%0,5% 62,5%

Design features and defects

Low material properties Out-of-design dynamic load on pipes

19,7%

16,4%42,6% 21,3%

Existing approaches … are improved by THE TECHNOLOGY

Repair is made in the fault (EMERGENCY repair WORK) Prevention failure by selective maintenance

The maintenance program is formed based on the age of pipeline

and evaluation of failures

Maintenance operations ranked by time to failure of pipeline single

elements

2 times reduction of pipeline failures

2 times reduction cost of pipeline maintenance & reconstruction

The Technology effects

The Technology objectives

The Technology improve the existing pipeline maintenance

approach

8

THE TECHNOLOGY SOLVING THE PROBLEM

Discovery and preventionof technical condition deviations

& potentially failure location

Calculation of time to failure and conditions for

safe operation calculation for location with discovered deviations

Maintenance program optimization based on deviations’ list ranked by

risks

The Technology opens the market for condition monitoring services size > 20 bln. usd per year worldwide

The purpose and operating

conditions

Design parameters of the

pipeline

The characteristics of the

materials

The actual load on the

pipeline

Fa

cto

rs

The pumped product (environment)

Performance design

Temperatures

Soil conditions

Working pressure

The seasonal temperature

difference

Year of construction

The magnitude of the external loads

Impact from "third party"

Diameter

Wall thickness

Orientation in space

The location of subassemblies

and pins

The location, type, and

parameters of defects and

deviations

Tensile strength

Yield strength

The modulus of elasticity

The coefficient of strain

hardening

The safety factor for

strength

Distribution of accelerations

at the distance of the pipeline

Distribution of dynamic loads

on the distance of the

pipeline

Da

taS

ou

rce

Electronic pipeline passports

Design documentation

Operational documentation

Standards & Regulations

Electronic pipeline passports

Design documentation

Operational documentation

Database of mechanical

properties of materials

Standards

Technical requirements

Portable device for

measuring dynamic

characteristics and

parameters of the pipeline

The findings and diagnostic

tests

FACTORS THE TECHNOLOGY COVERED

9

THE IMPLEMENTATION The Technology

The Info Model The Math Model Calculation results Maintenance program

Database of mechanical properties of pipeline

materials

THE INFO MODEL

filled by existed database

THE DEVICE

collected the pipeline vibration

Actual parameters dynamics loads

on pipeline

Probability of failure appearance

Deadline and conditions of safety pipeline operations

Dynamics stresschanges during the time

Replacement of most dangerous pipeline elements

Strengthening the elements of the pipeline

Localized additional diagnostic

Bring to normal conditions

Unplanned repair and replacement

Maintenance & diagnostic providers

10

1

2

3

4 5

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,001 0,01 0,1 1 10 100 1000

Time interval 1 hour., frequency 400 Hz, 4320 thousand measurements from the device

Frequency, Hz

Acceleration, m/seс2

Timeframe 2 second., frequency 400 Hz., 2400 measurements frames from each device

Time, sec

100

200

300

400

0 0,5 1 1,5 2-17550

-17450

-17350

-17250

0 0,5 1 1,5 2

-1200

-1100

-1000

-900

-800

0 0,5 1 1,5 2

THE DEVICE COLLECTED DATA STREAM

Raw data from the device The spectral density of accelerations

11

-0,006

-0,005

-0,004

-0,003

-0,002

-0,001

0

0,001

0,002

0,003

0,004

0 5 10 15 20 25

-0,008

-0,006

-0,004

-0,002

0

0,002

0,004

0,006

0 5 10 15 20 25

-0,014

-0,012

-0,01

-0,008

-0,006

-0,004

-0,002

0

0,002

0,004

0,006

0,008

0 5 10 15 20 25

Acceleration distribution through pipeline distance

for each frequency

Acceleration, m/sec2 Axis X

AxisY

Axis Z

Frequency 0.0625…200 Hz

EBА DC F G

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,001 0,01 0,1 1 10 100 1000

The spectral density of results accelerations

for every pipeline elements

Frequency, Hz

Acceleration , m/sec2

Pipeline distance 0…22.943 m

THE INFOMODEL & THE MATHMODEL CONVERT DATASTREAM TO KNOWLEDGE

Acceleration calculation

12

Distribution of small stresse through pipeline distance

0

50

100

150

200

250

0 5 10 15 20 25

Частота 0.0625 ...

Pipeline distance, m

Stress, MPa

Frequency 0.0625…200 Hz

E

D

C

F

G

The spectral density of results accelerations maximum stress for

every elements

0

50

100

150

200

250

300

350

400

0,01 0,1 1 10 100 1000

Frequency, Hz

Stress, MPa

Pipeline distance 0…24.848 m

THE INFO MODEL & THE MATH MODEL CONVERT DATASTREAM TO KNOWLEDGE

Acceleration calculations

13

1E-20

1E-18

1E-16

1E-14

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0,01 0,1 1 10 100 1000

0

50

100

150

200

250

300

1,E+00 1,E+04 1,E+08 1,E+12 1,E+16 1,E+20 1,E+24

0

50

100

150

200

250

300

0,01 0,1 1 10 100 1000

The number of cycles till destroing

Stress, MPa

Failure rate

ω* N*

λ(ω*)

ω*

* 1( *)

2 *N

Pipeline element failure rate on frequency ω*under stress σ*:

Rest lifetime for each element & pipeline

0

1

( )

T

d

σ* σ*

KNOWLEDGE ABOUT THE REST LIFETIME AND DEADLINE FOR MAINTANANCE

The order for rest lifetime calculations

14

Stress, MPa

Frequency, Hz

Frequency, Hz

Вероятность возникновения неисправности- 0,0192

1,0E-06

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E+01

01.01.1936

01.01.1940

01.01.1944

01.01.1948

01.01.1952

01.01.1956

01.01.1960

01.01.1964

01.01.1968

01.01.1972

01.01.1976

01.01.1980

01.01.1984

01.01.1988

01.01.1992

01.01.1996

01.01.2000

01.01.2004

01.01.2008

01.01.2012

01.01.2016

01.01.2020

01.01.2024

01.01.2028

01.01.2032

01.01.2036

01.01.2040

01.01.2044

01.01.2048

0,000 5,000 10,000 15,000 20,000 25,000

Дистанция по длине газопровода, м

Гамма-процентный (99.9 %) срок службы

Средний срок службы

Вероятность отказа элемента газопровода

Вероятность отказа резьбового соединения

Вероятность отказа сварного шва

Pipeline distance, m

Lifetime The probability of failure

KNOWLEDGE TO ACTION

15

gamma-percent (99,9%) lifetime

average lifetime

failure probability for each element

failure probability for screw joint

failure probability for welding joint

According to the results of application of THETECHNOLOGY it is recommended to replace 11of the structural elements of the pipeline withinsix months. Other areas and structural elementsof the pipeline under the existing loadingconditions will operate trouble-free until at least2020. The diagnosis should be regular andtimely commit changes external influences.

Action

Knowledge

Probability pipeline

failure – 1,92%

Lifetime for the weakest element – 1 month

Lifetime for the most elements – 30 years

Motion visualization

N

п/п

Element

numberElement name

Nominal

bore, mm

Date of

commissioning

Distance from

start point, m

Connection

type

Deadline for

element

replacement

Repair method

Next data for

measurementsRepair

method

Distance, m

Repair deadlineStart of

spot

End of

spot

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 pipe s/l 50 1951 0,000 welded 18.02.2046 19.02.2017

2 10 clatch 50 1951 1,800 threaded 12.06.2016 Spot

replacem

ent

1,650 2,595 27.05.2016 27.05.2017

3 20 coupling 50 1951 1,865 threaded 10.06.2016 27.05.2017

4 30 fitting 50 1951 2,015 threaded 05.06.2016 27.05.2017

5 40 crane 50 1951 2,165 threaded 31.05.2016 27.05.2017

6 50 fitting 50 1951 2,295 threaded 27.05.2016 27.05.2017

7 60 pipe s/l 50 1951 2,445 welded 03.06.2021 19.02.2017

8 70 tap 50 1951 3,025 welded 22.01.2022 19.02.2017

9 90 pipe s/l 50 1951 3,131 welded 13.02.2025 19.02.2017

10 100 tap 50 1951 6,781 welded 18.02.2046 19.02.2017

… …

The technology results

16

ACTION TO MAINTANANCE PROGRAM

Te

st №

1Te

st №

2

Te

st №

3

The weakening of the threaded connections of the tubing leads to a decrease in rigidity in connection with there

is a significant increase of vibration amplitude (change in vibration characteristics)

17

THE FIELD TESTING

19

THE COMPETITORS

THE MARKETING & SALES

investing to the team incl.: 9 marketing & sales, 8 tech.presales, 4 legal

specialists, conferences, social-media promotion

THE CLOUD CALCULATION PLATFORM

investing to the team incl.: 8 mechanical , 15 software engineers

expanding the production

20

THE INVESTMENT GOALS

THE TECHNOLOGY

THE INFO MODEL

Urban pipeline

information model

THE MATH MODEL

Urban pipeline

mathematical model

THE DEVICE

Diagnostic

portable device for

urban pipeline

THE ARTIFICAL INTELLIGENCE

THE TECHNOLOGY

THE INFO MODEL

Urban pipeline

information model

THE MATH MODEL

Urban pipeline

mathematical model

THE DEVICE

Diagnostic

portable device for

urban pipeline

THE ARTIFICAL INTELLIGENCE

THE SALES

the adopted device &

services for different

countries legislation

THE MARKETING

partner engagement &

public relations

Development

plan

Investment

funds

THANK YOUSergey Z. Gumerov

Institute of Rational Technology

Levashovsky, 24

Russia, Saint-Petersburg

[email protected]

21