shale gas: risk and benefit to health - medact · pdf fileshale gas: risk and benefit to...

112
Produced by Medact, July 2016

Upload: vuongcong

Post on 30-Jan-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

ShaleGas:RiskandBenefittoHealth

Notesfromtheliterature

ProducedbyMedact,July2016

1

Contents

Introduction...........................................................................................................................................3

FrackingandUnconventionalShaleGasProduction..............................................................................4

Assessingpotentialharmsandbenefits.................................................................................................4

Hazards,RisksandHarms.......................................................................................................................8

HazardousMaterialsandPollutants..................................................................................................8

Riskofpollutionandexposuretohazardouspollutants......................................................................10

Waterpollution....................................................................................................................................10

Groundwatercontamination...........................................................................................................18

I.Wellintegrity.....................................................................................................................................25

Wastewatermanagement....................................................................................................................27

Airpollution..........................................................................................................................................30

Healthimpactsofpollution..................................................................................................................34

Hazardsandrisksassociatedwithtraffic,noise,lightandodour........................................................42

Social,economicandecologicaleffects...............................................................................................45

Fugitiveemissions................................................................................................................................55

RegulationandRiskManagement.......................................................................................................64

RegulationandSGP..........................................................................................................................65

AnoverviewoftheregulatorysystemforSGPinEngland...............................................................66

Concernsabouttheregulatorysystem............................................................................................69

Riskandimpactassessments.......................................................................................................69

Designandconstructionofwells.................................................................................................69

Drilling..........................................................................................................................................70

Baselinemonitoring.....................................................................................................................71

Reducedemissionsorgreencompletions....................................................................................71

Abandonedwells..........................................................................................................................72

Managementofwastewateranddeepinjection.........................................................................72

2

Sanctionsregime..........................................................................................................................74

Capacityandexpertiseofregulatorybodies................................................................................74

Climatechangeandhealth...................................................................................................................76

GlobalWarmingandclimatechange...........................................................................................76

Impactsonglobalhealth..............................................................................................................77

GlobalGHGemissions,carbonbudgetsandinternationalpolicy........................................................82

Theroleofshalegasinmitigatingglobalwarming......................................................................85

TheUK:GHGemissionsandenergypolicy.......................................................................................89

TheUK’scarbonbudgets..............................................................................................................89

Trendsinenergyuse....................................................................................................................92

AchievingtheUK’s2050targetforGHGemissionsreductions...................................................93

Theroleofgasingeneratingelectricity.......................................................................................96

RenewableEnergy........................................................................................................................97

Energysecurity.............................................................................................................................99

CarbonCaptureandStorage(CCS).....................................................................................................100

Energyefficiencyandconservation............................................................................................104

EconomicsandPoliticalLeadership...................................................................................................104

Economics......................................................................................................................................104

Politicalleadership.........................................................................................................................107

CoBenefits.....................................................................................................................................109

3

Introduction

1. InApril2015,Medactpublishedanassessmentofthepotentialhealththreatsassociatedwithshalegasproduction(SGP),includingtheprocessofhighvolume,hydraulicfracturing(‘fracking’)andreportedthat:• significanthazardsareunavoidablyassociatedwithfrackingandcouldimpactnegativelyon

thehealthandwellbeingoflocalcommunities;• theregulatoryframeworkforfrackingintheUKwasunclear,incompleteandinadequate,and

compromisedfurtherbybudgetandstaffcutstoregulatoryagencies;and• shale gas is not a ‘clean’ source of energy and may hinder our transition towards a

decarbonisedenergysystem.2. MedactconcludedthattherisksandthreatsassociatedwithSGPoutweigheditspotential

benefits,andrecommendedthatitshouldnotbeencouragedintheUK.

3. Sincepublishingthatreport,MedacthascontinuedtomonitorthescientificliteratureandpolicydebatesconcerningSGP.Inaddition,staffatMedacthavebeenparticipatinginanacademicexerciseaimedatpublishingasystematicreviewofthescientificresearchonthehealtheffectsofSGPinapeer-reviewedacademicjournal.

4. Thisdocumentconsistsofasetofsemi-structurednotesthathavebeenusedtoinformanewpublicationthatsetsoutMedact’spositiononSGP.Thisnewpublication(ShaleGasProductioninEngland:AnUpdatedPublicHealthAssessment)isfreelyavailablefromtheMedactwebsite.

5. Thepurposeofthisdocumentistoprovideandenablesomeaccesstovastamountsofdata,

analysisanddebateacrossmultiplesectorsanddisciplineswhichformthebasisforawell-informed,holisticandnuancedunderstandingofSGP.Wehopethisdocumentwillactasausefulresourceforothersworkingonthisissueandforinterestedmembersofthegeneralpublic.

6. Thisdocumentisaworkinprogress,andwillbeupdatedonanongoingbasis.Thisversion(July

6th)willbereplacedonJuly30thwithamorecompleteandupdatedversion.

7. HavingreviewedmoreoftheliteratureaboutSGPandhavingalsolookedcloselyatargumentsputforwardbyproponentsofshalegas(forexample,the‘TaskForceonShaleGas’)whoarguethatSGPcanbeconductedsafely,andthatshalegasisarelativelyclean,beneficialandstrategically-importantsourceofenergy,wecontinuetoadviseagainstthedevelopmentofashalegasindustryintheUKonthegroundsthatitrepresentsasignificantandavoidablethreattohumanhealthandwellbeing.

4

FrackingandUnconventionalShaleGasProduction

8. Theterm‘fracking’iscommonlyusedtodescribeaprocessofshalegasextractionthatusesatechniqueknownas‘high-volume,hydraulicfracturing’(HVHF)inwhichhighvolumesoffluidareinjectedundergroundunderhighpressure.Thisisdesignedtofracturegas-bearingshaleformationsthatlieunderground,allowinggastobereleasedandtoflowuptothesurfacewhereitcanbecapturedforuse.

9. Theterm‘fracking’isalsocommonlyassociatedwiththeterm‘unconventionalnaturalgas’(UNG)whichislooselydefinedtomeangasthatiscapturedusingmethodsthatextractgasfromunconventionalreservoirssuchasshalerock.

10. ShalegasisaformofUNGbecauseitistrappedorlockedwithinthefine-grainedsedimentary

rocksofshaleformationsthatlieunderground,andwhichcanonlybereleasedoncetheshaleisartificiallyfracturedbyHVHF.Althoughhydraulicfracturinghasbeenusedtostimulateoilandgaswellsformanydecades,thehighvolumesandhighpressuresoffluidrequiredtofractureshalerockisanewdevelopment.

11. Shalegasproduction(SGP)isalsocharacterisedbynewhorizontaldrillingtechniqueswhich

allowhorizontalboreholestobedrilledforupto3kmatdepthsofmorethan1.5km.Thesedevelopmentsinengineeringhaveallowedtheoilandgasindustrytofracturegreateramountsofshalerockthatwerepreviouslyinaccessibleoruneconomic.1

12. ThisreportisnotlimitedtoanassessmentofthepotentialhealtheffectsofHVHF,butcovers

theentireprocessofSGPincludingtheconstructionofwellpads;thedrillingofboreholes;theextractionanduseofwater;thestorage,transportationofwasteproducts;andthestorage,transportationandultimateuseofnaturalgasasasourceofenergy.

Assessingpotentialharmsandbenefits

10. AnassessmentofthepotentialhealthimpactofSGPhastobebalancedandconsiderboththepotentialharmsandbenefitsofSGP.

11. Wehaveusedaframework(Figure1)thatincorporatestwosetsofbenefits.First,thoserelatedtoenergyitself,whichhasbeenacrucialingredienttotheremarkableimprovementsinhumanhealthwitnessedoverthepast250years.Second,thepotentialeconomicbenefitsintermsofrevenue,jobcreationandlocalinvestment.

12. Theframeworkalsodescribesfivesetsofpotentialharms:1)exposuretohazardousmaterialsandpollutants;2)exposuretoso-called‘nuisances’suchasnoise,lightpollution,odourandtrafficcongestion;3)socialandeconomiceffectsthatmayhaveanadverseimpactonhealthand

1Adgateetal(2014)hasnotedthattherapidincreaseinthetechnology’sdevelopmentintheUShasbroughtwellsandrelatedinfrastructureclosertopopulationcentres

5

wellbeing;4)seismic(earthquake)activity;and5)thereleaseofgreenhousegases(GHGs)andtheeffectsofglobalwarmingandclimatechange.

Figure1:AframeworkdescribingthepotentialbenefitsandharmsofSGP

13. Thetypeofnegativehealtheffectsthatmayarisefromthesefivepotentialharmsaremany,and

consistofbothacuteandchronicdiseasesandillnesses,includingthosemediatedbypsychologicalandemotionalpathways.Negativehealtheffectsmayarisefromperceptionsofriskwhichcanresultinanxiety,stressandfear.2Someeffectsmaybeexperiencedimmediately,whilstothers(suchasexposuretocarcinogenictoxins)maytakemanyyears.

14. Theframeworkaboveexcludesoccupationalhealthrisksrelatedtoaccidentsorequipment

malfunctionsonandaroundthewellpad.TherearefewdataspecifictoSGP,theoilandgasindustryasawholeisknownforbeingrelativelydangerousandhavingahighoccupationalfatalityrate.34

15. Blowoutscancausedrillpipe,mud,cement,frackingfluids,andflowbacktobeejectedfromthe

boreandexpelledathighpressure.Gaswellblowoutscanbeverydangeroussinceasparkcansetoffanexplosion.Firescaninvolveotherequipmentonthewellpad,releasingadditionalfumes,smoke,andvolatiles.Historicaldataindicatethatblowoutfrequencyisapproximately1

2Luria,ParkinsandLyons(2009)‘HealthRiskPerceptionandEnvironmentalProblems:FindingsfromtencasestudiesintheNorthWestofEngland’.LiverpoolJMUCentreforPublic3AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–83204Witter,R.Z.;Tenney,L.;Clark,S.;Newman,L.Occupationalexposuresintheoilandgasextractionindustry:stateofthescienceandresearchrecommendations.Am.J.Ind.Med.2014,inpress.

6

per10,000wells.5PublisheddatafromtheMarcellusShaleindicatesablowoutriskof0.17%fortheyears2005–2013.6

16. Becauseclimatechangeisoneofthebiggestthreatstohumanhealththiscentury,SGPcannotbeconsideredinisolationoftheglobalneedtoradicallyandurgentlyreduceGHGconcentrations.However,thepotentialnegativeimpactsofclimatechangeonhealtharenotlimitedtopopulationslivinginandaroundSGPsites,butextendacrossthecountryandglobe.

17. InassessingthepotentialharmsandbenefitsofSGP,ithastoberecognisedthatanypotential

futureoutcomesaredependentonarangeofmodulatingfactorsthatarecontext-specific(Figure1).

18. Clearly,thescaleandintensityofSGP,andthesize,compositionandproximityoflocal

communities,willhaveaconsiderablebearingonthelevelofriskandimpactonhealth.Similarly,thenatureoflocalcommunitiesandpre-existingeconomicactivitieswilldeterminetheextenttowhichthesocial,culturalandeconomicdisruptioncausedbySGPwillimpactnegativelyonlocalcommunities.

19. Thespecificgeologicalfeaturesoftheshaleformationsandtheiroverlyingstrata,aswellas

geographicvariablessuchasthelocalclimateandtopography,andthenatureofthelocalecosystemandroadnetwork,arealsoimportantindeterminingthetypeanddegreeofriskassociatedwithSGP.

20. Theadequacyandeffectivenessofregulationandtheethicalstandardsandoperatingpracticesofshalegasoperators(includingtheadoptionofnewengineeringtechnologiesandsafetyimprovements)arealsoimportantindetermininglevelsofsafety.

21. TheeconomicbenefitsofSGPandtheirdistributionacrosssocietyaredependentonvariousfactorsincludingfuturegasprices;thetaxandsubsidyregimeappliedtotheshalegasindustry;theemploymentpracticesofshalegasoperators;andtheadequacyandeffectivenessofasanctionsregimeintheeventofaccidents,malpracticeornegligence.

22. Forthesereasons,thereisnosuchthingasastandardfrackingoperationandonecannotderiveageneralisablemeasureoftheharmsandbenefitsassociatedwithSGP.WhileitisimportanttolearnfromexperiencesofSGPinothersettings,especiallytheUnitedStates,lessonsmustbeappliedcarefullytootherpartsoftheworld.

23. Differencesbetweenthegeology,geography,regulatoryenvironmentandenergyeconomyof

theUSandUKmeanthattheexperienceofSGPintheUScannotbetransposedtotheUKcontextwithoutcare.

5http://www.ogp.org.uk/pubs/434-02.pdf6Daviesetal,2014.Oilandgaswellsandtheirintegrity:Implicationsforshaleandunconventionalresourceexploitation.MarineandPetroleumGeology56(2014)239e254

7

24. EvenwithintheUSA,conditionsandpracticesdifferfromstatetostate.AccordingtotheCaliforniaCouncilonScienceandTechnology,“hydraulicfracturingpracticeandgeologicconditionsinCaliforniadifferfromthoseinotherstates,andassuch,recentexperienceswithhydraulicfracturinginotherstatesdonotnecessarilyapplytocurrenthydraulicfracturinginCalifornia”7

25. AnothergeneralpointisthatthereisadistributionaldimensiontotheeffectsofSGP.Boththe

negativeandpositiveeffectswillbeunevenlydistributedacrosspopulationsalonggeographic,temporalandsocialdimensions.ThebalanceofbenefitandharmwillvarywithinandbetweenlocalcommunitiesdirectlyaffectedbySGP,aswellasacrossnationalandglobalpopulations.Eventheimpactofexposuretochemicalhazardswillvarybetweenindividualswithinacommunityduetotheunevendistributionofriskfactorssuchasdeprivation,poordietandpre-existinghealthconditionsthatinfluencevulnerabilitytotheeffectsofpotentialhazards.

26. Theunequaldistributionofharmsandbenefitsacrosssociety(includingbetweencurrentandfuturegenerations),aswellastheneedtoconsiderthetrade-offbetweenharmsandbenefits,involvesethicalconsiderationsandtheaccommodationofdifferentsocialvaluesandpreferences.

27. TheapproachtakeninthisreporttoassessthehealtheffectsofSGPisthereforemulti-

dimensionalandinvolvesawiderangeoffactors.Itstandsincontrasttothe2014PublicHealthEngland(PHE)reportonshalegaswhichonlyaddressedtherisksassociatedwithchemicalandradioactivepollutants,andexcluded“otherconsiderations,suchaswatersustainability,noise,traffic(apartfromvehicleexhaustemissions),odour,visualimpact,occupationalexposureandwiderpublichealthissues,havenotbeenaddressed”,aswellastheimpactsofonclimatechange.

28. Finally,itneedstoberecognisedthatSGPandtheuseofHVHFisanewandevolvingactivity.

ResearchexaminingtherelationshipbetweenSGPandhealthislimitedbothintermsofthequantityandqualityofstudies.Althoughthescientificliteratureisrapidlyexpanding,asummationmadebyAdgateetal(2014)stillholdstrue:“TodateobservationalstudiesexploringtheassociationbetweenhumanhealthandUNGdevelopmenthavehadanumberofscientificlimitations,includingself-selectedpopulations,smallsamplesizes,relativelyshortfollow-uptimesandunclearlosstofollow-uprates,limitedexposuremeasurementsand/orlackofaccesstorelevantexposuredata,andlackofconsistentlycollectedhealthdata,particularlyfornon-cancerhealtheffects”.8

29. Additionally,becauserigorousandindependentexposureandhealthimpactstudiesmaybe

expensive,atendencytorelyondatacollectedbytheindustryitselfresultsinbiaswithinthe

7CaliforniaCouncilonScienceandTechnology,2015.AnIndependentScientificAssessmentofWellStimulationinCalifornia:SummaryReport.AnExaminationofHydraulicFracturingandAcidStimulationsintheOilandGasIndustry.8AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–8320.

8

existingscientificliterature.9Incompleteregulationandtheapplicationofnon-disclosureagreementshavealsohindereddatacollectionandpublicinterestmonitoringandevaluationofthegasindustryintheUS.101112

30. BecauseadegreeofjudgementisinevitableintheformationofanypositiononSGP,itis

importantthatconflictsofinterest(financialandotherwise)aredeclared.

31. Itisworthnotingthattherehavebeenanumberofcontroversiesassociatedwithresearchandcommentarypiecesaboutshalegasthathavebeenproducedbyuniversityscientistssponsoredbytheoilandgasindustry.13Thisfollowsalegacyoftheoilandgasindustryhavingactivelypromoteddubiousscienceaimedatmisinformingpolicymakersandthegeneralpublicaboutglobalwarminganditscauses.1415

Hazards,RisksandHarms

HazardousMaterialsandPollutants

32. SGPisaninherentlyriskyactivity.AccordingtoaUnitedNationalEnvironmentalProgramme(UNEP)briefingnote,“hydrologicfrackingmayresultinunavoidableenvironmentalimpactsevenifunconventionalgasisextractedproperly,andmoresoifdoneinadequately”.16Furthermore,evenifriskcanbereducedtheoretically,“inpracticemanyaccidentsfromleakyormalfunctioningequipment,aswellasfrompoorpractices,regularlyoccur”.

33. Eventheindustry-fundedTaskForceonShaleGasnotesthat“clearlythereisarangeofhazardspotentiallyassociatedwithshalegasoperations”.17

34. Amongthehealthrisksisexposuretohazardouspollutants,whicharetypicallyeitherairborneorwaterborne;andwhichcanaffecthumanseitherdirectlyorindirectly.

9WattersonandDinan,2015.10MauleA,MakeyC,BensonE,BurrowsIandScammelM,2013.Disclosureofhydraulicfracturingfluidchemicaladditives:analysisofregulations.NewSolut.23(1):167–87.PM.23552653.11https://www.guernicamag.com/daily/naveena-sadasivam-in-fracking-fight-a-worry-about-how-best-to-measure-health-threats/12http://www.businessweek.com/news/2013-06-06/drillers-silence-u-dot-s-dot-water-complaints-with-sealed-settlements13NelsonC.Frackingresearch:playingwithfire.TimesHigherEducationSupplement,https://www.timeshighereducation.co.uk/features/fracking-research-playing-withfire/2007351.article14MillerDandDinanW.Resistingmeaningfulactiononclimatechange:thinktanks,‘merchantsofdoubt’andthe‘corporatecapture’ofsustainabledevelopment.TheRoutledgehandbookofenvironmentandcommunication.London:Routledge,2015.15JacquesPJ,DunlapREandFreemanM.Theorganisationofdenial:conservativethinktanksandenvironmentalscepticism.EnvironPolit2008;17:349–385.16UNEP.Gasfracking:canwesafelysqueezetherocks?UNEPGlobalEnvironmentalAlertService,http://www.unep.org/pdf/UNEP-GEAS_NOV_2012.pdf(accessed23May2013).17TaskForceFirstreport

9

35. Pollutants,withsubsequentriskstoboththeenvironmentandpeople,areproducedacrossall

stagesofSGPincludingwellpadconstruction;drilling;hydraulicfracturing;gasextraction,treatment,storageandtransportation;themanagementofwasteproducts;andevenafterwellshavebeensealedandabandoned.

36. Amongthepotentiallyhazardouschemicalsandcompoundsare:particulatematter(PM);oxides

ofnitrogen(NOx);volatileorganiccompounds(VOCs),includingformaldehyde,benzene,toluene,ethylbenzene,xyleneandpoly-aromatichydrocarbons(PAHs);hydrogensulphide;ozone;silica;heavymetalssuchaslead,selenium,chromiumandcadmium;andnormally-occurringradioactivematerial(NORM).

37. Elliott18systematicallyreviewedthepotentialreproductiveanddevelopmentaltoxicityofover

1000chemicalsidentifiedinfracturingfluidsand/orwastewater.Datawereavailableforonly24%ofthesechemicals;65%ofwhichsuggestedpotentialtoxicity.Webbetal’s2014literaturereviewalsoconcludedthatchemicalsusedandproducedinunconventionaloilandgasoperationswereknowndevelopmentalandreproductivetoxins.19

38. Colborn20reviewedthetoxicityof352chemicalsusedinUSnaturalgasoperationsincluding

UNGDandfoundthat25%werepotentiallymutagenicorcarcinogenic.Inaddition,over75%hadthepotentialtocauseeffectsontheskin,eyes,respiratoryandgastro-intestinal(GI)systems;40-50%onthenervous,immune,cardiovascularandrenalsystems;and37%onendocrinesystem.Inevitably,thisisnotacomprehensivereview.InformationonthefullcompositionoftheproductsusedintheUSislimited,partlybycommercialconfidentiality,andsomeofthechemicalsdisclosedhavenotbeensubjectedtoafulltoxicologicalassessment.

39. Stamfordetal21estimatedthathumantoxicitypotentialofUKshalegasproductionfor

electricitygenerationtobe3-4timesworsethanthatofconventionalgas,althoughitwasanorderofmagnitudebetterthannuclear,solarorcoalpower.

40. Thehealthriskposedbythesedifferentpotentialhazardsvaries.Somesuchasbenzeneare

knowncarcinogens;someincreasetheriskofbirthdefects;whileotherscauserespiratoryandcardiovasculardisease.Theinhalationofbenzenesandxylenescanirritateeyesandtherespiratorysystemandcausedifficultyinbreathingandimpairedlungfunction.Inhalationofxylenes,benzene,andaliphatichydrocarbonscanadverselyaffectthenervoussystemwith

18Elliott,EG,Ettinger,AS,Leaderer,BP,Bracken,MB,Deziel,NC(2016)Asystematicevaluationofchemicalsinhydraulic-fracturingfluidsandwastewaterforreproductiveanddevelopmentaltoxicity, JournalofExposureScienceandEnvironmentalEpidemiologyadvanceonlinepublication,6January2016;doi:10.1038/jes.2015.81.19Webbetal,2014.Developmentalandreproductiveeffectsofchemicalsassociatedwithunconventionaloilandnaturalgasoperations.RevEnvironHealth.29(4):307-18.doi:10.1515/reveh-2014-0057.20ColbornT,KwiatkowskiC,SchultzK,BachranM(2011)NaturalGasOperationsfromaPublicHealthPerspective,HumanandEcologicalRiskAssessment:AnInternationalJournal,Vol.17,Iss.521Stamford,L,Azapagic,A(2014)LifecycleenvironmentalimpactsofUKshalegas,AppliedEnergyVol134,1December2014,Pages506–518

10

effectsrangingmildandtemporarydizziness,headaches,fatigue,andnumbnesstoseriouseffectsifthereisacuteandseverepoisoning.

41. Thereisincompletescientificknowledgeabouttheriskofexposuretomanychemicalandradioactivehazards.ManyofthepotentialhazardsassociatedwithHVHFlackafulltoxicitycharacterization,andthereisevenlessknowledgeaboutthepotentialrisksassociatedwiththe‘cocktail’effectsofbeingexposedtomultiplehazardssimultaneously.22

42. Anxietyandfearaboutexposurecanalsoresultinharmstostress,anxietyandotherimpactson

emotionalwellbeing.

Riskofpollutionandexposuretohazardouspollutants

43. Theriskofpollutiondependsonmanyvariablesincluding:a)thetypeandcompositionoftheshaleformations;b)thenearbypresenceofaquifers;c)thenumberofwellsandboreholes;d)theoperatingpracticesoffrackingcompanies,includingthetypeofequipmentandtechnologyusedandthespecificconstituentsofthedrillingandhydraulicfracturingfluids;e)thesystemofregulationinplacetoensuresafety,includingthemonitoringandsurveillanceofpollution;f)leakageratesandthefrequencyofventingandflaring;andg)theadequacyoffacilitiesforthetreatmentandmanagementofflowbackfluidandotherwastematerials.

44. Healthrisksonlyariseifthereishumanexposuretopollutants.Themagnitudeofriskalso

dependsonmanyvariablesincluding:(1)thetypeofpollutantthathumansareexposedto;(2)theamountofpollutionandlengthoftimeofexposure;(3)theageandhealthprofileofexposedpersons;(4)topographicalfeaturesandmeteorologicalconditionsthatinfluencethedispersionofpollutants;and(5)theextenttowhichhouseholdssourcetheirdrinkingwaterdirectlyfromgroundwatersources(negligibleintheUK).

Waterpollution

45. SGPcancausebothgroundandsurfacewaterpollution.Thesourceofpollutantsinclude:a)

hydraulicfracturingfluid;b)runofffromcuttingsandotherprocessresiduesgeneratedbythedrillingofwells;c)‘flowbackfluid’,includingformationandproductionwaters;andd)naturalgasitself.

22AccordingtotheCaliforniaCouncilonScienceandTechnology(2015),astudyofalistofchemicalsthatweredisclosedbyindustryrevealedthatknowledgeofthehazardsandriskswasincompleteforalmosttwo-thirdsofthechemicals.TheCouncilnotedthatthetoxicityandbiodegradabilityofmorethanhalfthechemicalsusedinhydraulicfracturingwereun-investigated,unmeasuredandunknown.Additionally,basicinformationabouthowthesechemicalswouldmovethroughtheenvironmentwassaidtonotexist.

11

46. Waterpollutionmaymanifestindifferentways:straygascontaminationofaquifers;surfacewatercontaminationfromspills,leaks,and/orthedisposalofinadequatelytreatedwastewater;andtheaccumulationoftoxicandradioactiveelementsinsoilorstreamsedimentsneardisposalsites.23

47. Accordingtoonereview,accidentsandmalfunctions,suchaswellblowouts,leakingcasings,and

spillsofdrillingfluidsorwastewater,aremorelikelytocontaminatesurfaceandgroundwatersuppliesthantheprocessofHVHFitself.24

48. AnotherreviewnotedthatevidencefromtheUSpointstothefailureofwellcementandcasing

barriersbeingthemostcommoncauseofwaterpollution;followedbysurfacespills(duetoleaks,overflowingpitsandfailuresofpitlinings)andtheaccidentalreleaseoffrackingfluidorflowback.25

49. RahmandRiha’s(2014)reviewreportedthatspillsatthesurfacewerethecauseofmost

incidentsofenvironmentalconcernincludingsomeeventswithconfirmedandsignificantimpactsonlocalwaterresources.26Theyalsoconcludedthatwhilegoodpolicyandpracticescanreducesomeriskssubstantially,significantuncertaintyremainsandthatthereisaneedformoreandlongertermwaterqualitymonitoring.

50. FollowingconcernsaboutcontaminationofgroundwaterinNEPennsylvania,Reillyetal(2015)

analysedsamplesfrom21drinkingwaterwellssuspectedofhavingbeencontaminated.27Samplesweretakenin2012and2013andcomparedagainstdataongroundwaterwellchemistryfromthePennsylvaniaGeologicalSurveyandtheUSGeologicalSurveyreportsfor1979–2006.Theresultsrevealedevidenceofcontaminationbyanimalwaste,septiceffluentorroadsalt,butnoindicationofcontaminationbyMarcellusshaleflowback.

51. Vidicetal(2013)describedthepotentialforleakages,blowoutsandspillstoaffectwaterquality

andreportedonlyasinglecaseoffrackingfluiddirectlycontaminatinggroundwater,butreferredtoproblemswithcommercialconfidentialityandalackofbaselinedataandresearch.28

52. Grossetal(2013)usedindustry-reporteddatatoassessthepotentialimpactof77reported

23Vengosh,Avneretal,2014.AcriticalreviewoftheriskstowaterresourcesfromunconventionalshalegasdevelopmentandhydraulicfracturingintheUnitedStates.Environmentalscience&technology48.15:8334-48.24AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–8320.25MassachusettsInstituteofTechnology,2011.StudyontheFutureofNaturalGas.MITEnergyInitiative.Availableat:http://mitei.mit.edu/system/files/NaturalGas_Report.pdf26RahmBandRihaS,2014.Evolvingshalegasmanagement:waterresourcerisks,impacts,andlessonslearned.Environ.Sci.:ProcessesImpacts,2014,16,140027ReillyD,SingerD,JeffersonA,EcksteinY.2015.IdentificationoflocalgroundwaterpollutioninnortheasternPennsylvania:Marcellusflowbackornot?Environ.EarthSci.73(12):8097–810928VidicRD,BrantleySL,VandenbosscheJM,YoxtheimerD,AbadJD(2013)Impactofshalegasdevelopmentonregionalwaterquality.Science340(6134):1235009.

12

surfacespillsongroundwatercontaminationoverayearinWeldCounty,Colorado.29Analysesforbenzene,toluene,ethylbenzeneandxyleneshowedanexceedanceoftheMaximumContaminantLevel(MCL)in90%ofcasesforbenzene,30%fortoluene,12%forethylbenzeneand8%forxylene.Giventhedelaybetweennotificationofthespillandthetakingofsamples,theauthorspostulatethatsomelevelsmayhavebeenhigheratthetimeoftheincident.Theoverallnumberofincidentsissmallincomparisontothe18,000activewells,althoughtheself-reportednatureofthedataindicatesapotentialforunder-reporting.

53. Alawattegamaetal(2015)assessedtheimpactofUNGactivityonwellwaterservingasmall

Pennsylvaniacommunityof190householdsbyanalysingthechemicalandmicrobiologicalqualityofwater,communityperceptions,andatimelineofoperationsandfailures.30Drillingbeganinlate2007withamajorincreaseinactivityin2010/11whilethestudywasconductedfromlate2011toearly2014.143householdswerequestioned,57samplesfrom33wellswereanalysedforarangeofinorganicchemicals,18wellsweretestedforsixlighthydrocarbons,andbacteriatestedforin26wells.Ofthe143householdswhorespondedtothesurvey,35%reportedperceivedchangesinthequality,tasteand/orsmellofwater.Elevatedlevelsofchloride,ironandmanganese(withthelatterexceedingtheMCLin25households)werefound.Methanewasidentifiedin78%ofsamplestaken,butthelevelswerelowinthemajorityofanalyses.Areviewoftheregulator’sdataalsoidentifiedseveralcontraventionsincludingcompromisedwellcasingsandinadequatepluggingthatcouldhavecausedgroundwatercontamination.However,theauthorsacknowledgethechallengesindefinitivelylinkingthecontaminantstoUNGDwithouttheavailabilityofpre-drillingbaselinedata.

54. Heilweilet(2015)sampledandanalysed15streamsintheMarcellusshaleplayforthepresenceofhydrocarbonsandnoble-gas.Highconcentrationsofmethaneconsistentwithanon-atmosphericsourcewerefoundinfourofthe15streams.Theisotopiccharacteristicsofdissolvedgasinonestreamwerealsosuggestiveofalocalshalesource.Modellingindicatedathermogenicmethanefluxdischargingintothisstreamwhichwasconsistentwithareportedstraygasmigrationfromanearbywell.31

55. Kohletal(2014)measuredstrontiuminsamplesofproducedwatersfromsixwellsintheMarcellusShaleplayandanearbyspringoveraperiodfourmonthspriorto,and14monthsafter,hydraulicfracturing.32Theyfoundnoevidenceofmigrationofproducedwatersorcontaminationofgroundwater.

29GrossSA,AvensHJ,BanducciAM,SahmelJ,PankoJM,TvermoesBE.2013.AnalysisofBTEXgroundwaterconcentrationsfromsurfacespillsassociatedwithhydraulicfracturingoperations.RJAirWasteManageAssoc63(4):424-432,doi:10.1080/10962247.2012.759166.30AlawattegamaSK,KondratyukT,KrynockR,BrickerM,RutterJK,BainDJ,StolzJF.2015.WellwatercontaminationinaruralcommunityinsouthwesternPennsylvanianearunconventionalshalegasextraction.JournalofenvironmentalscienceandhealthPartA,Toxic/hazardoussubstances&environmentalengineering50(5):516-528,doi:10.1080/10934529.2015.992684.31VictorM.Heilweil,PaulL.Grieve,ScottA.Hynek,SusanL.Brantley,D.KipSolomon,DennisW.Risser.StreamMeasurementsLocateThermogenicMethaneFluxesinGroundwaterDischargeinanAreaofShale-GasDevelopment.EnvironmentalScience&Technology,2015;150330072215005DOI:10.1021/es503882b32Kohletal,2014,StrontiumIsotopeTestLongTermZonalIsolationofInjectedandMarcellusFormationWaterafterHydraulicFracturing,EnvironSciTechnol2014,48:9867-9873

13

56. Drolletteetal(2015)examinedhealthandsafetycontraventionreportsandsampledprivateresidentialgroundwaterwellsinNEPennsylvania(n=62)andsouthernNewYork(n=2)between2012and2014.33Fifty-ninesampleswereanalysedforVOCsandgasolinerangehydrocarbons,and41sampleswereanalysedfordieselrangehydrocarbons.Organicandinorganicgeochemicalfingerprinting,groundwaterresidencetimesanddissolvedmethaneconcentrationswereusedtoidentifypotentialsourcesofanycontamination.Theyfoundtracelevelsofhydrocarboncontaminationinuptoaquarterofgroundwatersampleswithsignificantlyhigherlevelsinvariablyinsamplesfromwithin1kmofactiveUNGDoperations.TracelevelsofVOCsincludingBTEXcompounds,wellbelowMCLs,werealsodetectedin10%ofsamples.Analysisofregulatorydatarevealedthatalmost5,800contraventionshadbeenreportedat1,729sitesinPennsylvaniabetween2007andJune2014.Geochemicalfingerprintingdatafoundnoevidenceofupwardmigrationandwereconsistentwithcontaminationfromasurfacesource.

57. Sharmaetal(2015)monitoredthegeochemistryofgassamplesfromsevenverticalUpper

Devonian/LowerMississippiangaswells,twoverticalMarcellusShalegaswellsandsixhorizontalMarcellusShalewellstwomonthsbefore,duringand14monthsafterthefracturingofthelatter.34Theresultswereusedtoassessgasmigrationpathwaysbetweenthehydraulicallyfracturedformationandprotectedshallowundergroundsourcesofdrinkingwater.Theanalysisindicatedthatnodetectablegasmigrationhadoccurredalthoughtheauthorswerecautious,giventhelimitedsizeofthestudy,aboutgeneralisingthesefindings.

58. PelakandSharma(2014)sampled50streamsinariverbasininWestVirginiawheretherehad

beenpastcoalminingandcurrentUNGD.35GeochemicalandisotopicparametersandsamplingzonesbasedontheintensityofshaleproductionwereusedtoidentifysourcesofsalinityandtheeffectsoftheminingandUNGDprocesses.Thestudyfoundnoevidenceofsignificantcontaminationfromdeepformationbrinesthroughnaturalfaults/fractures,conventionaloilandgaswells,noranypathwayscreatedbyshalegasdrillingintheregion.Asthestudywasa‘one-timesnapshot’ofwaterquality,theauthorsrecommendedroutinemonitoringtomoreeffectivelyassessanyimpactofshalegasdrillingonwaterquality.

59. Darrahetal(2014)usednoblegasandhydrocarbontracerstodistinguishbetweennaturaland

anthropogenicsourcesofmethaneinananalysisofwatersamplesfrom113wellsintheMarcellusShaleand20wellsintheBarnettShaleduring2012/13.36Eightclustersoffugitivegascontaminationwereidentifiedwithachemicalsignaturethatsuggestedthecausetobefailuresofwellintegrity

33DrolletteBD,HoelzerK,WarnerNR,DarrahTH,etal.2015.ElevatedlevelsofdieselrangeorganiccompoundsingroundwaternearMarcellusgasoperationsarederivedfromsurfaceactivities.ProcNatlAcadSci,doi:10.1073/pnas.1511474112.34SharmaSetal,2015.Assessingchangesingasmigrationpathwaysatahydraulicfracturingsite:ExamplefromGreeneCounty,Pennsylvania,USA.AppliedGeochemistryVolume60:51–5835PelakandSharma,2014.SurfacewatergeochemicalandisotopicvariationsinanareaofacceleratingMarcellusShalegasdevelopment.EnvironmentalPollutionVolume195:91–10036DarrahTH,VengoshA,JacksonRB,WarnerNR,PoredaRJ.2014.Noblegasesidentifythemechanismsoffugitivegascontaminationindrinking-waterwellsoverlyingtheMarcellusandBarnettShales.PNAS111(39):14076-14081,doi:10.1073/pnas.1322107111.

14

60. Warner(2013a)sampled127drinkingwaterwellsandcomparedthemagainstthecompositionofflowbacksamplesfromFayettevilleShalegaswellstoassesspotentialcontaminationbystraygasorfluidmigration.37Methanewasdetectedin63%ofthedrinking-waterwellsbutisotopiccharacterisationfoundnospatialrelationshipwithsalinityoccurrencesandproximitytoshale-gasdrillingsites.

61. Fontenotetal(2013)analysedwatersamplesfrom100privatedrinkingwaterwells(95from

aquifersinareasofactivegasextractionintheBarnettShaleandfivereferencesamplesfromareaswithnowellswithin60km).38Levelsofseveralinorganicsubstanceswerehigherinsamplestakenwithinthreekmofactivegaswellscomparedtothosemoredistantfromwellsandthereferencesamples.AnumberoftheelevatedresultsexceededtheEPADrinkingWaterMCLincludingarsenicin32%ofsamples.TheseMCLbreacheswererandomlydistributedwithintheactivegasextractionzonesuggestingavarietyofcontributoryfactorsincludingchangesinthewatertable,activationofnaturalsources,andindustrialaccidents.Twenty-nineprivatewaterwellscontaineddetectableamountsofmethanolwiththehighestconcentrationsinsamplesfromactiveextractionareas.Comparingtheresultswithhistoricaldatapriortogasactivitiesshowedsignificantincreasesinthemeanconcentrationandmaximumdetectedconcentrationforarsenic,seleniumandstrontium.

62. Olmsteadetal(2013)assessedtheimpactofdischargedwastewateronsurfacewaterinPennsylvania.39ThisstudydevelopedaGeographicInformationSystems(GIS)databasefromseveralpubliclyavailablesourcesincludingtheresultsofover20,000waterqualitysamples(2000–2011),UNGDlocations,consignmentsofwastetotreatmentplants,anddataonthequalityofthereceivingwaterbodies.ThesedatawereusedtomodelaverageimpactofUNGDcontrollingforotherfactors.Relationshipsbetweenincreasingupstreamdensityofwastewatertreatmentplantsreleasingtreatedwastetosurfacewaterandincreaseddownstreamchlorideconcentrationswereidentified.Relationshipsbetweentheupstreamdensityofwellpadsandincreaseddownstreamtotalsuspendedsolidconcentrationswerealsoidentified.However,therewasnosignificantrelationshipbetweenwellsanddownstreamchlorideconcentrationsorbetweenwastetreatmentanddownstreamTSSconcentrations.Theresultssuggestthatupstreamshalegaswellsdonotincreasechlorideconcentrationsbutthetreatmentandreleaseofwastewaterdoes,andthatincreasesinTSSassociatedwithUNGDmaybeduetolandclearanceforinfrastructuredevelopment.

37WarnerNR,ChristieCA,JacksonRB,VengoshA.2013.ImpactsofshalegaswastewaterdisposalonwaterqualityinwesternPennsylvania.EnvironSciTechnol47(20):11849-11857,doi:10.1021/es402165b.38FontenotBE,HuntLR,HildebrandZL,CarltonDD,OkaH,WaltonJL,HopkinsD,OsorioA,BjorndalB,HuQH,SchugKA.2013.AnevaluationofwaterqualityinprivatedrinkingwaterwellsnearnaturalgasextractionsitesintheBarnettShaleformation.EnvironSciTechnol:doi:10.1021/es4011724.39OlmsteadSM,MuehlenbachsLA,ShihJ-S,ChuZ,KrupnickAJ.2013.ShalegasdevelopmentimpactsonsurfacewaterqualityinPennsylvania.PNAS110(13):4962-4967,doi:10.1073/pnas.1213871110.

15

63. Warneretal(2013b)examinedtheimpactonsurfacewaterqualityfollowingdischargeoftreatedMarcellusliquidwastes(includingUNGDderived)during2010-2012.40Samplesweretakenfromthetreatmentplanteffluentanddownstreamandupstreamwaterandsediments.Thelatter,togetherwithdatafromotherstreams,wereusedascomparators.SampleswereanalysedforarangeofparametersincludingCl,Br,Ca,Na,Sr,alkalinity,andNORMs.Levelsvariedduringthesamplingperiodwithsomeconcentrationsupto6,700timeshigherthantheconcentrationsmeasuredintheupstreamriversites.Thetotalradium(Ra)activityintheeffluentwaswellbelowtheindustrialdischargelimitalthoughsedimentlevelsadjacenttothetreatmentdischargesitewereover200timesgreaterthanbackgroundsedimentsamples.Chlorideconcentrationsaroundamiledownstreamwere2-10timeshigherthanbackground.Theauthorsconcludedthatwhiletreatmentreducesthelevelsofcontaminants,wastewatereffluentdischargetosurfacewaterhasa‘discernableimpact’.

64. Zhangetal(2015)sampledandanalysedwastewatersamplesfromthreeimpoundmentsinsouthwesternPennsylvaniain2010and2013toexaminethefateofthemostcommonNORMcomponentRadium-226.41Eachimpoundmentcontainedaroundfivemilliongallons;twocontaineduntreatedwastewaterandoneheldwastewaterthathadbeentreatedbyaerationandsulphateaddition.AnalysisshowedthatRa-226accumulatedinthebottomsludgeatlevelsexceedingthelandfilldisposallimitandcouldaccordinglybeclassifiedasradioactivesolidwaste.

65. Nelsonetal(2015)conductedasmallpilotstudyassessingthelevelsofnaturaluranium,lead-210,andpolonium-210inprivatedrinkingwellswithin2kmofalargehydraulicfracturingoperationinColoradobeforeandapproximatelyoneyearafterthestartofdrilling.42Groundwatersamplesfromthreeresidencesandsinglesamplesfromsurfacewaterandamunicipalwatersupplywereanalysed.Theyfoundnoexceedancesofstandardsandnosignificantchangesinlevelsbeforeandafterdrilling.However,theauthorsrecognisedtheneedforfurtherandmoreextensivemonitoring.

66. Anindustry-supportedstudybyMolofskyetal(2013)assessedtheisotopicandmolecular

characteristicsofhydrocarbonsinwellsinNEPennsylvaniaandconcludedthatthemethaneconcentrationswerenotnecessarilyduetomigrationofMarcellusshalegasthroughfractures.43

67. LiandCarlson(2014)alsousedisotopiccharacterisationofproducedgasanddissolvedmethanetoexaminegroundwaterwellsintheNorthColoradoWattenbergOilandGasfieldandfoundlittlerelationship.95%ofthemethanewasofmicrobialoriginandtherewasnoassociation

40WarnerNR,ChristieCA,JacksonRB,VengoshA.2013.ImpactsofshalegaswastewaterdisposalonwaterqualityinwesternPennsylvania.EnvironSciTechnol47(20):11849-11857,doi:10.1021/es402165b.41Zhangetal,2015.Analysisofradium-226inhighsalinitywastewaterfromunconventionalgasextractionbyinductivelycoupledplasma-massspectrometry.EnvironSciTechnol.2015Mar3;49(5):2969-76.doi:10.1021/es504656q.42Nelsonetal,2015.Monitoringradionuclidesinsubsurfacedrinkingwatersourcesnearunconventionaldrillingoperations:ApilotstudyJournalofEnvironmentalRadioactivityDOI:10.1016/j.jenvrad.2015.01.00443Molofskyetal,2013.EvaluationofMethaneSourcesinGroundwaterinNortheasternPennsylvania.GroundWater.2013May;51(3):333–349.

16

betweenmethaneconcentrationsandtheproximityofoil/gaswells.44Thermogenicmethanewasdetectedintwoaquiferwellsindicatingapotentialcontaminationpathwayfromtheproducingformation,butmicrobial-origingaswasbyfarthepredominantsourceofdissolvedmethane.

68. Jacksonetal.(2013)foundthat82%of141drinkingwellwatersamplesfromsitesin

northeasternPennsylvaniacontainedmethaneofthermogenicorigin.Levelsofmethanewerestronglycorrelatedwithdistancetogaswells(averagemethaneconcentrationssixtimeshigherforhomes<1kmfromnaturalgaswells).45Theysuggestthatthemethanereachesshallowwellwaterthroughcasingfailuresorimperfectionsincementannulusofthegaswells.

69. Hildebrandetal(2015)assessedwhetherUnconventionalOilandGasactivityhadanimpacton

groundwaterqualitybymeasuringthelevelofnaturalconstituentsandcontaminantsfroma550groundwatersamplesoverlyingtheBarnettshaleandadjacentareasofnorth-centralTexas.46Collectively,thesedataconstituteoneofthelargeststudiesofgroundwaterqualityinashaleformationassociatedwithUOGactivities.Theydetectedelevatedlevelsof10differentmetalsandthepresenceof19differentchemicalcompounds,includingbenzene,toluene,ethylbenzene,andxylene(BTEX)inanumberofsamples.TheyconcludethatthefindingsdonotnecessarilyimplicateunconventionalUOGextractionasthesourceofcontamination;butdemonstratetheneedforfurthermonitoringandanalysisofgroundwaterquality.

70. In2007,awellthathadbeendrilledalmost1200mintoatightsandformationinBainbridge,

Ohiowasnotproperlysealedwithcement,allowinggasfromashalelayerabovethetargettightsandformationtotravelthroughtheannulusintoanundergroundsourceofdrinkingwater.Themethaneeventuallybuiltupuntilanexplosioninaresident‘sbasementalertedstateofficialstotheproblem.47

71. OtherstudiesintheUShavealsoshownalowlikelihoodofcontaminationofaquiferswherethe

separationdistancefromtheshaletargetsisgreaterthan1000m.48

72. Somestudies,ontheotherhand,haveshownnoassociationbetweengroundwaterpollutionandshalegasactivities.Siegeletal(2015),forexample,analysedgroundwatersamplesfromlocationsneargaswellsandfoundnoevidenceofsystematicincreasedmethaneconcentration.49

44LiH,CarlsonKH.2014.DistributionandoriginofgroundwatermethaneintheWattenbergoilandgasfieldinnorthernColorado.EnvironSciTechnol48(3):1484-1491,doi:10.1021/es404668b.45JacksonRBetal,2013.IncreasedstraygasabundanceinasubsetofdrinkingwaterwellsnearMarcellusshalegasextraction46HildebrandZL,etal,2015.AComprehensiveAnalysisofGroundwaterQualityinTheBarnettShaleRegion.Environ.Sci.Technol.2015,49,8254−826247OhioDeptofNaturalResources2008.ReportontheinvestigationofthenaturalgasinvasionofaquifersinBainbridgeTownshipofGeaugaCounty,Ohio.48QuotingDaviesetal,201249Siegeletal,2015.MethaneConcentrationsinWaterWellsUnrelatedtoProximitytoExistingOilandGasWellsinNortheasternPennsylvania.Environ.Sci.Technol.2015,49,4106−4112.

17

73. TheCaliforniaCouncilonScienceandTechnology(CCST)alsofoundnorecordedincidentsofgroundwatercontaminationduetostimulation,norreleasesofhazardoushydraulicfracturingchemicalstosurfacewatersinCalifornia.ButtheCCSTalsonotedthattherehavebeenfewattemptstodetectsuchcontaminationwithtargetedmonitoring,norstudiestodeterminetheextentofcompromisedwellboreintegrity,andthatwellstimulationchemicalsmaypotentiallycontaminategroundwaterthroughavarietyofmechanisms.

74. Siegelel(2015)respondedtotheOsbornandJacksonresultswithananalysisofadatasetof11,300pre-drillingsamplesofdomesticwellwaterinthevicinityof661oilandgaswells(92%unconventionallydrilled)takenbetween2009and2011.50Theyfoundnostatisticallysignificantassociationbetweenmethanelevelsinwellwaterandproximitytopre-existingoilorgaswells.

75. Kassotisetal(2013)reportedthatmostwatersamplesfromsiteswithconfirmeddrilling-relatedincidentsexhibitedmoreoestrogenic,antioestrogenic,and/orantiandrogenicactivitythanreferencesamples.51Thirty-ninewatersamplesfromfivesiteswithareportedspillorincidentintheprevioussixyearstogetherwithfivesurfacewatersamplesfromtheColoradoRiverweretaken.Groundwaterreferencesampleswerecollectedfromanareawithnodrillingactivityandfromtwozoneswithlowactivity(≤2wellswithin1mile).Surfacewaterreferencesweretakenfromtwolocationswithnoactivity.Theyfoundthatoestrogenorandrogenreceptoractivityincreasedfromverylowindrillingsparsereferencewatersamples,tomoderateinsamplesfromtheColoradoRiver,tomoderatetohighinsamplesfromspillsites.Theauthorsrecognisedthatsucheffectscouldbeduetosourcesotherthandrilling(e.g.agriculture,animalcareandwastewatercontamination)butconsideredthesetobeextremelyunlikely.Theauthorsconcludedthattheresultssupportedanassociationbetweengasdrillingandendocrinedisruptingchemical(EDC)activityinsurfaceandgroundwaters.

76. Osbornetal(2011),foundevidenceofmethanecontaminationofdrinkingwaterassociatedwithshalegasextractioninnorth-easternPennsylvania.Theaverageandmaximummethaneconcentrationsincreasedwithproximitytothenearestgaswellandwerehighenoughtobeapotentialexplosionhazard.52Chemicalanalysisconfirmedthemethaneasbeingthermogenicandcomingfromtheshaleextractionsites.Thestudyfoundnoevidenceofcontaminationwithdeepsalinebrinesorfracturingfluids.

77. Vengoshetalreviewofpublisheddata(throughJanuary2014)foundthatwhiledirect

contaminationofwaterresourcesbyfracturingfluidsorthefracturingprocesswasuncertain,

50Siegeletal,2015.MethaneConcentrationsinWaterWellsUnrelatedtoProximitytoExistingOilandGasWellsinNortheasternPennsylvania.Environ.Sci.Technol.,2015,49(7),pp4106–411251Kassotisetal,2013.EstrogenandAndrogenReceptorActivitiesofHydraulicFracturingChemicalsandSurfaceandGroundWaterinaDrilling-DenseRegion.52OsbornSG,VengoshA,WarnerNRandJacksonRB,2011.Methanecontaminationofdrinkingwateraccompanyinggas-welldrillingandhydraulicfracturing.PNAS,8172–8176,doi:10.1073/pnas.1100682108

18

therewassomeevidenceforstraygascontaminationofshallowaquifersandsurfacewatersinareasofintensiveshalegasdevelopment,andtheaccumulationofradiumisotopesinsomedisposalandspillsites.Thepaperdescribedvariousinterventionsthatcouldmitigatetheserisksincludingenforcingsafezones(1km)betweenshalegassitesanddrinkingwaterwells,mandatorybaselinemonitoring,transparencyanddatasharing,azerodischargepolicyforuntreatedwastewater,establishingeffectiveremediationtechnologiesforadequatetreatmentandsafedisposalofwastewater,andlimitingtheuseoffreshwaterresourcesforshalegasdevelopmentthroughsubstitutionoralternativefluidsforhydraulicfracturing.

78. AstudypublishedinJune2014byDurhamUniversityonthelikelyradioactivityassociatedwith

flowbackwaterconcludedthat:‘ThelevelsofNORMmeasuredinflowbackwateraremanytimeshigherthanfoundingroundwater,butalongwaybelowthepermittedUKexposurelimits.Theirradioactivityisalsolowerthanthatoffluidsproducedbyconventionaloilorgasproduction,ornuclearpower. Intermsof fluxperunitofenergyproduced,shalegasflowbackfluidsarealsomuchlessradioactivethantheburnproductsofcoal-firedpowerstations.ShalegasexploitationwillresultinanelevatedfluxofNORMtothesurface,andtheseflowbackfluidsmustbetreated.However,theirradioactivityremainslowenoughthattheyareunlikelytoposeathreattohumanhealth.53

Groundwatercontamination

79. IntheUKwherethereisgoodspatialcorrespondencebetweenpotentialshalereservoirsandproductiveaquifers,therehasbeenmuchconcernexpressedaboutthepotentialforshallowgroundwatertobecontaminatedbyhydrocarbons,fracturingfluidsanddeepformationwaters.

80. Understandingthescientificliteratureontherisksofgroundwatercontaminationishelpedbymakingafewcleardistinctions.First,thepotentialsourcesofcontaminationincludedifferentprocesses:a)hydraulicfracturingwhichtakesplacemorethanathousandmetresbelowtheground;b)drillingandinjectingfluiddownthewell;andc)producinggas(accompaniedbyproductionandformationwaters)upthewell.Second,shallowgroundwatermaybepollutedbybothgas(e.g.methane)andliquid(i.e.frackingfluid,andproductionorformationwaters).Finally,thepathwayforthepollutionofshallowgroundwatermayinclude:a)directpathwaysfromthetargetformation(viafracturesorfaults);b)pathwaysfromthewellcausedbyafailureofwellintegrity;andc)spillsandleakagesofwastewaterfromthesurface.

81. AccordingtoAdgateetal(2014),“theevidenceforcontaminationofgroundwaterwellswithmethane,fracturingchemicals,orotherprocesswastesismixed”.54WhereassociationshavebeenfoundbetweenUNGanddrinkingwatercontamination,alackofbaselinedataonwaterqualitypriortoUNGdevelopmenthavepreventedfirmconclusionsfrombeingdrawn.

53Thefluxofradionuclidesinflowbackfluidfromshalegasexploration,DurhamUniversity,EnvironmentalScience&PollutionResearch,June201454AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–8320

19

82. Theindustry-fundedTaskForceonShaleGasalsorecognisesthatthereisariskofaquifercontaminationandrecommendsthatariskassessmentofaquifercontaminationiscarriedoutwhereappropriate,andthatthelevelofdetailofthisassessmentincreasesastheseparationdistancebetweenthefrackzoneandtheaquiferdecreases.Italsorecommendsthatoperatorsbe“requiredtomonitorthesizeoffracturesinUKwellssothatovertimeamorecompletestatisticalpictureisbuiltup,toassisttheongoingassessmentofaquifercontamination”.

83. Thereishoweversomeevidencethatshalegasextractioncanresultinthepollutionofshallow

groundwater,includingsourcesusedtosupplydrinkingwater.Inparticular,thereisclearevidenceofbothfluidandgashavingleakedasaresultoffailureofwellintegrityandofpermeablepathwaysbetweenthewellandaquifersthenallowingforthecontaminationofgroundwater.

84. Osbornetal(2011)discussthreepossiblemechanismsforfluidmigrationintotheshallow

drinking-wateraquifersthatcouldexplaintheincreasedmethaneconcentrations:a)upwardmigrationfromthetargetformation;b)leakygas-wellcasings,withmethanepassinglaterallyandverticallythroughfracturesystems;andc)theprocessofhydraulicfracturingitselfgeneratingnewfracturesorenlargingexistingonesabovethetargetformation,increasingtheconnectivityofthefracturesystemandallowingmethanetopotentiallymigrateupwardthroughthefracturesystem.55Theauthorsthinkthefirstisunlikely,butthattheothertwopathwaysarepossible.Theyalsonotethatseveralmodelshavebeendevelopedtoexplainhowgascanberapidlytransportverticallyfromdepthtothesurface,includingpressure-drivencontinuousgas-phaseflowthroughdryorwater-saturatedfracturesanddensity-drivenbuoyancyofgasmicrobubblesinaquifersandwater-filledfractures,butthatmoreresearchisneededtodeterminethemechanism(s)underlyingthehighermethaneconcentrationsobserved.

85. Theriskofcontaminantsfromthefrackingzonedirectlyreachingaquifersisconsideredby

geoscientiststoberemotebecauseofthedepthatwhichfrackingoccurs,thedistancebetweentheshalegasproductionzoneanddrinkingwatersources,thepresenceofimpermeablelayersofrockbetweentheshalegasproductionzoneanddrinkingwatersourcesandbecausefracture

55Osborn,Vengosh,WarnerandJackson,2011.Methanecontaminationofdrinkingwateraccompanyinggas-welldrillingandhydraulicfracturing.PNAS108(20):8172–8176

20

propagationcausedbyHVHFrarelyextendsbeyond600m(andoftenmuchless56)abovewellperforations.5758596061

86. Evenifapathwayexists,subsurfacedrivingforcesarelikelytobeinsufficienttodirecttheflowofgasandfluidsupwardsandcontaminateaquifers.FlewellingandSharma(2014)notethathavingbothstrongupwardgradientsandsignificantlypermeablepathwayswouldbenecessarytodriveupwardmigrationisunlikely.62Engelderetal(2014)alsodescribethatvariousgeo-physicalforces(e.g.capillaryandosmoticforces)aremorelikelytoresultinfracturingfluidandformationwaterbeingsequesteredintheshaleformationratherthanbeingtransportedupward.63

87. However,somescientistsremainconcernedaboutthepossibilityofcontaminationvia

permeablepathwaysbetweenthefrackingzoneandaquifers.64Suchpathwaysmaybenatural(permeablefracturesorfaults)orartificial(abandoned,degraded,poorlyconstructed,orfailingwells).65

88. Smythe(2016)hasarguedintheonlinejournalSolidEarthDiscussionsthatthepresenceof

naturalfaults(asopposedtotheartificialfracturescausedbyfracking)andthepossibilityofupwardflowfromthetargetzonemadethecontaminationofgroundwaterbyfrackingagreaterriskthancommonlyaccepted.HealsocriticisesthejointreviewoffrackingforshalegasbytheRoyalSocietyandRoyalAcademyofEngineering(2012)fornotaddressingthepotentialproblemofthrough-penetratingfaultsinUKshalebasins.

89. AccordingtoSmythe,modellingstudiesconfirmthatfluidfromthefrackedshalemayusefaults

asanupwardmigrationroutetoaquifers.Theestimatedtransittimesforreachingthenear-

56Verdon(inSolidEarthDiscussionsdebate):hydraulicfracturesrarelyextendmorethanabout50mabovetheinjectionzones,andinthemostextremecaseshaveonlypropagatedafewhundredmetresabovetheinjectionzone,evenwheretheyhaveintersectedpre-existingfaults.57AEATechnology,SupporttotheidentificationofpotentialrisksfortheenvironmentandhumanhealtharisingfromhydrocarbonsoperationsinvolvinghydraulicfracturinginEurope.ReportfortheEuropeanCommissionDGEnvironment2012.58Daviesetal,2014.Oilandgaswellsandtheirintegrity:Implicationsforshaleandunconventionalresourceexploitation.MarineandPetroleumGeology56(2014)239e25459Vengoshetal,2014.ACriticalReviewoftheRiskstoWaterResourcesfromUnconventionalShaleGasDevelopmentandHydraulicFracturingintheUnitedStates.Environ.Sci.Technol.2014,48,8334−834860FlewellingSA;TymchakMP;WarpinskiN.Hydraulicfractureheightlimitsandfaultinteractionsintightoilandgasformations.Geophys.Res.Lett.2013,40(14),3602−3606.61Warner,N.R.;Jackson,R.B.;Darrah,T.H.;Osborn,S.G.;Down,A.;Zhao,K.;White,A.;Vengosh,A.GeochemicalevidenceforpossiblenaturalmigrationofMarcellusFormationbrinetoshallowaquifersinPennsylvania.Proc.Natl.Acad.Sci.U.S.A.2012,109(30),11961−11966.62Flewelling,S.A.;Sharma,M.Constraintsonupwardmigrationofhydraulicfracturingfluidandbrine.GroundWater2013,52(1),9-19.63Engelderetal,2014.Thefateofresidualtreatmentwateringasshale.JournalofUnconventionalOilandGasResources7(2014)33–4864SeeRozellandReavenquotingreferences44,45,46,47,48,49and50.65Reagan,M.T.,G.J.Moridis,N.D.Keen,andJ.N.Johnson(2015),Numericalsimulationoftheenvironmentalimpactofhydraulicfracturingoftight/shalegasreservoirsonnear-surfacegroundwater:Background,basecases,shallowreservoirs,short-termgas,andwatertransport,WaterResour.Res.,51,doi:10.1002/2014WR016086.

21

surfacevaryconsiderably,rangingfromtentoathousandyearsinthecaseofliquid;butintheorderofhourstohundredsofdaysinthecaseofgas.Smythequotesliteraturethatheclaimshelpstosubstantiatehisargument.6667686970

90. SmythealsoarguesthatEnglishshalebasinsareconsiderablythickerthantheirUScounterparts,andcharacterisedbypervasiveandcomplexfaults,someofwhichextendupwardsfromtheshaletooutcrop.AccordingtoSmythe,UKshalebasinsarecharacterisedbyhavingmajor‘through-penetratingfaults’andthatthepresenceofpermeablecoverrocksinsomeareasmeanthatthereisaninadequatesealforpreventionofupwardmigrationofwastewatersandgasfromanyfutureunconventionalshalegassite.

91. Incontrast,itisextremelyrareforfaultstoextenduptooutcropinUSshalebasins.Asa

consequence,whilethepotentialriskofgroundwatercontaminationbytheupwardmigrationoffluidsviafaultsisremoteintheUS,itmaybesignificantintheUK.

92. TheviewsofSmythehavebeencriticisedbymanyexpertsonanumberofgrounds.Thisincludes

criticismfromauthorsofpapersthatSmythehimselfhasusedtosupporthiscase,leadingtoalivelyandheatedonlinedebateinSolidEarthDiscussions.

93. AccordingtoYounger,faultsare‘hydro-geologicallyambiguous’andwhilesomemaypresent

permeablezones(mostnotablywheretheycutrelativelyhardrockssuchassandstone,limestoneorigneous/metamorphiclithologies);manyserveasbarrierstoflow.Furthermore,evenwhereoptimumconditionsexistforfaultstodisplaypermeability,itisrareforthistobecontinuousoverlargeverticalintervals.

94. Youngergoesontoarguethatevenifoneweretobelievethatfaultscuttingthickshalesequences(contrarytocommonexperience)arepermeablethroughouttheverticalextent,theriskofactualgroundwatercontaminationislowbecauseahydraulicgradientthatfavourstheupflowofwater(andanypollutants)toshallowaquifersinthecontextoffrackingisunlikely.Ifanything,thedepressurisationofwellstoallowgastoenterthemduringtheproductionphaseresultsindownwardgradientsoverperiodsofyearstodecades.Evenafterthecessationofproduction(whenactivedepressurisationhasbeensuspended),there-establishmentofanupwardgradientisunlikelytoresultinsignificantupflowoveranythinglessthangeologicaltime.Finally,Youngerarguesthateveniffaultsarepermeablethroughouttheirverticalextentand

66MyersT.Potentialcontaminantpathwaysfromhydraulicallyfracturedshalestoaquifers.GroundWater50,no.6:872–882.DOI:10.1111/j.1745-6584.2012.00933.x,2012.67NorthrupJL.Potentialleaksfromhighpressurehydrofrackingofshale,September8,201068BicalhoCC,Batiot-GuilheC,SeidelJL,VanExterS,andJourdeH.Geochemicalevidenceofwatersourcecharacterizationandhydrodynamicresponsesinakarstaquifer,http://www.sciencedirect.com/science/article/pii/S0022169412003733,201269Gassiat,C.,Gleeson,T.,Lefebvre,R.,andMcKenzie,J.:Hydraulicfracturinginfaultedsedimentarybasins:Numericalsimulationofpotentiallongtermcontaminationofshallowaquifers,WaterResour.Res.,49(12),8310-8327,doi:10.1002/2013WR014287,2013.70Lefebvre,R.,Gleeson,T.,McKenzie,,J.M.,andGassiat,C.:ReplytocommentbyFlewellingandSharmaon‘‘Hydraulicfracturinginfaultedsedimentarybasins:Numericalsimulationofpotentialcontaminationofshallowaquifersoverlongtimescales,’’WaterResour.Res.51,1877–1882,doi:10.1002/2014WR016698.

22

subjectedtosustainedupwardhydraulicgradients,theloadingofpollutantswouldbeinsufficienttomakeadetectabledifferencetotheoverlyingaquifergroundwater.

95. Anothercounter-argumenttoSmythe’sclaimsisthatcomplexandpervasivefaultingintheUKrelativetotheUSisnotsubstantiated.71

96. Inhispaper,SmythearguesthatacaseofgroundwatercontaminationinBradfordCounty,

Pennsylvaniasupportshisconcernthatfaultsareanimportantriskfactor.Hearguesthatthecontaminationofdrinkingwaterwascausedbypassageoffrackfluidand/orproducedwaterinpartthroughthegeology.

97. ThecaseconcernsthedrillingoffivewellsinBradfordCountyin2009and2010byChesapeakeEnergy.Contaminationofprivatewaterwellswithstraygasinthevicinity(1200maway)startedalmostimmediately,andwasfollowedbythePennsylvaniaDepartmentofEnvironmentalProtectionfiningthecompany$900,000.Thecompanydrilledthreenewwaterwellstoreplacethreeexistingwells,butthecontaminationcontinued,whichincludedwhitefoaminthewaterwells,vapourintrusioninthebasementofahouse,andbubblingofgasintheSusquehannaRiver.InJune2012thehomeownerswonacivilcaseagainstthecompany,whichhadtobuythepropertiesandcompensatetheowners.

98. Astudy(Llewellynetal)conductedtoidentifytheprecisesourceofthecontaminationdescribed

themostlikelycausetohavebeenstraynaturalgasanddrillingorHVHFcompoundsbeingdriven1–3kmalongshallowtointermediatedepthfracturestotheaquifer.72Thestudyauthorsnotedthatcontaminationduetofluidsreturningupwardfromdeepstratawouldbesurprisinggiventhatthetimerequiredtotravel2kmupfromtheshalewouldlikelybethousandstomillionsofyears,andalsobecausethechemicalcompositionofthedrinkingwatersindicatedanabsenceofsaltsthatwouldbediagnosticoffluidscomingfromtheshale.Thedataimplicatefluidsflowingverticallyalonggaswellboreholesandthenthroughintersectingshallowtointermediateflowpathsviabedrockfractures.SuchflowislikelywhenfluidsaredrivenbyhighannulargaspressureorpossiblybyhighpressuresduringHVHFinjection.

99. Verdonalsoarguesthatiffluidshavepropagatedupwardsfromdepth,themigrationpathway

wouldbethepoorly-cementedwellbore,andthatfaultsand/orfracturesonlyprovideapathwayforfluidmigrationintheupper300morsoofthesubsurfacewherecompressivestressesarelow.VerdonalsostatesthathadthewellsinBradfordCountybeendrilledwiththeappropriateprocedures,nogroundwatercontaminationwouldhaveoccurred.

100. AccordingtoVerdon,whileitispossible(evencommon)thatahydraulicfracturewill

intersectafault,ifandwhenitdoesso,theeasiestflowpathwayintermsofpermeabilitywillbe

71VerdonandanonymousreviewerinSolidEarthDiscussions.72LlewellynGTetal,2015.EvaluatingagroundwatersupplycontaminationincidentattributedtoMarcellusShalegasdevelopmentPNAS|May19,2015|vol.112|no.20|6325–6330

23

alongtheproppedfracturesandintotheproductionwell.HearguesthatSmythemissesthefactthattheprimarypermeabilitypathwayscreatedbyfrackingmustbelinkedtothewellbore.

101. AnotherstudywhichconsistedofanexperimentwhereafaultedsectionofMarcellusShalewasfrackedusingfluidscontainingchemicaltracers(whichallowedthetrackingofsubsurfacefluidmovement),foundnoevidenceofupwardfluidmigrationorhydraulicconnectionfromtheshaletooverlyinglayers,despitetheinteractionbetweenhydraulicfracturesandfaults.73ThisstudyhasbeenusedtodiscountSmythe’sclaims,althoughSmythearguesthatthestudydidnotexamineageologicalsituationwith‘through-penetratingfaults’andthereforehasnodirectrelevancetohisargument.

102. AfurtherpointofdebateraisedbySmytheconcernstheneedtoidentifyfaultsbeforeand

duringdrilling.AccordingtoSmythe,identificationoffaultswithinathickshalesequencesuchastheBowland-HodderUnitisdifficult,andthatidentifyingfaultsintersectingthefrackingzonecannotbeguaranteed.Smythearguesthatbeforeanyfrackingtakesplace,faultsshouldbethoroughlymappedanda'setback'distancebeestablishedbetweenthefrackzoneandthenearestfaults.

103. TheissueoffaultsintheUKisunderlinedbytheexperienceoftheonlyshalewelltohave

beenfrackedintheUK:PreeseHallinLancashirewhichwasfrackedin2011byCuadrillatotesttheshaleandwhichtriggeredearthquakes.AccordingtoSmythe,analysesoftwoindependentdatasets–a3Dseismicsurveyandwellboredeformation–demonstratethatthefaultonwhichtheearthquakesweretriggered,wastransectedbythewellbore.Furthermore,hepointsoutthatthesedatacontradicttheinitialconclusionoftheoperatorwhichclaimedthatthetriggeredfaultlayhundredsofmetresawayfromthewellbore.

104. Smythealsodescribeshowin2014intheWealdBasininSussex(Balcombe-2),Cuadrilla

drilledahorizontalwellalonga40mthicklimestonesandwichedbetweentwooil-proneshalelayers,theKimmeridgeClay,andintersectedtwonormalfaultsneitherofwhichwereforeseenbytheoperator.

105. Westaway,oneofSmythe’sstrongestcritics,statesthatSmytheconflatesreportingonwhat

happenedatPreeseHallwithwhatwillbepermittedintheUKinfutureandthatall‘stakeholders’accepttheneedtodothingsdifferentlyinfuture.74However,heagreesthattheactionsofCuadrillaatPreeseHallwerefarfromideal,75andthattherehavebeenproblems

73HammackR,HarbertW,SharmaSetal,2014.AnEvaluationofFractureGrowthandGas/FluidMigrationasHorizontalMarcellusShaleGasWellsareHydraulicallyFracturedinGreeneCounty,Pennsylvania;NETL-TRS-3-2014;EPActTechnicalReportSeries;U.S.DepartmentofEnergy,NationalEnergyTechnologyLaboratory.74Westaway2016a.Interactivecommenton:"Hydraulicfracturinginthickshalebasins:problemsinidentifyingfaultsintheBowlandandWealdBasins,UK"byD.K.Smythe.SolidEarthDiscussions,se-2015-134,SC275Forexample,Westawaystatesthattheinducedseismicityshouldhavebeendetectedearlier(byapplyingaseriesofstandardtests)sothatfrackingcouldhavebeenstoppedratherthancontinuingforalmosttwomonthsuntilbeing‘voluntarily’terminatedjustbeforetheUKgovernmentimposedamoratorium.Inaddition,

24

concerningthereleaseofdataandinformationabouttheincident.AccordingtoWestaway,‘somethingisclearlyfundamentallywrongwiththepresentarrangementsforimplementingtheUKgovernment’spublicallystatedcommitmenttoopendisclosureanddiscussionofdatapertainingtoshalegasdevelopment’.

106. SmythearguesthatitisunacceptablethatcurrentUKregulationspermitthedrillingoffaults

(iftheyareidentified)eitherverticallyorhorizontallybecausecementbondingofthecasing,eitherinthedeviationzoneorinthehorizontalsectionofthewell,wouldbedifficulttoachieve.76AsshownatPreeseHall,awellthatpenetratesafaultcanbedeformedbyseismicactivitytriggeredbyHVHFandincreasethechanceoftheintegrityofthewellborebeingdegraded.

107. HaszeldinenotesthatSmythe’sSolidEarthDiscussionarticleislikelytobeunpopular

amongstsectionsoftheUKgeosciencecommunitybecauseitgoesagainstthemajorityacademicviewthatHVHFcanbemadesecurebytightlycontrolledmonitoring.

108. Heagreesthatthepotentialforfaultstoactasleakageconduitsforgasorfrackfluidsare

morelikelytooccurinintenselyfaultedbasinsandthatgeoscientificinvestigationsmayhavefailedtorecognisethesepotentialhazardsaheadofdrillingandafterfracking.Hestatesthattherearelegitimatequestionstobeaskedaboutsubsurfaceevaluationcompetenceandtheabilitytorecognisefaultsbeforeorafterdrilling;theadequacyofcurrentlegacyinformationtopositionfrackingboreholes;andthestateofknowledgeoffluidandgasflowalongfaultspenetratingtowardsthelandsurface.

109. HaszeldinedoesnotthinkthatSmythemakesacompellingcasefordeepwatersbeing

broughtuptothesurfacealongsteeplydippingfaults,butagreesthatthishypothesisisworthyofgreaterinvestigation,especiallyastheconsequencesmaybeseriousoreventerminalfordrinkingwatersupplies.

110. However,accordingtoHaszeldine,thesimplecritiquesbysomecommentatorsthat“faults

areimpermeable”don’tstanduptoclearevidenceofdeepgasmigrationtothesurface.Whiletheupwardmigrationoffluidsfromthefrackingzonetoaquifersisunlikely,gasascentthroughpathwaysalongorparalleltofaultplanesispossible.Inshort,faultscouldactasconduitsforfugitivegasemissionsfromfrackedbasins.Haszeldinealsoconcludesthatfaults(andfractures)mayactasaconduitforbothfluidsandgastoaquifersathighersubsurfacelevelsfromthewellboreinthecaseofconcurrentwellintegrityfailure.

thein-situstressdatasetcollectedduringdrillingshouldhavebeenanalysedbeforethefrackingbegan,ratherthanafterwards,asthiswouldhaveshownthatfaultsinthevicinitywerealreadystressedandthatfrackingmightinduceseismicity.76Theeccentricityofthedrillcasingwithrespecttotheboreholemeansthatitishardtoflushoutdrillingmud,andasubsequentcementjobmaythenfailbecausetheresultingcement-mudslurrydoesnotmakenotasoundbond.

25

111. Finally,HaszeldineagreesthattheregulatoryoversightofdrillingapplicationsandindustrialactivityappearstobeinadequateandthatsomeofinformationandinsightscontainedinSmythe’scasestudiesare“remarkableandevenshockingasexamplesofhowcurrentpracticehasnotproducedanythingliketechnicallyadequateassuranceofhighqualityforUKcitizens”.Inhisview,“theobservationsmade,ofpressureleakageatPreeseHall,andofbasicsubsurfaceignoranceandtechnicallybadseismicprocessingatFernhurstandWisboroughGreenareshocking,andcouldbeinvestigatedformandatorycleanup”.

Wellintegrity

112. Asnotedabove,pollutioncanoccurthroughleakywells,duringdrillingandcasing,andevenafterwellshavebeensealedandabandoned.7778Thelossofwellintegritycanpotentiallyleadtodirectemissionsofgastotheatmosphereand/orsubsurfacemigrationofgasand/orliquidtogroundwater,surfacewatersortheatmosphere.7980Undercertainconditions,leaksthatcontinueundetectedorareinadequatelyremediedmayalsoleadtotheaccumulationofexplosivegases.

113. Drillersusesteelcasing(pipes),cementbetweennestedcasingsandbetweentheoutside

casingandrockwall,aswellasmechanicaldevicestokeepfluidsandgasinsidethewell.

114. Thecausesoflossofwellintegrityincludefailureofthecementorcasingsurroundingthewellboreandanimproperlysealedannulus.Cementbarriersmayfailatanytimeoverthelifeofawellforvariousreasonsincludinginappropriatecementdensity,inadequatelycleanedboreholes,prematuregelationofthecement,excessivefluidlossinthecement,highpermeabilityinthecementslurry,cementshrinkage,radialcrackingduetopressurefluctuationsinthecasings,poorinterfacialbonding,andnormaldeteriorationwithage.81Casingmayfailduetofailedcasingjoints,casingcollapseandcorrosion.82

115. Theriskoflossofwellintegrityincreaseswithageassteelcorrodes,andascementshrinks,

cracksordisbondsfromthecasingandrock.Factorsthatincreasetheriskoflossofwellintegrityinclude:unconventionalandhorizontalwells;wellsbeinglongerandcurvinglaterally;wells

77KissingerA,HelmigR,EbigboA,ClassH,etal.Hydraulicfracturinginunconventionalgasreservoirs:risksinthegeologicalsystem,part2.Environ.EarthSci.2013,70,3855−387378Vengosh,Avneretal,2014.AcriticalreviewoftheriskstowaterresourcesfromunconventionalshalegasdevelopmentandhydraulicfracturingintheUnitedStates.Environmentalscience&technology48.15:8334-48.79Ingraffeaetal2014.AssessmentandriskanalysisofcasingandcementimpairmentinoilandgaswellsinPennsylvania,2000–2012.PNAS111(30):10955–1096080StuartME,2011.PotentialgroundwaterimpactfromexploitationofshalegasintheUK.BritishGeologicalSurveyOpenReport,OR/12/001.81BonnettA,PafitisD(1996)Gettingtotherootofgasmigration.OilfieldReview8(1):36–49.82Ingraffeaetal2014.AssessmentandriskanalysisofcasingandcementimpairmentinoilandgaswellsinPennsylvania,2000–2012.PNAS111(30):10955–10960

26

beingexposedtomoreintensehydraulicpressuresandlargerwatervolumes;theadoptionofpoorpracticesbycompanies(wellsbeingdrilledduringboomperiodsintheUShaveledtooperatorscuttingcornersinanattempttomaximisethenumberofwellsdrilled).8384Drillingthroughstratawithpervasiveandcomplexfaultsalsoincreasestheriskofwelldamageandintegrityfailure.

116. Thestructuralintegrityfailurerateofoilandgaswellbarriersisasubjectofdebate.

117. AccordingtoDaviesetal,datafromaroundtheworldindicatethatmorethanfourmillion

onshorehydrocarbonwellshavebeendrilledglobally.Intheirassessmentofallreliabledatasetsonwellbarrierandintegrityfailure(includingproduction,injection,idleandabandonedwells,aswellasbothonshoreandoffshorewells,exploitingbothconventionalandunconventionalreservoirs),theyfounddatasetsthatvariedconsiderablyintermsofthenumberofwellsexamined,theirageandtheirdesigns.Theyfoundthatthepercentageofwellswithsomeformofwellbarrierorintegrityfailurewashighlyvariable,rangingfrom1.9%to75%.85

118. IntheUS,becauseofthelackofpubliclyavailablestructuralintegritymonitoringrecordsfor

onshorewellsfromindustry,studieshavereliedondatafromstatewellinspectionrecordstoestimatetheproportionofunconventionalwellsthatdevelopcementand/orcasingstructuralintegrityissues.

119. Davies’ownassessmentofunconventionalwellsinPennsylvaniaindicatedthat6.26%had

wellbarrierorintegrityfailure,and1.27%leakedtothesurface.

120. Ingraffeaetal’sanalysisof75,505compliancereportsfor41,381conventionalandunconventionaloilandgas(O&G)wellsinPennsylvaniadrilledfromJanuary2000andDecember2012foundasixfoldhigherincidenceofcementand/orcasingissuesforshalegaswellsrelativetoconventionalwells.86Overall,between0.7%and9.1%oftheO&Gwellsdevelopedsince2000showedalossofwellintegrity.Thewell-barrierorintegrityfailurerateforunconventionalwellswas6.2%.Themostcommoncauseswere“defective,insufficientorimproperlyinstalled”cementorcasingandforpressurebuild-up,apparentassurfacebubblingorsustainedcasingpressure.

121. Thesamestudyalsoidentifiedtemporalandgeographicdifferencesinrisk.Temporal

differencesmayreflectmorethoroughinspectionsandgreateremphasisonfindingwellleaks,moredetailednotetakingintheavailableinspectionreports,orrealchangesinratesofstructuralintegritylossduetorusheddevelopmentorotherunknownfactors.Thepredicted

83Daviesetal,2014.Oilandgaswellsandtheirintegrity:Implicationsforshaleandunconventionalresourceexploitation.MarineandPetroleumGeology56(2014)239e25484Jackson2014.Theintegrityofoilandgaswells.PNAS111(30):10902–1090385DaviesRJ,AlmondS,WardRS,JacksonRBetal,2014.Oilandgaswellsandtheirintegrity:Implicationsforshaleandunconventionalresourceexploitation.MarineandPetroleumGeology56(2014)239e25486IngraffeaAR,WellsMT,SantoroRL,ShonkoffSBC,2014.AssessmentandriskanalysisofcasingandcementimpairmentinoilandgaswellsinPennsylvania,2000–2012.ProcNatlAcadSciUSA111:10955–10960.

27

cumulativeriskforallwellsintheNEregionofPennsylvaniawas8.5-foldgreaterthanwellsdrilledintherestofthestate.

122. InConsidineetal’sanalysisofrecordsfromthePennsylvaniaDepartmentofEnvironmental

Protectionfrom2008to2011,between1%and2%ofwellshadoneormorepotentialstructuralintegrityissuesreportedduringthattimeperiod.87Anotherstudyusingdatafrom2008to2013foundthat3.4%ofallmonitoredunconventionalwellsdrilledinPennsylvaniamighthavestructuralintegrityfailuresrelatedtocement/casingintegrity.88However,boththesestudiesarelimitedbytheinadequacyofthefrequencyandcompletenessofstateinspectionsasabasisforaccountingforallincidencesofcement/casingfailure.

123. FewdataexistinthepublicdomainforthefailureratesofonshorewellsinEurope.ItisalsounclearwhichoftheavailabledatasetswouldprovidethemostappropriateanaloguesforwellbarrierandintegrityfailureratesatshalegasproductionsitesintheUKandEurope.89

124. IntheUK,theintegrityfailureratesofonshore(conventional)oilandgaswellsarelargely

unknown.Daviesetal(2011)noteasmallnumberofreportedpollutionincidentsassociatedwiththefewexistingactiveonshore(conventional)wellsandnonewithinactiveabandonedwells.Theystatethatthiscouldindicatethatpollutionisnotacommonevent,butwarnthatmonitoringofabandonedwellsdoesnottakeplaceintheUKandthatlessvisiblepollutantssuchasmethaneareunlikelytobereported.Thus“wellintegrityfailuremaybemorewidespreadthanthepresentlylimiteddatashow”.

125. Theycallformoreresearch(e.g.asurveyofthesoilsaboveabandonedwellsitestoestablishingwhetherthereisalossofintegrityandfluid/gasmigrationfollowingwellabandonment),amechanismforfundingrepairsonorphanedwells,andanownershiporliabilitysurveyofexistingwells.

Wastewatermanagement

126. Asnotedearlier,oneofthehazardsassociatedwithSGPisthevolumeandleveloftoxicityof

fluidthatisbroughttothesurface.

87ConsidineT,WatsonR,ConsidineN,MartinJ(2012)EnvironmentalImpactsDuringMarcellusShaleGasDrilling:Causes,Impacts,andRemedies.Report2012-1ShaleResourcesandSocietyInstitute(StateUniversityofNewYork,Buffalo,NY)88VidicRD,BrantleySL,VandenbosscheJM,YoxtheimerD,AbadJD(2013)Impactofshalegasdevelopmentonregionalwaterquality.Science340(6134):1235009.89Daviesetal,2014.Oilandgaswellsandtheirintegrity:Implicationsforshaleandunconventionalresourceexploitation

28

127. Optionsformanaginglargevolumes90ofhazardousflowbackfluidandwastewateronthesurfaceincludethereuseofflowbackfluidforfurtherhydraulicfracturing;on-siteoroff-sitewastewatertreatmentfollowedbydischarge;anddeepwellinjection.

128. Initiallyflowbackfluidreturnstothesurfaceinlargevolumesandcloselyreflectsthecompositionoffrackingfluid.Later,whenthewellisproducinggas,formationandproducedwatersarereturnedinlowervolumes,butwithhigherconcentrationsofheavymetals,NORMandothercontaminantsfromtheshale.ThismaycontinueformonthsafterHVHF.Inthisreport,boththeinitialflowbackfluidandthesubsequentproducedorformationwaterareconsideredtogetheraswastewater.

129. Highlevelsofcontaminationandpollutantsinwastewater,andparticularlyradioactive

NORM,requirespecialisedtreatmentfacilitiesbeforetheycanbesafelydisposed.Theactualcompositionofwastewaterfluidisanimportantfactor.Treatmentofwastewaterwithhighlevelsofcontaminationcanbedifficult.Removingdissolvedsalts,inparticular,normallyrequiresdistillation(whichisgenerallyexpensivebecauseofthehighenergyinputs),orreverseosmosis.

130. IntheUS,themanagementofwastewaterincludesstorageinopenpits;deepwellinjection

(reinjectingwastewaterintotheground);transportationtotreatmentfacilitiesfollowedbydisposal;andon-sitetreatmentwithsomere-useofwateranddisposalofremainingliquidsandsolids.Althoughsomewelloperatorsrecycleandreuseflowbackfluidforhydraulicfracturing,manyoperatorsdonotduetothecostofseparationandfiltration.91Deepwellinjection,whichiscommonintheUS,isnotanoptionintheUK.Neitherisstorageinopenpits.

131. DifficultieswithwastewatertreatmentthathavebeenreportedintheUSincludethelackof

treatmentplantcapacityortechnology92andthedifficultyinpredictingthecontentandcompositionoffluidthatisbroughtuptothesurface.93SomeUSmunicipalwastewatertreatmentfacilitieshavestruggledtohandlewastewatercontaininghighconcentrationsofsaltsorradioactivity.94Thepollutionofsomerivershasalsobeenassociatedwithmunicipalwastewatertreatmentfacilitiesnotbeingabletohandlewastewaterwithhighconcentrationsofsaltsorradioactivity.95

90TheInstitutionofCivilEngineersestimatethatasinglewellcouldproducebetween7,500to18,750m3offlowbackannually.SeewrittensubmissiontoEnvironmentalAuditCommittee:EnvironmentalRisksofFrackingEnquiry(FRA070),para2.1.91RozellDJandReavenSJ(2012).WaterpollutionriskassociatedwithnaturalgasextractionfromtheMarcellusShale.RiskAnal32(8):1382–93.92J.M.Wilson,J.M.VanBriesen,2012.OilandgasproducedwatermanagementandsurfacedrinkingwatersourcesinPennsylvaniaEnviron.Pract.,14(2012),pp.288–30093E.Barbot,N.S.Vidic,K.B.Gregory,R.D.Vidic,2013.SpatialandtemporalcorrelationofwaterqualityparametersofproducedwatersfromDevonian-ageshalefollowinghydraulicfracturing.Environ.Sci.Technol.,47(2013),pp.2562–256994SeeRozellandReavenrefs42and5695PennsylvaniaDEPinvestigateselevatedTDSinMonongahelaRiver.WaterandWastesDigest.October27,2008.Availableat:http://www.wwdmag.com/Pennsylvania-DEP-Investigates-Elevated-TDS-in-Monongahela-RivernewsPiece16950,

29

132. IntheUK,issuesaboutwastewatermanagementbecameapparentduringthePublicInquiryintoCuadrilla’sappealagainstLancashire’sdecisiontorejectplanningapplicationsfortwoexploratoryshalegaswells(inRoseacreWoodandPrestonNewRoad).96

133. OneoftheissueswasthelimitedcapacityandavailabilityoftreatmentfacilitiesintheUK.

Constraintsontreatmentcapacitybecamemorestringentwhenachangeinlawrequiredthewastewatertobeconsideredalowlevelradioactivesubstancewhichprohibitsordinarysewagetreatmentworksfrombeingaviableoption.

134. ThelackoftreatmentfacilitiesintheUKabletomanageNORM-contaminatedwastewateris

alreadyrecognised.InWatson’sevidencetotheLancashirePublicInquiry,henotesthattheGovernmentisunabletoconfirmtheexistenceofadequatetreatmentcapacityintheeventofshaleproductionatscaleandthatalikelyincreaseinNORMgenerationfromiron,steelandtitaniumdioxideproduction,aswellasthedecommissioningofoffshoreoilandgasinfrastructurefromtheNorthSeaandtheanticipatedgrowthinprovisionofO&Gdecommissioningservicestoothercountries,arelikelytoplaceevenmorepressureonlimitedcapacity.

135. Theproblemoflimitedtreatmentcapacityisillustratedbytheconsiderablevolumeof

wastewaterexpectedfromthetwoexploratoryfrackingsitesthatCuadrillasoughttodevelopinLancashire:aDECCStrategicEnvironmentalAssessmentreportedthata‘highactivityscenario’wouldresultinanannualproductionof108millionm3ofwastewaterfromjusttwositeswhichwouldrepresentapproximately3%ofUKtotalannualwastewater.97

136. Anotherissueisthetransportationofwastewatertotreatmentfacilities.Accordingto

Watson,Cuadrilla’sestimateofthevolumeoffluidneedingtreatmentfromtwoexploratorysitesinLancashirewouldinvolvetransportingatotalof50millionlitres,anamountthatequatesto1,440tankerswithacapacityof35,000litres(360tankerloadsperwell).Inordrtotransportthisvolumeoffluidtoatreatmentfacility,apotentialtotaltankermileageof470,000miles(approximately19timesaroundtheearth)wouldberequired,andresultinemissionsofaround2,000tonnesofcarbondioxide.98

137. AccordingtoDECC,on-sitetreatmentandre-useofflowback‘couldreducethevolumesof

wastewatergeneratedandlessenanyeffectsonoffsitetreatmentinfrastructurecapacity”.

96Cuadrilla’sapplicationsincludeprovisionsforanextendedflowtestingperiodof18-24monthsafteraninitial90dayflowtesting.Itwasanticipatedthatproducedfluidswouldbegeneratedthroughoutthatextendedperiod.97AccordingtoWatson,theimpactofsuchasuddenandsignificantsurgeindemand,evenifonlyforarelativelyshort-term,intermsoftheopportunitycoststoothermajorusersandtheconsequencesofanyaccidentsordisruptionatthetreatmentsiteswasnotconsideredinCuadrilla’splanningapplications.98Thesefiguresareconservative,andbasedontheassumptionthattheflowbackratewouldonlybe19%ofthetotalwaterinjectionduringtheinitialflowtesting/explorationperiod(althoughconfusingly,afigureof40%wasreportedelsewhere).TheflowbackrateoverthethreemonthstestingatPreeseHallwas70%.

30

However,thiswouldrequiremoresophisticatedequipment.Thereisalsosignificantuncertaintyastothequantityofflowbackfluidwhichmaybesuitableforre-use.

Airpollution

138. Airpollutantsinclude:(1)unintendedorirregular(fugitive)emissionsofgasfromthe

ground,wellandassociatedinfrastructure(e.g.pumps,flanges,valves,pipeconnectors,andcollectionandprocessingfacilities);(2)dieselfumesfromenginesusedtopowerequipment,trucksandgenerators;(3)emissionsfromdrillingmuds99,fracturingfluids100andflowbackwater;(4)silicadust(silicaisusedtopropopentheshalefractures);(5)ventingorthedeliberatereleaseofgasintotheatmosphere(whenthereisasafetyrisk);and(6)theflaringofgas(limitedintheUKtoexploratoryfrackingduetotheexpectedrequirementforgreenorreducedemissions‘completions’duringtheproductionphase).

139. Mooreetal(2014)conductedacriticalreviewoftheairimpactsofallfivestagesofthenaturalgaslifecycle(pre-production;production;transmission,storage,anddistribution;enduse;andwellproductionend-of-life).101Theyidentifiedclearpotentialforexposuretohazardousairpollutantsincludingparticulatematterfromdieselpoweredequipmentandtrucktraffic,VOCs,respirablesilica,H2S,NOxandSO2.

140. Themultiplevariablesinvolvedindeterminingthelevelofairpollutionexplainswhyair

qualitystudiescarriedoutinUSregionswithhighlevelsofunconventionalO&Gproductionhaveyieldedvariableandconflictingresults.Forexample,Colbornetal(2013)gatheredweekly,24-hoursamples0.7milesfromawellpadinGarfieldCounty,andnoteda“greatdealofvariabilityacrosssamplingdatesinthenumbersandconcentrationsofchemicalsdetected”.102

141. Airpollutionmayalsoarisefromthesub-surface.AccordingtoMaceyetal,“wedonot

understandtheextentofdrilling-relatedairemissionsaspocketsofmethane,propane,andotherconstituentsinthesubsurfacearedisturbedandreleasedtotheatmosphere”.103

99Duringthedrillingstageawater-basedfluidknownas“drillingmud”iscirculatedthroughtheboreholetolubricateandcoolthedrillbitandtoloosenandcollectfragmentsofrockcausedbythedrilling(‘cuttings’).100Frackingfluidmayincludebiocidestopreventbacterialgrowth;surfactantstoreducesurfacetensiontoaidfluidrecovery;gelsandpolymerstoincreaseviscosityandreducefriction;acids;andchemicalstoinhibitcorrosionofmetalpipes.Theexactcompositionwillvaryfromoperatortooperator,andfromsitetositedependingonfactorssuchasthedepthoftheoperation,thelengthofthewellandthenatureoftheshale.101MooreCetal,2014.AirImpactsofIncreasedNaturalGasAcquisition,Processing,andUse:ACriticalReviewEnviron.Sci.Technol.2014,48,8349−8359102ColbornT,SchultzK,HerrickL,KwiatkowskiC.Anexploratorystudyofairqualitynearnaturalgasoperations.HumEcolRiskAssess2013.http://dx.doi.org/10.1080/10807039.2012.749447103Maceyetal,2014.Airconcentrationsofvolatilecompoundsnearoilandgasproduction:acommunity-basedexploratorystudy.EnvironmentalHealth2014,13:82doi:10.1186/1476-069X-13-82

31

142. AccordingtoGoodmanetal(2016),smallpercentileincreasesinemissionsofCO2,NOxandPM were estimated in one prospective study in Haynesville US, for the period from start ofconstructiontopadcompletion(potentiallyseveralmonthsoryears),howeverexcessemissionsoftrafficrelatedNOxonindividualdaysofpeakactivitycanreach30%overbaseline.104

143. UNGD’sphotochemicaloxidantformation105potentialhasbeenestimatedtobeaboutnine

timeshigherforUKshalegascomparedtoNorthSeagaswhenusedforelectricitygenerationand60%worsethancoalpower(Stamfordetal2014).

144. Goetzetal(2015)usedamobilelaboratorytoassessairsamplesfromspecificallytargeted

sitesassociatedwithshalegasextractionin2012inNEandSWPennsylvania,includingover50compressorstationsand4200wells.106Thesamplesfoundnoelevationofsub-micrometerparticlesnoroflightaromaticcompoundssuchasbenzeneandtoluene.Methaneemissionsweredetectedintheatmosphereandfoundtoberelativelyhighcomparedtolevelsreportedelsewhere(e.g.Allen2013).Ofnotewaslargedifferencesinmethaneemissionsbelievedtobeduetodifferencesinoperatingpractices,productionvolumedecline,locationofleaks,scheduledversusunscheduledmonitoring,andthenumberandrepresentativenessofsitessampled(tobeexpectedbecausetheMarcellusplaydoesnotcontainsignificantoildeposits).

145. Swarthoutetal(2015)analysedairsamplesfromacrossaregionsurroundingPittsburghand

compareddatafromtwosites:onewithnearly300unconventionalnaturalgas(UNG)wellswithin10kmandtheotheraremotelocationwithasinglewellwithin10km.107TheyfoundelevatedmixingratiosofmethaneandC2−C8alkanesareaswiththehighestdensityofUNGwells.SourceapportionmentmethodsindicatedthatUNGemissionswereresponsibleforthemajorityofmixingratiosofC2−C8alkanes,butaccountedforasmallproportionofalkeneandaromaticcompounds.TheVOCemissionsfromUNGoperationswerealsoassociatedwithlevelsofozoneformationthatcompromisedfederalairqualitystandards.ThefindingssuggestthatwhilelocalpeoplewereexposedtolevelsofHAPsaroundfourtimeshigherthanpopulationsremotefromgasoperations,theconcentrationsofVOCswerewellbelowhazardouslevels.ThiswasreflectedinthelowHIforbothcancerandnon-cancerriskcalculatedwithamodifiedversionofthemethodusedbyMcKenzie(2012).

146. VinciguerraTetal(2015)usedambientlevelsofethane,amarkerforfugitivenaturalgas

emissions,andreportedthatdaytimeethaneconcentrationshadincreasedfromabout7%oftotalmeasurednon-methaneorganiccarbontoabout15%from2010to2013inareasoverlyingtheMarcellusShale.108Thistrendwasnotobservedinacontrolareawithsimilarurbansources

104Goodmanetal,2016Investigatingthetraffic-relatedenvironmentalimpactsofhydraulic-fracturing(fracking)operations,EnvironmentInternational89–90(2016)248–260105Photochemicaloxidantformation(productionofground-levelozone)isduetoreactionsbetweennitrogenoxides(NOx)andvolatileorganiccompounds(VOC)inducedbysunlight 106GoetzJ,FloerchingerC,FortnerEetal,2015..AtmosphericemissioncharacterizationofMarcellusShaleNaturalGasDevelopmentSites.107SwarthoutR,etal,2015.ImpactofMarcellusShaleNaturalGasDevelopmentinSouthwestPennsylvaniaonVolatileOrganicCompoundEmissionsandRegionalAirQualityEnviron.Sci.Technol.2015,49,3175−3184108VinciguerraTetal(2015)Regionalairqualityimpactsofhydraulicfracturingandshalenatural

32

ofpollutionbutnoextensivenaturalgasproduction.Theyconcludethatasubstantialfractionofnaturalgasisescapinguncombusted,andthesignalisdetectablehundredsofkilometersdownwind.Althoughethaneisnotacriteriapollutant,additionalpollutantsarelikelytransportedatincreasingrates;thesecouldcauseozoneandPMtoriseandcomplicateattainmentofairqualitystandardsformajorurbancentersdownwind.

147. Fieldetal2015reportednumerouslocalisedozoneepisodesduringthewinterof2011

associatedwithfugitiveemissionsofnaturalgasandcondensate.109

148. Pauliketal(2015)usedpassiveairsamplerstoassesslevelsof62PAHsat23residentialpropertiesinCarrollCountyOhiolocatedbetween0.04and3.2milesofanactivewellpadinearly2014.110SamplingsitesexcludedothersourcesofPAHssuchasurbanareasandproximitytoairports,andsamplersweredeployedasfaraspossiblefromobviouspotentialconfoundingsources.LevelsofPAHswereanorderofmagnitudehigherthanresultspreviouslypublishedforruralareaswithaclearpatternofincreasingPAHlevelswithcloserproximitytowellpads.

149. Eapietal(2014)alsofoundsubstantialvariationinfencelineconcentrationsofmethaneand

hydrogensulphide,whichcouldnotbeexplainedbyproductionvolume,numberofwells,orcondensatevolumeatnaturalgasdevelopmentsites.111Twosetsofdrive-bymeasurementsweretaken(theresearchersdidnothaveaccesstothesites)andthestudydefined‘high’levelsas>3ppmformethaneand>4.7ppb(theodourthreshold)forH2S.Elevatedlevelsofmethaneand/orH2Swerefoundat21%ofsites(highmethanelevelsat16.5%ofsitesandhighH2Sat8%ofsites).Whilemeanmethaneconcentrationsatdry(wheretheproducedgasisoverwhelminglymethane)sitesweresignificantlyhigherthanthoseatwetsites(whereproducedgasiscomprisedofmethaneandothervolatilessuchasethaneandbutane),norelationshipwiththesizeofthesiteorproductionvolumewasfound.

150. AstudyinsixcountiesoftheDallas/FortWorthareasbyRichetal(2014)assessedchemicals

inambientairsamplesinresidentialareasnearshalegaswells.112Sampleswerecollectedusing24-hourpassivesamplersat39locationswithin61mofaUNGsitefrom2008-2010.Approximately20%ofthe101chemicalsidentifiedweredesignatedHAPs,including1,3-butadiene,tetrachloroethaneandbenzene(withthelatteridentifiedat76%ofsites).Virtuallyalltheanalysesdetectedhighmethanelevels,withthemeanlevelbeingsixtimeshigherthanbackgroundconcentrations.Principalcomponentanalysisidentifiedcompressorsasthedominantsourceofmanyofthechemicals,althoughfurtherstudieswithlargersamplesizesare

gasactivity:EvidencefromambientVOCobservations.AtmosphericEnvironment110(2015)144e150109Fieldetal2015.Influenceofoilandgasfieldoperationsonspatialandtemporaldistributionsofatmosphericnon-methanehydrocarbonsandtheireffectonozoneformationinwinter.Atmos.Chem.Phys.,15,3527–3542,110Pauliketal,2015.ImpactofNaturalGasExtractiononPAHLevelsinAmbientAir.Environ.Sci.Technol.2015,49,5203−5210111EapiGR,SabnisMS,SattlerML,2014.MobilemeasurementofmethaneandhydrogensulfideatnaturalgasproductionsitefencelinesintheTexasBarnettShale.JAirWasteManagAssoc.64(8):927-44.112RichandOrimoloye.ElevatedAtmosphericLevelsofBenzeneandBenzene-RelatedCompoundsfromUnconventionalShaleExtractionandProcessing:HumanHealthConcernforResidentialCommunities.EnvironmentalHealthInsights2016:1075–82doi:10.4137/EHI.S33314.

33

requiredtoconfirmthesefindings.

151. Inoneofthefewstudiesexaminingairqualitybefore,duringandafterthedevelopmentandoperationofafrackedgaswellpad,Colbornetal(2014)measuredlevelsofVOCsandcarbonylsusingamonitoringstation1.1kmfromthesiteinWesternColoradooverthecourseofayear.113Oftherangeofchemicalsmonitored,methane,ethane,propane,toluene,formaldehydeandacetaldehydeweredetectedineverysample.Thehighestaveragelevelswereformethane,methylenechloride,ethane,methanol,ethanol,acetone,andpropane.Chemicalsassociatedwithurbantrafficemissionsasopposedtogasoperationssuchasethanewerefoundatlowlevels.TherewasconsiderabletemporalvariabilityinthenumberandconcentrationsofchemicalsdetectedalthoughlevelsofNMHCswerehighestduringtheinitialdrillingphasepriortofracturing.Theseresultsarenoteworthyastheypresentbeforeandafterdata.

152. Royetal(2014)developedanemissioninventorytoestimateemissionsofNOx,VOCs,and

PM2.5inPennsylvania,NewYork,andWestVirginiafor2009and2020.114TheanalysissuggestedthatMarcellusshaledevelopmentwouldbeanimportantsourceofregionalNOxandVOCspotentiallycontributing12%(6–18%)ofemissionsintheregionin2020.Thislevelofreleasewasconsideredlargeenoughtooffsetprojectedemissionsreductionsinothersectorsandchallengeozonemanagementinruralareas.WhiletheMarcellusshalewasnotpredictedtocontributesignificantlytoregionalPM2.5levels,itcouldaccountfor14%(2-36%)ofelementalcarbon.

153. Gilman2013comparedVOCconcentrationsmeasuredatanatmosphericresearchfacilitylocatedintheColoradoWattenbergfieldwithambientlevelsmonitoredintwootherNEColoradosites.115VOCsrelatedtooilandnaturalgaswereidentifiedatallthreesitesandconsideredtorepresentasignificantsourceofozoneprecursors.

154. AhmadiandJohn2015conductedacomprehensiveanalysisofhistoricalozonedataand

developedatimeseriesanalysistoevaluatethelongtermrelationshipbetweenshalegasdevelopmentandozonepollutionintheDallas-FortWorthregionofTexas.Theyalsoconductedacomparativeassessmentwithanadjacentnon-shalegasregion.Regionalairqualityhadbeenextensivelymonitoredforover30yearsandprovidedanexceptionallycomprehensiveandextensivedataset.Theanalysisconsideredtrendsduringtheperiods2000to2006andfrom2007to2013andshowedthatozonelevelsdecreasedinthenon-shalegasregioncomparedtotheshalegasregion.Theaveragelong-termcomponentofmeteorologicallyadjustedozonewas2%higherintheshalegasareafrom2008andthemeanshort-termmeteorologicallyadjustedozonewasalmost10%higher.

155. Kemball-Cooketal(2010)developedprojectionsoffutureUNGproductionintheHaynesvilleshaleunderthreedifferentintensityconditionsbasedonthenumberofnewwells

113ColbornT,SchultzK,HerrickL,KwiatkowskiC.Anexploratorystudyofairqualitynearnaturalgasoperations.HumEcolRiskAssess2014;20(1):86–105.114Royetal,2014.Airpollutantemissionsfromthedevelopment,production,andprocessingofMarcellusShalenaturalgas.JAirWasteManagAssoc.2014Jan;64(1):19-37.115GilmanJB,LernerBM,KusterWC,deGouwJA.SourcesignatureofvolatileorganiccompoundsfromoilandnaturalgasoperationsinNortheasternColorado.EnvironSciTechnol2013;47(3):1297–305

34

drilledandproductionestimatesforeachnewactivewell.116Theseestimateswereusedtodevelopemissioninventoriesforeachscenariousingdatafromadevelopmentinasimilarnearbyformation.EstimatedemissionsofNOx,VOCsandCOwerelargeenoughtothreatentheachievementofproposedozonestandardseveninthemodelassuminglimitedUNGdevelopment.Drillrigs,compressorstationsandgasplantswereidentifiedastheprincipalsourcesofNOxandtheauthorssuggestedadditionalcontrolsontheseelementsoftheprocess.

Healthimpactsofpollution

156. Potentialhazardsonlybecomeriskstohealthifthereisexposuretothosehazardsatlevels

thatmightharmhealth.

157. Thenumberofriskstudiesislimitedandmoreresearchisneededtoaddresspublicconcernsabout the risks of SGP on human and ecosystem health.117 118 A cumulative risk assessmentapproach would incorporate chemical, physical, and psychosocial stressors that contribute tostress-relatedhealtheffectsinpopulationslivingnearUNGdevelopmentsites.119

158. Maceyetal(2014)assessedconcentrationsofVOCsin35airsamplesaroundUNGsitesthatwerecollectedbytrainedmembersofthecommunityinfiveUSstates.Residentsusedanassessmentoflocalconditionstodeterminethesitesof35grabsamplesandsupplementedthesewith41formaldehydebadgesatproductionfacilitiesandcompressorstations.46%oftheformerand34%ofthelatterexceededestablishedairsafetystandards.Highconcentrationsofbenzene,formaldehyde,hexaneandH2Swereidentified.Insomecases,benzenelevelsexceededstandardsbyseveralordersofmagnitude.

159. Bunchetal,ontheotherhand,analyseddatafrommonitorsfocusedonregional

atmosphericconcentrationsintheBarnettShaleregionandfoundnoexceedanceofhealth-basedcomparisonvalues.120Thestudy,supportedbyanindustryfundedEnergyEducationCouncil,concludedthatshalegasproductionactivitieshadnotledtoVOCexposuresofpublichealthconcern.TheanalysesalsosuggestthatVOClevelsingeneralhadnotincreasedovertimeandinsomecaseshaddecreased.

160. AstudybyZielinskaetal(2014)oftheimpactofSGPonpopulationexposuretoair

116Kemball-CookS,Bar-IlanA,etal(2010).OzoneimpactsofnaturalgasdevelopmentintheHaynesvilleShale.EnvironSciTechnol44(24):9357–63.117Sexton,K.;Linder,S.H.CumulativeRiskAssessmentforCombinedHealthEffectsFromChemicalandNonchemicalStressorsAm.J.PublicHealth2011,101(S1)S81–S88,DOI:10.2105/ajph.2011.300118118Brittingham,M.EcologicalRisksofShaleGasDevelopment.RisksofUnconventionalShaleGasDevelopment;WashingtonDC,2013;http://sites.nationalacademies.org/DBASSE/BECS/DBASSE_083187.119Adgate2013120BunchAG,PerryCS,etal,2014.EvaluationofimpactofshalegasoperationsintheBarnettShaleregiononvolatileorganiccompoundsinairandpotentialhumanhealthrisks.SciTotalEnviron468–469:832–42.

35

pollutantsintheBarnettShaleregionusedacombinationofactivewellVOCemissioncharacterisation,pollutantmonitoringinalocalresidentialcommunityof250-300householdsinanareaofhighwelldensityandadjacenttoacompressorstation,andmeasurementofthepollutantgradientdownwindofagaswell.121MonitoringincludedNOx,NO2,SO2,C5–C9hydrocarbons,carbondisulphideandcarbonylcompounds,PM2.5andPAHs.Samplesfromwellheadcondensatetankventingemissionswereusedtoestablishasourceprofile.TheaverageVOCandPM2.5concentrationsintheresidentialareawerefoundtobegenerallylow.However,sourceapportionmentsuggestedthatgasproductionwassignificantlycontributingtoregionalVOCs,thoughttobecausedbyincreasedUNG-relateddieselvehiclesmovements.

161. Litovitz2013estimatedlevelsofVOC,NOx,PM10,PM2.5andSO2emissionsandthecostof

theenvironmentalandhealthdamagesassociatedwithshalegasextractioninPennsylvania.122Whileemissionswereasmallproportionoftotalstatewideemissions,NOxemissionswereupto40timeshigherinareaswithconcentratedshalegasactivitiesthanpermittedforasingleminorsource.Theestimatedenvironmentalandhealthcostsfor2011rangedfrom$7.2to$32millionwithover50%duetocompressorstations.TheauthorsemphasisethatasubstantialproportionofthesedamagescannotbespecificallyattributedtoshalegasandarelessthanthoseestimatedforanyoftheState’slargecoalpowerplants.However,despitetheuncertaintiesassociatedwiththeestimates,theyconsiderthepollutionemissionstobenon-trivial.

162. Ethridgeetal(2015)reportedonextensivemonitoringofairborneVOCsintheBarnettShaleregionbytheTexasCommissiononEnvironmentalQuality(TCEQ).TCEQdevelopedanextensiveinventoryofemissionsourcesincludinginformationonlocation,typeandnumberofemissionsources;equipmentandactivitiesconducted;releasestoair;andproximityofreceptors.Arangeofmonitoringtechniqueswasusedtoestimatelongandshort-termexposuresinareaswithandwithoutUNGduring2009and2010.Whileseveralshort-termsamplesexceededodour-basedairmonitoringcomparisonvaluesanddetectedlevelsabovetypicalbackgroundnormsdownwindofUNG,onlythreesamplesexceededhealth-basedAMCVs.Short-termsamplingfoundelevatedlevelsofVOCs,mostnotablybenzene,beingemittedfromasmallpercentageofthosefacilities.

163. Oneofthefewstudiesattemptingtoassesstheriskofexposuretoairpollutioncalculatedhazardindices(HIs)forresidentsliving<1/2mileand>1/2milefromwells.123Thestudyusedroutineambientairmonitoringdatafrom187frackingsitesfromJanuary2008toNovember2010ANDassumedacumulativeeffectfrommultiplechemicals.Thestudyfoundthatresidentslivingwithin0.5mileofwellswereatgreaterriskthanthoseliving>0.5milefromwells.Forsub-chronicnon-cancerconditionsthiswasprincipallyduetoexposuretotrimethylbenzenes,

121Zielinskaetal,2014.ImpactofemissionsfromnaturalgasproductionfacilitiesonambientairqualityintheBarnettShalearea:apilotstudy.JAirWasteManagAssoc.2014Dec;64(12):1369-83.122LitovitzA,CurtrightA,etal(2013).Estimationofregionalair-qualitydamagesfromMarcellusShalenaturalgasextractioninPennsylvania.EnvironResLett8(1),014017doi:10.1088/1748-9326/8/1/014017.123McKenzieetal,2012.Humanhealthriskassessmentofairemissionsfromdevelopmentofunconventionalnaturalgasresources.ScienceoftheTotalEnvironment424(2012)79–87.

36

xylenes,andaliphatichydrocarbons.Cumulativecancerriskswere10inamillionfortheproximalzoneandsixinamillioninthedistalzone,withbenzeneandethylbenzeneasthemajorcontributortorisk.ThelargestHIwasattributedtotherelativelyshort-termeffectsofhighemissionsduringthewelldevelopmentandcompletionperiod,drivenprincipallybyexposuretotrimethylbenzenes,aliphatichydrocarbonsandxyleneswhichhaveneurologicaland/orrespiratoryeffects(haematologicalanddevelopmentaleffectsalsocontributedtothecombinedHI).AccordingtoPHE,“thepapersuggeststhatthepotentialrisksfromsub-chronicexposureareofmostconcern,especiallyamongresidentsclosesttothewellpad”.

164. Otherriskassessmentsconductedtodatearelargelyinagreementwiththeseobservations,indicatingslightlyelevatedexcesslifetimecancerrisksdrivenbybenzene,someindicationofacuteorsubchronicnon-cancerrisksforthoselivingclosesttowellsites,andlittleindicationofchronicnon-cancerrisks.124125126

165. Apopulation-basedstudyoftheassociationbetweenozonelevelsandhealtheffectsinaUNGdevelopmentregioninWyoming,USAbetween2008and2011observeda3%increaseinthenumberofclinicvisitsforadverserespiratory-relatedeffectsforevery10ppbincreaseinthe8hozoneconcentrationthepreviousday.127

166. Community-basedsurveyshavedocumentedvarioussymptoms,aswellasinstancesofsleep

loss, stressandodourcomplaints inassociationwithshalegasdevelopments.128 129 130Thoughthesestudies lackscientificrigorbecausetheyaresmall,anduseself-selectingorconveniencesamplesofthelocalpopulation,manyofthefindingsareconsistentwiththeknownhealtheffectsofexposuretopetroleumhydrocarbons.

124BunchAG,PerryCS,AbrahamL,WikoffDS,etal.EvaluationofimpactofshalegasoperationsintheBarnettShaleregiononvolatileorganiccompoundsinairandpotentialhumanhealthrisks.Sci.Tot.Environ.2014,468,832–842.125HealthConsultation:PublicHealthImplicationsofAmbientAirExposurestoVolatileOrganicCompoundsasMeasuredinRural,Urban,andOil&GasDevelopmentAreasGarfieldCounty,Colorado,AgencyforToxicSubstancesandDiseaseRegistry;U.SDepartmentofHealthandHumanServicesAgency;Atlanta,GA,2008;http://www.atsdr.cdc.gov/HAC/pha/Garfield_County_HC_3-13-08/Garfield_County_HC_3-13-08.pdf.126GarfieldCountyAirToxicsInhalationScreeningLevelHumanHealthRiskAssessment:InhalationofVolatileOrganicCompoundsMeasuredIn2008AirQualityMonitoringStudy.ColoradoDepartmentofPublicHealthandEnvironment:DiseaseControlandEnvironmentalEpidemiologyDivision;Rifle,CO,2010.http://www.garfield-county.com/public-health/documents/6%2030%2010%20%20RisK%20Assessment%20for%20Garfield%20County%20based%20on%202008%20air%20monitoring.pdf127AssociationsofShort-TermExposuretoOzoneandRespiratoryOutpatientClinicVisits-SubletteCounty,Wyoming,2008–2011;Pride,K.;Peel,J.;Robinson,B.;Busacker,A.;Grandpre,J.;Yip,F.;Murphy,T.;StateofWyomingDepartmentofHealth:Cheyenne,WY,2013;128Steinzor,N.;Subra,W.;Sumi,L.InvestigatinglinksbetweenshalegasdevelopmentandhealthimpactsthroughacommunitysurveyprojectinPennsylvaniaNewSolutions2013,23(1)55–83,DOI:10.2190/NS.23.1.e129Witter,R.Z.;McKenzie,L.M.;Towle,M.;Stinson,K.;Scott,K.;Newman,L.;Adgate,J.L.HealthImpactAssessmentforBattlementMesa,GarfieldCountyColorado;ColoradoSchoolofPublicHealth,2011130Saberi,P.NavigatingMedicalIssuesinShaleTerritoryNewSolutions2013,23(1)209–221.

37

167. Aself-reportingsurveyof108individualsfrom55householdsin14countiesinPennsylvaniabetweenAugust2011andJuly2012foundover50%ofparticipantsreportingvariousrespiratory,behavioural, neurological,muscular,digestive, skinandvision symptoms; someofwhichwereassociatedwithproximitytofrackingandexperienceofodours.Thesamestudyconducted34airtestsand9watertestsinasubsetof35households.19airsamplesrecordedavarietyofVOCsandBTEXlevelshigherthanthosepreviouslyreportedbythelocalDepartmentforEnvironmentalProtection; and 26 chemicals detected in 11wellwater sampleswhich exceeded theMCL formanganese,iron,arsenic,orlead.Therewassomecongruencebetweensymptomsandchemicalsidentifiedbyenvironmentaltesting,butthestudywassmallanddidnotinvolvearandomsampleofparticipants.131

168. AcrosssectionalstudyofpatientspresentingtoaprimarycarecentreinPennsylvaniaby

Saberi(2014)usedaself-administeredquestionnairetoexploreattributionofhealthperceptionsand29symptomstoenvironmentalcausesincludingUNGoveroneweekin2012.Ofthe72participants,42%attributedatleastonesymptomtoanenvironmentalcausewith22%identifyingUNGdevelopment.22%ofrespondentslinkedahealthproblemtonaturalgas(16of72),howeversomeofthesesymptomsareofdubiousplausibility.Nineofthe16linkednaturalgastoa‘medicalsymptom’,areducedlistof15drawnfromthe29inthequestionnaire.Casereviewswereconductedonsixparticipantslinking‘medicalsymptoms’tonaturalgasandonlyonehadarecordofboththesymptomandtheconcernandinthreecasestherewasnorecordofeither.Therewasnomeasureofpotentialexposureandwhilemappingof74%ofrespondentsshowedresidencewithintwomilesofawell,italsodemonstratednoevidenceofclustering.Thepotentialforbiasisreflectedinthehighlevelsofsymptomlinkagetootherenvironmentalissuessuchasantibioticsinfood(22%)andageingduetofreeradicals(11%).

169. Steinzoretal(2013)reportedaquestionnairebasedcommunityhealthsurveysupplementedwithenvironmentaldata(VOCsinairandheavymetalsinwellwater)fromsitesclosetoparticipants’homes.132Thisstudyinvolved108individualsincludingpeoplerecruitedatpubliceventsfrom14Pennsylvaniacounties.Allintervieweesreportedsymptoms(range2-111)withover50%reportingmorethan20.Avarietyofsymptomswasidentifiedincludingrespiratory,behavioural,neurological,muscular,digestive,skinandvisionsymptoms.ThroatandsinusissuesincreasedwithresidentialproximitytoUNGsitesandanassociationbetweenodoursandsomesymptomswasalsoidentified.Thereislikelybiasintheselectionofstudysubjectsandwhilesomeenvironmentaldatawerecollected,thisstudyuseddistanceasaproxyforexposure.34airandninewatersamplesweretakenat35households;locationswereselectedbasedonhouseholdinterest,severityofreportedsymptoms,andproximitytogasfacilities.19airsamplesrecordedavarietyofVOCsandwhileBTEXlevelswerehigherthanthosepreviouslyreportedinsamplestakenbythelocalDepartmentforEnvironmental

131FerrarKJ;KrieskyJ;ChristenCL,MarshallLP,MaloneSL,etal.AssessmentandlongitudinalanalysisofhealthimpactsandstressorsperceivedtoresultfromunconventionalshalegasdevelopmentintheMarcellusShaleregionInt.J.Occup.Environ.Health2013,19(2)104–12,DOI:10.1179/2049396713y.0000000024132SteinzorN,SubraWandSumiL(2013).InvestigatinglinksbetweenshalegasdevelopmentandhealthimpactsthroughcommunitysurveyprojectinPennsylvania.NewSolut23:55–83.

38

Protectionandusedascontrols,nocomparisonswithregulatoryoradvisorystandardsweremade.26chemicalsweredetectedinwellwaterwith11samplesexceedingtheMCLformanganese,iron,arsenic,orlead.Whilethestudyreportssomecongruencebetweensymptomsandchemicalsidentifiedbyenvironmentaltestingallthesymptomswereself-reported,mostlyhighlynon-specificandcannotbeconfidentlylinkedtoemissionsfromUNGDsites.

170. TheWestVirginiaNaturalGasHorizontalWellControlActof2011requiresdeterminationoftheeffectivenessofa625footset-backfromthecenterofthepadofahorizontalwelldrillingsite.An investigation which collected data on dust, hydrocarbon compounds and radiation tocharacterizelevelsthatmightbefoundat625feetfromthewellpadcenterofunconventionalgasdrilling sites founddetectable levels of dust andVOCswith somebenzene concentrationsabovewhattheCDCcallsthe“theminimumrisklevelfornohealtheffects.”Buttherewerenoconcernsfoundrelatedionizingradiationlevelsfromairborneparticulatematter.133

171. Aretrospectivestudyof124,862births inruralColorado indicatedanassociationbetween

maternalproximitytonaturalgaswellsitesandbirthprevalenceofcongenitalheartdefectsandneuraltubedefects,butnoassociationwithoralclefts,termlowbirthweightorpretermbirth.134Exposurewasimputedbycalculatingtertilesofinversedistanceweightednaturalgaswellcountswithina10-mileradiusofmaternalresidence(range1to1400wellspermile)andareferencepopulationwithnowellswithin10miles.Associationswereexaminedusing logistic regressionandmultiple linearregression.Thenumberofbirthswasapproximatelyequal inexposed/non-exposedgroups.PrevalenceofCHDsincreasedwithexposuretertilewithanORinhighesttertileof1.3(CI1.2,1.5).NTDprevalencewasalsoassociatedwiththehighesttertile(OR2.0;CI1.0,3.9),comparedwiththenon-exposedgroup.Exposurewasnegativelyassociatedwithprematurityandlowbirthweightandtherewasamodestpositiveassociationwithfoetalgrowth.Noassociationwasreportedfororalclefts.Thiswellconductedanalysisofalargepopulationsuggestsapositiveassociationbetweenproximityanddensityofgaswellsinrelationtomothers’residenceandanincreased prevalence of CHDs and possibly NTDs. This type of study has several recognisedlimitations,whichtheauthorsacknowledge,includingincompletedata,undercounting,theeffectoffolicacidsupplements,residualconfoundingandlackofexposuremeasures.Againtheauthorscallforfurtherresearchaddressingtheseissues.

172. Aworkingpaperexploring1,069,699birthsinPennsylvaniareportedincreasedprevalenceof

low birthweight and small for gestational age births, as well as reduced appearance, pulse,grimace,activity,respiration(APGAR)scoresininfantsborntomotherslivingwithin2.5kmofanaturalgaswellcomparedtoinfantsborntomotherslivingfurtherthan2.5kmfromawell.135

133McCawleyM,2013.Air,Noise,andLightMonitoringResultsforAssessingEnvironmentalImpactsofHorizontalGasWellDrillingOperations(ETD-10Project.http://wvwri.org/wp-content/uploads/2013/10/a-n-l-final-report-for-web.pdf134McKenzieL.M,GuoR,WitterRZ,etal,2014.MaternalresidentialproximitytonaturalgasdevelopmentandadversebirthoutcomesinruralColoradoEnviron.HealthPerspect.DOI:10.1289/ehp.1306722135Hill,E.UnconventionalNaturalGasDevelopmentandInfantHealth:EvidencefromPennsylvania.CornellUniversity:WorkingPaper,CharlesDysonSchoolofAppliedEconomicsandManagement,2012

39

173. AstudyofchildhoodcancersbeforeandafterfrackinginPennsylvaniafoundnodifferenceinthe incidence rate, except for CNS tumours although no relationship was apparent with thenumberofwellsdrilled.Thestudyfoundahigherincidenceoftotalcancersforcountieswith500wellsorfewercomparedtocountieswithmorethan500wells.Theperiodofdataanalysisafterdrillingwasgenerallytooshortforanadequateassessmentofcancerrisks,givenlatencyincancerdevelopment.136TheauthorsrecognisethatSIRsshouldnotbedirectlycomparedbutactuallydosotomakereassuringconclusions.Thishasbeenchallengedonotherkeymethodologicalissuesbyothers.137

174. Few studies have attempted to use biomonitoring to explore risks from shale gas-related

pollutants.Bloodandurinesamplescollectedfrom28adults living inDish,Texas,atownwithlargenumbersof gaswells, storage tanks, andcompressor stationsnear residences, foundnoindication of community wide-exposure to VOCs.138 These results likely reflect the multiplepotentialsourcesandtheshorthalf-livesofmostVOCsinurineandblood,especiallysincethesamplingdidnotcoincidewithknownorperceivedexposures,andconcurrentairsampleswerenotcollectedforstudysubjects.

175. Rich et al (2016) found elevated atmospheric levels of carbon disulphide (CS2) and 12

associated sulfide compounds present in the atmosphere in residential areas where UOGextractionandprocessingoperationswereoccurring.Atmosphericchemicalconcentrationswerecompared to the U.S. Environmental Protection Agency (EPA) Urban Air Toxics MonitoringProgram (UATMP), results, indicating that atmospheric CS2 concentrations in the study areasexceededthenationalmaximumaverageby61%(2007),94%(2008–2009),53,268%(2010),351%(2011), and535% (2012)" abovenational background levels. Literature regarding evidenceofhealtheffectsofCS2onglucosemetabolismwasalsoreviewed,potentialcomplicationsincludingdiabetes, neurodegenerative disease, and retinopathy. 'Complaints of adverse health effectsrelatedtoUOGemissionswerefoundtobeconsistentwithCS2exposure.However,airmonitoringanalysisfoundmultiplevolatileorganiccompoundspresentsimultaneouslywithCSandsulphidechemicals;therefore,itisdifficulttodeterminewhichchemicalorchemicalsweretheinitiatorofthehealthcomplaints'139.

176. Jemielitaetal(2015)examinedtherelationshipbetweeninpatientratesandwellnumbersanddensity (wellsperkm2) inthreePennsylvaniacounties for2007-2011.140Therehadbeena

136FryzekJ.;Pastula,S.;Jiang,X.;Garabrant,D.H.ChildhoodcancerincidenceinPennsylvaniacountiesinrelationtolivingincountieswithhydraulicfracturingsitesJ.Occup.Environ.Med.2013,55(7)796–801137GoldsteinD,Malone,S.ObfuscationDoesNotProvideComfort:JournalofOccupationalandEnvironmentalMedicine.2013.55(11);1376–1378).138DISH,TexasExposureInvestigation;TexasDepartmentofStateHealthServices:Dish,DentonCounty,TX,2010;www.dshs.state.tx.us/epitox/consults/dish_ei_2010.pdf.139Richetal,2016,CarbonDisulfide(CS2)InterferenceinGlucoseMetabolismfromUnconventionalOilandGasExtractionandProcessingEmissions,EnvironmentalHealthInsights2016:1051–57doi:10.4137/EHI.S31906.140JemielitaT,GertonGL,NeidellM,ChillrudS,YanB,StuteM,etal.(2015)UnconventionalGasandOilDrillingIsAssociatedwithIncreasedHospitalUtilizationRates.PLoSONE10(7):e0131093.doi:10.1371/journal.pone.0131093

40

largeincreaseinUNGdevelopmentintwoofthecountiesduringthisperiodandnoneinthethirdcounty.Thestudyfoundthatcardiologyinpatientprevalenceratesweresignificantlyassociatedwithwellnumbers (p<0.00096)andwelldensity (p<0.001)andneurology inpatientprevalencerateswerealsosignificantlyassociatedwithdensity(p<0.001).Whilethisstudyinvolvedalargeresidentpopulation,therearelimitationswhicharerecognisedbytheauthors.Whilepopulationdemographics were similar by county there was no analysis by zip code and no control forsmoking,akeyconfounderforcardiologyinpatientprevalence.Mostwellsappeartohavebeenestablished in last year of study which covered a relatively short period and there wasconsiderablevariation inthenumberofwellsbyzipcodeaddingtothepotential forexposuremisclassification.

177. Caseyetal(2015)examinedtherelationshipbetweenfouradversereproductiveoutcomesandproximitytoUNGandlevelofdrillingactivityinaretrospectivecohortstudyusingdataonover9,000motherslinkedtoalmost11,000neonatesoverfouryears.141MultilevellinearandlogisticregressionmodelsexploredassociationsbetweenaUNGactivityindexandbirthweight,pretermbirth,5-minuteApgarscores,andsmallforgestationalage(SGA).AnstrongassociationbetweenUNGactivityandpretermbirthwasidentified,butnotwiththeotheroutcomes.Aposthocanalysisalsoidentifiedanassociationwithphysicianrecordedhigh-riskpregnancy(OR1.395%CI1.1,1.7).Whilethisstudycontrolledforanumberofconfoundingfactors,thereispotentialforresidualconfoundingandthelackofexposuremeasuresinevitablyincreasestheriskofexposuremisclassification.

178. Stacyetal(2015)examinedtheassociationofproximitytoUNGwithbirthweight,SGAandprematurityinSWPennsylvaniafortheperiod2007-2010.142Thisstudy,whichincludedover15,000livebirths,foundlowerbirthweightinthe‘mostexposed’comparedwiththe‘leastexposed’populationsandasignificantlyhigherincidenceofSGA(OR1.34;95%CI1.10–1.63).Therewasnosignificantassociationwithprematurity.

179. Rabinowitz(2015)conductedahouseholdsurveyofresidents’self-reportedsymptomsand

viewsonenvironmentalqualityinWashingtonCountyPennsylvaniain2012duringaperiodinwhichtherewere624activewells(95%firstdrilledbetween2008-12).Homeswerevisitedtoestablishaccesstoground-fedwaterwellsandhouseholdsclassifiedaccordingtodistancefromthenearestwell:<1km,1–2km,or>2km.143Afteradjustmentforage,sex,householdeducationlevel,smokersinhousehold,jobtype,animalsinhousehold,andawarenessofenvironmentalrisk,householdproximitytowellsremainedassociatedwiththenumberofsymptomsreportedperperson<1km(p=0.002)and1–2km(p=0.05)comparedwith>2kmfromgaswellsrespectively.Livinginahousehold<1kmfromthenearestwellremained

141CaseyJA,etal,2016.UnconventionalnaturalgasdevelopmentandbirthoutcomesinPennsylvania,USA.Epidemiology.2016March;27(2):163–17 142StacySL,BrinkLL,LarkinJC,SadovskyY,GoldsteinBD,PittBR,etal.(2015)PerinatalOutcomesandUnconventionalNaturalGasOperationsinSouthwestPennsylvania.PLoSONE10(6):e0126425.doi:10.1371/journal.pone.0126425143Rabinowitzetal,2015.ProximitytoNaturalGasWellsandReportedHealthStatus:ResultsofaHouseholdSurveyinWashingtonCounty,Pennsylvania.EnvironmentalHealthPerspectivesvolume123(1):

41

associatedwithincreasedreportingofskinconditions(OR=4.13;95%CI:1.38,12.3)andupperrespiratorysymptoms(OR=3.10;95%CI:1.45,6.65)whencomparedtohouseholds>2kmfromthenearestgaswell.Environmentalriskawarenesswasalsosignificantlyassociatedwithreportsofallgroupsofsymptoms.Thesamplesizeissmallinepidemiologicaltermsandisalsolimitedbytheselfreportednatureofthesymptoms,potentialbiasandlackofdirectexposuremeasuresandtheissueofmultipletesting.

180. BambergerandOswald(2012)usedanecologicalstudywithinterviewsoffarmersandfamiliesfromsixUSstatestogetherwithlimitedexposure,diagnosticandtoxicologicaldata.144Thefamilieswerereferredbyenvironmentalgroupsoractivistsandassociatedwithsevenconventionalwellsitesand18HVHFsites.Theresearchersalsoconductedtwoopportunisticnaturalexperimentswherelivestockhadbeenexposedandnon-exposedonthesamefarms.Exposureswereallegedtohaveoccurredthroughcontaminationofwater.Virtuallyallhealthdatawereself-reportedandincludedawiderangeofsymptomsforhumans(neurological,GI,dermatological,headaches,nosebleeds,fatigueandbackache)andanimals(mortality,reproductive,neurological,GI,anddermatologicalsymptoms).Outcomesreportedforthetwonaturalexperimentsincluded21/60cattleexposedtofrackingfluidhavingdiedand16havingfailedtocalveversuszerodeathsandonefailuretocalveinthe36non-exposedcattle(nosignificancelevelsreported).Twenty-oneoftheintervieweeswerefollowedup15-34monthsaftertheinitialinterviewandquestionedaboutsubsequentexposuresandhealtheffects.Therewerenosignificanthealthchangesreportedbythoselivinginareaswhereindustryactivityhadeitherincreasedorremainedconstant.Whereindustryactivityhaddecreasedthetotalnumberofreportedsymptomsinhumansandanimalsalsodecreased.

181. AHealthImpactAssessmentconductedbyWitter(2013)followingconcernsreportedbycommunitiesinBattlementMesaestimatedanincreasedriskofnon-cancerhealtheffectsfromsubchronicVOCexposuresduringthewellcompletionperiodandasmallincreasedlifetimeexcesscancerrisk(10x10−6)forthoselivingclosetowellscomparedtothoselivingfartherfromwells(6x10−6).145Self-reportedshorttermsymptomssuchasheadaches,nausea,upperrespiratoryirritationandnosebleedsinresidentslivingwithinahalfmileofwelldevelopmentwereconsideredplausiblyassociatedwithodourevents.

182. HavingdeterminedthathouseholdsinproximitytogaswellsinOhiowereexposedtohigher

levelsofPAHs,Pauliketal(2015)usedquantitativeriskassessmenttoestimatetheexcesslifetimecancerrisksforresidentsandworkersassociatedwiththerecordedlevelsofPAHsandfoundthattheriskintheproximalresidentialexposuregroupexceededtheEPAacceptablerangeandwas30%highercomparedtothedistalpopulation(0.04cf3.2miles).146

144BambergerandOswald(2012)Impactsofgasdrillingonanimalandhumanhealth.NEWSOLUTIONS,Vol.22(1)51-77,2012145WitterRZ,McKenzieL,etal(2013).Theuseofhealthimpactassessmentforacommunityundergoingnaturalgasdevelopment.AmJPubHealth103(6):1002–10.146Pauliketal,2015ImpactofNaturalGasExtractiononPAHLevelsinAmbientAir.Environ.Sci.Technol.2015,49,5203−5210

42

Hazardsandrisksassociatedwithtraffic,noise,lightandodour

183. SGPinvolvescontinuousactivityconductedovertheentirecourseofaday,sevendaysaweek,forasustainedperiodoftime.147Thenoiseofcompressors,generatorsanddrilling;extensivetruckmovements;intrusiveun-naturallightingovernight;andthereleaseofbadsmellingchemicals,canhavesignificantnegativehealthandwellbeingimpactsonnearbycommunities,especiallyinthecontextofquietruralandsemi-ruralareas.

184. SGPintheUKisexpectedtobesitedcloseenoughtoamainswatersupplyandgasdistributionnetworkwhichwillconsiderablyreducethenumberoftruckmovementscomparedtomanyoperationsintheUS.Nonetheless,truck-heavytrafficisstillrequiredtoconstructwellpads(includingancillaryinfrastructuresuchasoffices,generators,compressorsandtanks),drilltheboreholes,andtransportfrackingfluid,silicaandwastewater.

185. Theamountoftrafficaffectinganygivenareainvolvedwilldependonthenumberofwellpads

andboreholesinthatarea,andthevolumeofwastewaterneedingtobetransportedaway.TheInstitutionofCivilEngineersestimatedthatasinglewellmightrequirebetween500and1,250HGVlorrymovements.148TheRoyalSocietyfortheProtectionofBirdsgiveafigureofbetween4,300and6,600trucktripsperwellpad.149Asnotedearlier,WatsonestimatedthatthevolumeoffluidneedingtreatmentfromtwoexploratoryfrackingsitesinLancashirewouldinvolveabout1,440tankerswithacapacityof35,000litres(360tankerloadsperwell)andatotaltankermileageof470,000miles.

186. Potentialadverseimpactsfromtrucktraffic includecongestion;roadtrafficaccidents(withpotential spills of hazardous materials); as well as damage to roads, bridges and otherinfrastructure.OnestudyfromtheUSreportedthatautomobileandtruckaccidentrateswerebetween 15% and 65% higher in counties with shale gas drilling compared to thosewithout,includinganassociatedincreaseintrafficfatalities.150

147Thetypicallifetimeforawellisvariableandnotwellestablished;butitseemstorangefromabouttwotofiveyearsdependingonhowmuchtheshaleisre-workedandthewellre-fracked.148InstitutionofCivilEngineers.WrittenSubmission,EnvironmentalAuditCommittee:EnvironmentalRisksofFrackingEnquiry(FRA070),para2.1149RoyalSocietyfortheProtectionofBirds.WrittenSubmissiontoEnvironmentalAuditCommittee:EnvironmentalRisksofFrackingEnquiry(FRA015),para3.6150GrahamJ,IrvingJ,TangX,SellersS,etal.(2015).IncreasedTrafficAccidentRatesAssociatedwithShaleGasDrillinginPennsylvania.AccidentAnalysisandPrevention,74:203–209.

43

187. IntheBakkenshaleregion,therewasanincreaseof68%ofcrashesinvolvingtrucksfrom2006to 2010.151 In the Eagle Ford region, the TexasDepartment of Transportation reported a 40%increase in fatalmotor vehicle accidents from 2008 to 2011.152 Likewise, the Crash ReportingSystemfromthePennsylvaniaDepartmentofTransportationreportedan increase inaccidentsinvolvingheavy trucksbetween1997 and2011.153 Somedata fromPennsylvania indicate thatbetween 1997 and 2011, counties with a relatively large degree of shale gas developmentexperiencedasignificantincreaseinthenumberoftotalaccidentsandaccidentsinvolvingheavytruckscomparedtocountieswithnoshalegasdevelopment.154

188. Noise,smellsandintrusivelightingarealsopotentialhazardsassociatedwithSGP.

189. Suchnuisancesarewellrecognisedashealthhazardsandpotentiallyseriousinterferencesto

normalday-to-dayliving.155156157Thestressandlossofsleepthatmaybecausedbynuisancessuchastrafficcongestion,noiseandlightpollutionareformsofillhealthintheirownright,butarealsofactorsinthegenesisofarangeofotherdiseasesandillnesses.158159

190. A Health Impact Assessment conducted byWitter (2013) following concerns reported by

communitiesinBattlementMesafoundthatincreasedtrafficwouldincreasetheriskofaccidentsandreducelevelsofwalkingandcycling.Recordednoiselevelsandcomplaintdatasuggestedthatnoiselevelsrelatedtothesitecouldbeintherangeassociatedwithhealthimpacts.160Thepaperalsoreporteda15%reduction inpropertyvalues inthevicinityofthesiteandpostulatedthatanxietyandstresslevelswouldbeincreasedasaresultofcommunityconcerns.

191. Theeffectsofanuisancearesourcedependent,meaningthatobjectivemeasuresofnuisance

arenotsufficienttogaugeitspotentialeffect.Thesourceandunderlyingcauseofthenuisanceisanimportantinfluenceonthetypeanddegreeofimpactofthatnuisance.

151RidlingtonEandRumplerJ,2013.FrackingbytheNumbers.EnvironmentAmericaResearch&PolicyCenter.http://www.environmentamerica.org/reports/ame/fracking-numbers152IncreasedTraffic,CrashesPromptNewCampaigntoPromoteSafeDrivingonRoadwaysNearOil,GasWorkAreas;TexasDepartmentofTransportation:Austin,TX,2013;http://www.txdot.gov/driver/share-road/be-safe-drive-smart.html.153AdgateJL,GoldsteinBDandMcKenzieLM,2014.PotentialPublicHealthHazards,ExposuresandHealthEffectsfromUnconventionalNaturalGasDevelopment.Environ.Sci.Technol48(15),pp8307–8320154Muehlenbachs,L.;Krupnick,A.J.ShalegasdevelopmentlinkedtotrafficaccidentsinPennsylvania.CommonResources.2013;http://common-resources.org/2013/shale-gas-development-linked-to-trafficaccidents-in-pennsylvania/155https://www.gov.uk/statutory-nuisance156WHO/EuropeanCommission.Burdenofdiseasefromenvironmentalnoise.QuantificationofhealthylifeyearslostinEurope.TheWHOEuropeanCentreforEnvironmentandHealth,BonnOffice,WHORegionalOfficeforEurope.ISBN:97892890022952011157http://ec.europa.eu/health/scientific_committees/opinions_layman/artificial-light/en/l-2/4-effects-health.htm#1158BattlementMesaHealthImpactsAssessment(Colorado,USA).Availableathttp://www.garfield-county.com/environmental-health/battlement-mesa-health-impact-assessment-ehms.aspx159GeeGC,Payne-SturgesDC,2004.EnvironmentalHealthDisparities:AFrameworkIntegratingPsychosocialandEnvironmentalConcepts.EnvironHealthPerspect.112(17):1645–1653160WitterRZ,McKenzieL,etal(2013).Theuseofhealthimpactassessmentforacommunityundergoingnaturalgasdevelopment.AmJPubHealth103(6):1002–10.

44

192. TheamountofstressthatwillbeexperiencedbyindividualsandcommunitiesaffectedbySGP

cannotbepredictedwithprecision,butwillclearlydependonthescaleofSGPandthesizeandproximityofsurroundingcommunities.

193. Whenconsideringthehealthimpactsofnoisefromagivensource,thevolumeandintensity

of thenoise,whether it isprolongedandcontinuous,how itcontrastswith theambientnoiselevels,andthetimeofdaymustbetakenintoaccount.Noiselevelsdependnotonlyonthesource,but also on other factors such as distance from the source, air temperature, humidity, windgradient,andthetopography.

194. Boththesoundlevelofthenoise(objectivenoiseexposure)anditssubjectiveperceptioncan

influencetheimpactofnoiseonneuroendocrinehomeostasis.161Inotherwords,noiseexposurecanleadtoadversehealthoutcomesthroughdirectandindirectpathways.Non-physicaleffectsofnoisearemediatedbypsychologicalandpsycho-physiologicalprocesses.162Noiseannoyancemayproduceahostofnegativeresponses,suchasfeelingangry,displeasure,anxious,helpless,distractedandtired.163164

195. Sleepdisturbanceisanothercommonresponseamongpopulationsexposedtoenvironmental

noise,andisassociatedwithnegativeimpactsonbothhealthandqualityof life.165Meaningfullevels of sleep fragmentation and deprivation can adversely affect both physical and mentalhealth, and are often considered themost severe non-auditory effect of environmental noiseexposure.166

196. AccordingtoGoodmanetal(2016),thelocalimpactsofasinglewellpadontrafficmaybeof

short duration but largemagnitude.167 They also note that the effects of SGP on surroundingcommunitieswillvaryovertime.Forexample,whileexcessnoiseemissionsmayappearnegligible(b1 dBA)when normalised over the completion period, theymay be considerable (+3.4 dBA)duringparticularhours,especiallyatnight.

197. Aninvestigationwhichcollecteddataonnoiselevelsat625feetawayfromthewellpadcenter

of unconventional gas drilling sites in West Virginia found that average noise levels for the

161Munzel,T.,T.Gori,W.Babisch,andM.Basner(2014),CardiovascularEffectsofEnvironmentalNoise

Exposure.EurHeartJ.,35,829–836;doi:10.1093/eurheartj/ehu030.162Shepherd,D.,D.Welch,K.N.Dirks,andR.Mathews(2010),ExploringtheRelationshipbetweenNoiseSensitivity,AnnoyanceandHealth-RelatedQualityofLifeinaSampleofAdultsExposedtoEnvironmentalNoise.IntJ.EnvironResPublicHealth,7,3579–3594;doi:10.3390/ijerph7103580163Babisch,W.(2002),TheNoise/StressConcept,RiskAssessmentandResearchNeeds.NoiseHealth,4,1–11.164Babisch,W.,G.Pershagen,J.Selander,D.Houthuijs,O.Breugelmans,E.Cadum,etal.(2013),Noise

Annoyance—AModifieroftheAssociationbetweenNoiseLevelandCardiovascularHealth?ScienceofTheTotalEnvironment,452–453,50–57;doi:10.1016/j.scitotenv.2013.02.034.

165Muzet,A.(2007),EnvironmentalNoise,SleepandHealth.SleepMedicineReviews,11,135–142;doi:10.1016/j.smrv.2006.09.001166Hume,K.I.,M.Brink,andM.Basner(2012),EffectsofEnvironmentalNoiseonSleep.NoiseHealth,14,297–

302;doi:10.4103/1463-1741.104897.167Goodmanetal,2016Investigatingthetraffic-relatedenvironmentalimpactsofhydraulic-fracturing(fracking)operations,EnvironmentInternational89–90(2016)248–260

45

durationofworkateachsitewerenotabovetherecommended70dBAlevelrecommendedbytheEPAfornoiseexposure,butthatnoiseatsomelocationswasabovethelocallimitssetbysomecountiesandcities.168

Social,economicandecologicaleffects

198. Shalegasproductioncanproducepositivehealtheffectsinlocalcommunitiesthroughsocialandeconomicpathwaysbygeneratingnewinvestment,profitsandemployment.EvidencefromtheUSshowsvariousformsofeconomicbenefitassociatedwiththeshalegasboom.

199. ItislesscommonlyunderstoodthatSGPalsoproducessocialandeconomicdis-benefitsandcanimpactnegativelyonhealthbydisruptingthesocialfabricoflocalcommunities,harmingothereconomicactivity,anddamagingpublicinfrastructure.

200. AhealthimpactassessmentofproposedshalegasdevelopmentinGarfieldCountry,

conductedbytheColoradoSchoolofPublicHealthnotedthattheproposalitselfhadalreadycaused“additionalstress”associatedwith:thesocialeffectsofprospectiveindustrialactivityinanon-industrialarea;perceivedlossofsharedcommunityidealsandcohesion;decliningpropertyvalues;andworriesaboutpossibleimpactsontheeducationsystem,populationnumbers,demographicsandcustoms.169Italsonotedthatcommunityimpactsofthenaturalgasindustryboomof2003-2008andsubsequentdeclinein2009elsewhereinthestatehadincluded“increasedcrimeandsexuallytransmitteddiseases,decliningpropertyvaluesandimpactsontheeducationalenvironment”.

201. AreviewofriskstocommunitiesfromshaleenergydevelopmentbyJacquet(2014)notes

thattheintroductionoftemporarybutintensiveextractiveindustriesintoanareacanproducebenefitsintheformofnewjobsandincreasedlocalrevenue,butalsobringavarietyofsocialandhealthharms.Amongtheeffectswithnegativeimpactsareaninfluxoftemporaryworkers(oftenpredominantlycomposedofyoungmen)underminingcommunitycohesion,increasingthecostofliving,andraisinglevelsofalcoholanddruguse,mentalillnessandviolence.170

168McCawleyM,2013.Air,Noise,andLightMonitoringResultsforAssessingEnvironmentalImpactsofHorizontalGasWellDrillingOperations(ETD-10Project.http://wvwri.org/wp-content/uploads/2013/10/a-n-l-final-report-for-web.pdf169BattlementMesaHealthImpactsAssessment(Colorado,USA).Availableathttp://www.garfield-county.com/environmental-health/battlement-mesa-health-impact-assessment-ehms.aspx170JacquetJ,2009.Energyboomtownsandnaturalgas:ImplicationsforMarcellusShalelocalgovernmentsandruralcommunities.TheNortheastRegionalCenterforRuralDevelopment:UniversityPark,PA,.Availablefrom:http://aese.psu.edu/nercrd/publications/rdp/rdp43/view.

46

202. Similarfindingshavebeenfoundinotherstudies.171172173Theextractionofnon-renewablenaturalresourcessuchasnaturalgasistypicallycharacterizedbya“boom-bust”cycle:aftertheboomperiodoftheinitialconstructionanddrillingphases,thereisadeclineinwell-paying,stablejobsduringtheproductionphase.

203. Increasedpressureonlocalpublicservicescanalsoprecipitatenegativeknock-oneffects.

AnecdotalevidencefromtheUSnotesthattheshalegasindustryhasledtolocalmunicipalitiesbeingsubjectedtoarangeofdemandsforadditionalornewservices,andthattheadministrativecapacity,staffinglevels,equipment,andoutsideexpertiseneededtomeetthosedemandscanbebeyondtheavailablepublicbudgets.174

204. Onecriticalareaofimpacthasbeenonlocalroadsandbridgeswhicharedamagedand

worndownbytheheavytrafficassociatedwithshalegas.IntheBarnettShaleregionofTexas,ithasbeenreportedthatearlydeteriorationofcitystreetshasincreasedtheburdenontaxpayersbecause,eventhoughaccessroadstothewellsitesarebuiltandmaintainedbytheoperators,manyofthejourneysmadebythetruckswereonpublicroadsthatwerenotdesignedtowithstandthevolumeorweightofthisleveloftrucktraffic.175

205. Theregulatoryburdenoffrackingmayalsobeconsiderableandplaceasqueezeonthe

budgetsoflocalmunicipalitiesandregulatoryagencies.IntheUS,publicauthoritieshavehadtobearthecostoftherequiredexpertise,administration,monitoring,andenforcementcapacity.Likewise,healthservicesandPublicHealthdepartmentsmustbepreparedtoreceiveandrespondtoincidentreportsandcitizenconcernsaboutenvironmentalhealthissues.

206. ThescaleandnatureofthesocialandeconomiceffectsofSGPwillbecontextspecific.For

somemembersofacommunity,shalegasmayimprovesocialandeconomicwellbeing,whileforothersitmaydotheopposite.

207. Importantly,levelsofstressandcommunitydivision(andconsequentnegativementalhealth

effects)areamplifiedwhenlevelsoftrustandtransparencyconcerningindustryandgovernmentactionarelow.176

171AdgateJ,GoldsteinB,McKenzieL,2014.PotentialPublicHealthHazards,ExposuresandHealthEffects.Environ.Sci.Technol.48(15):8307-8320.Doi:10;1021/es404621d.172HouseofRepresentativesStandingCommitteeonRegionalAustralia.2013.Cancerofthebushorsalvationforourcities?Fly-in,fly-outanddrive-in,drive-outworkforcepracticesinregionalAustralia.Canberra:CommonwealthofAustralia.http://www.aph.gov.au/parliamentary_business/committees/house_of_representatives_committees?url=ra/fifodido/report.htm173HossainD,GormanD,ChapelleB,etal.ImpactoftheminingindustryonthementalhealthoflandholdersandruralcommunitiesinsouthwestQueensland.AustralasPsychiatry2013;21:32-37.174ChristophersonandRightor,2011.HowShouldWeThinkAbouttheEconomicConsequencesofShaleGasDrilling?CornellUniversity175ChristophersonandRightor,2011.HowShouldWeThinkAbouttheEconomicConsequencesofShaleGasDrilling?CornellUniversity176FerrarK,Kriesky,ChristenC,MarshallLetal,2013.AssessmentandlongitudinalanalysisofhealthimpactsandstressorsperceivedtoresultfromunconventionalshalegasdevelopmentintheMarcellusShaleregion.Int.J.Occup.Environ.Health2013.19(2):104−12.Doi:10.1179/2049396713y.0000000024.

47

208. As part of a health impact assessment in Lancashire related to two exploratory faking

applications,theDirectorofPublicHealthnotedthatthemainrisksoftheproposedprojectswere“alackofpublictrustandconfidence,stressandanxietyfromuncertaintythatcouldleadtopoormentalwell-being,noise-relatedhealtheffectsduetocontinuousdrillingand issuesrelatedtocapacityforflow-backwastewatertreatmentanddisposal”.177

209. ThisincludesthecontentiousanddivisivenatureofSGPwithinthecommunitycausingstress,

anxiety and illness already being experienced by local communities. In the Health ImpactAssessment,theDirectorofPublicHealthreportedthat:“Theover-ridingresponsesaboutthetwoproposed exploration sites voiced by members of the local communities who attended theworkshopswerethoseoffear,anxietyandstress,whichareaffectingtheirmentalwellbeing,withsomepeopleexperiencingsleepdisturbanceanddepression”.178

210. Shale gas production is also a spatially intense activity that can alter the character andaesthetic of the surrounding landscape, affect wildlife and biodiversity, and cause habitatfragmentation. According to Ingraffea et al “economic development of gas and oil from shaleformations requires a high well density, at least one well per 80 surface acres, over largecontinuousareasofaplay”.179

211. LaveandLutz(2014)consideredthatwhilethelandscapedisturbanceofUNGsitesisrelatively

smallcomparedwithotherlanduseactivities,fragmentationofecosystemswasextensive.Thisnecessitatesfurtherresearchtobetterprotectimportanthabitats.180

212. Thesocial,healthandeconomic impactof losingordamaginggreenspaceand‘ecosystemservices’,includingdamagetoleisureandtourism,needstobeconsidered.Thepotentialerosionof the intrinsic value of the natural integrity and beauty of the environment should also beconsidered.

213. Thehealthbenefitoftheavailabilityandaccesstogreenspaceshasbeendocumented.181182

Theseareconcernsassociatedwithalltypesofenergydevelopment(includingsolarandwind).

177LancashireCountyCouncil,2014.PotentialhealthimpactsoftheproposedshalegasexplorationsitesinLancashire.Minutes,http://council.lancashire.gov.uk/ieIssueDetails.aspx?IId¼29552&PlanId¼0&Opt¼3#AI22656178BenCaveAssociates.OverviewreportonHIAworkconcerningplanningapplicationsfortemporaryshalegasexploration:healthimpactassessmentsupport,shalegasexploration.LancashireCountyCouncil,2September.Leeds:BenCaveAssociatesLtd.,2014,http://bit.ly/1BsZ3Au179AssessmentandriskanalysisofcasingandcementimpairmentinoilandgaswellsinPennsylvania,2000–2012180LaveandLutz,2014.HydraulicFracturing:ACriticalPhysicalGeographyReview.GeographyCompass8/10:739–754,10.1111/gec3.12162181MitchellR,PophamF,2008.Effectofexposuretonaturalenvironmentonhealthinequalities:anobservationalpopulationstudy.TheLancet.372:1655-1660.Doi:10.10166/50140-6736(08)61689-x.182CABE,2010.Communitygreen:usinglocalspacestotackleinequalityandimprovehealth.London.Availablefrom:http://www.openspace.eca.ed.ac.uk/pdf/appendixf/OPENspacewebsite_APPENDIX_F_resource_1.pdf.

48

214. There is some, but limited, literature assessing the ecological impacts of shale gas

developmentintheUS.183184185186187188189190191Someadverseeffectsonagro-ecosystemsandanimalhusbandryhavealsobeenidentified.192

215. Anotherconcernistheuseofconsiderablequantitiesofwaterposinglocalisedriskstowater

supplies.193TherearemanyfiguresusedtodescribetheamountofwaterrequiredforSGP.TheaverageestimatedwaterusagefordrillingandhydraulicfracturingawellintheMarcellusShaleissaidtorangefrom13,000m3to21,000m3withlimitsof9,000m3to30,000m3foratypical1,200mhorizontalwell.194AccordingtotheUKShaleGasTaskForce,awellneedsbetween10,000and30,000m3(10,000to30,000tonnesortwotosixmilliongallons)ofwateroveritslifetime.TheInstitutionofCivilEngineers,inawrittensubmissiontoEnvironmentalAuditCommittee,gaveafigureof10,000to25,000m3.

216. The amount of water used per well varies depending on geological characteristics, wellconstruction (depth and length) and fracturing operations (chemicals used and fracturestimulationdesign).195196Ofthetotalwater,10%isusedfordrilling,89%forfracking,andtherest

183JonesNFandPejcharL,2013.Comparingtheecologicalimpactsofwindandoil&gasdevelopment:alandscapescaleassessment.PLoSONE8(11),e81391.184JonesI,BullJ,Milner-GullandE,EsipovA,SuttleK,2014.Quantifyinghabitatimpactsofnaturalgasinfrastructuretofacilitatebiodiversityoffsetting.Ecol.Evol.4(1):79–90.Doi:10.1002.ece3.884.185SoutherS,TingleyM,PopescuV,Haymanetal,2014.Bioticimpactsofenergydevelopmentfromshale:researchprioritiesandknowledgegaps.Front.Ecol.Environ.12(6):330–338.Doi:10.1890/130324.186HamiltonL,DaleB,PaszkowskiC,2011.Effectsofdisturbanceassociatedwithnaturalgasextractionontheoccurrenceofthreegrasslandsongbirds.AvianConserv.Ecol.6(1):7.Doi:10.5751:ACE-00458-060107.187PapouliasD,VelascoA,2013.HistopathologicalanalysisoffishfromAcornForkCreek,Kentucky,exposedtohydraulicfracturingfluidreleases.Southeast.Nat.12(sp4):92–111.Doi:10.1656/0(!.012s413.188Weltman-FahsM,TaylorJ,2013.HydraulicfracturingandbrooktrouthabitatintheMarcellusShaleregion:potentialimpactsandresearchneeds.Fisheries.38(1):4–15.Doi:10.1080/03632415.2013.750112.189BrittinghamM,MaloneyK,FaragA,HarperD,BowenZ,2014.Ecologicalrisksofshaleoilandgasdevelopmenttowildlife,aquaticresourcesandtheirhabitats.Environ.Sci.Technol.48(19):11034–11047.190RacicotA,Babin-RousselV,DauphinaisJ,JolyJ-Setal,2014.Aframeworktopredicttheimpactsofshalegasinfrastructuresontheforestfragmentationofanagroforestregion.Environ.Manag.53(5):1023–1033.Doi:10.1007/s00267-014-0250-x.191KiviatE,2013.RiskstobiodiversityfromhydraulicfracturingfornaturalgasintheMarcellusandUticashales.AnnNYAcadSci.1286:1–14.Doi:10.1111/nyas.12146.192BambergerM,OswaldRE,2012.ImpactsofGasDrillingonHumanandAnimalHealth.NewSolutions22,51–77.193CharteredInstituteofEnvironmentalHealth(CIEH)andScientistsforGlobalResponsibility(SGR)21/7/2014‘ShaleGasandfracking-examiningtheevidence’194NewYorkStateDept.ofEnvironmentalConservation.PreliminaryRevisedDraftSupplementalGenericEnvironmentalImpactStatementoftheOil,GasandSolutionMiningRegulatoryProgram:WellPermitIssuanceforHorizontalDrillingandHigh-VolumeHydraulicFracturingtoDeveloptheMarcellusShaleandOtherLow-PermeabilityGasReservoirs.October5,2009.RevisedJuly2011.195Freyman,M.,2014Hydraulicfracturing&waterstress:waterdemandbythenumbers(2014)http://www.ceres.org/issues/water/shale-energy/shale-and-water-maps/hydraulic-fracturing-water-stress-water-demand-by-the-numbers(accessed10.20.14)196TorresYadavandKhan2016.Areviewonriskassessmenttechniquesforhydraulicfracturingwaterandproducedwatermanagementimplementedinonshoreunconventionaloilandgasproduction.ScienceoftheTotalEnvironment539(2016)478–493

49

is consumed by infrastructure. In regions where local, natural water sources are scarce ordedicatedtootheruses,thelimitedavailabilityofwatermaybeasignificantimpedimenttogasresourcedevelopment.197198

217. AccordingtoBrodericketal (2011), theentiremulti-stage fracturingoperationforasingle

wellrequiresaround9,000-29,000m3.199Forallfracturingoperationscarriedoutonasixwellpad,atotalofbetween54,000-174,000m3ofwaterwouldberequiredforafirsthydraulicfracturingprocedure.Theyalsoestimatethatinordertoprovide9bcm/yearofshalegasfor20yearsintheUK, an estimated 25-33million cubicmetres ofwater is required. Averaged over the 20 yearperiod,this isequivalenttoanannualwaterdemandof1.25to1.65millioncubicmetres.Thiscompareswithcurrentlevelsofabstractionbyindustry(excludingelectricitygeneration)of905millioncubicmetres.This,althoughthevolumeofwaterusedperwellsoundslarge,whensetinthecontextofoverallwatersupplyanduseinotherindustriesit isnot.200Nonetheless,alargenumberofactivewellswithinanareamayhavethepotentialtostressavailablewatersupplies.

218. Both the economic and commercial viability and benefits of shale gas production are

dependentonarangeofvariables includingtheactualproductivityofthewells, futureenergymarketconditions,andthepolicy/regulatoryenvironmentwithinwhichnaturalgasisextracted.Productioninshaleplaysisunpredictableandonlyasmallnumberofwellsmaybeabletoproducecommercialvolumesofgasovertimewithoutre-fracking,whichisverycostly.

219. The claims of economic development and public benefit need to be looked at carefully

because theyareoftenproducedby thosewitha vested interest andarebasedonoptimisticassumptions.

197STUARTME.2011.PotentialgroundwaterimpactfromexploitationofshalegasintheUK.BritishGeologicalSurveyOpenReport,OR/12/001.198NicotJP,ScanlonBR,2012.Wateruseforshale-gasproductioninTexas,U.S.Environ.Sci.Technol.2012,46(6),3580−3586.199Brodericketal,2011.Shalegas:anupdatedassessmentofenvironmentalandclimatechangeimpacts.TyndallCentreUniversityofManchester200CharteredInstitutionofWaterandEnvironmentalManagement,2015.WrittenSubmissiontoEnvironmentalAuditCommittee:EnvironmentalRisksofFrackingEnquiry(FRA006),para4

50

220. Severalpapershavenotedthatclaimsaboutemploymentgenerationassociatedwithshalegas in the US have usually been over-stated,201 202 203 and that initial economic booms oftentransformintolong-termsocialandeconomicdeclines.204205

221. Sixindustry-sponsoredreports(threeofwhichhadanacademicaffiliation)thathighlighted

the economic benefits of UNG were assessed by Kinnaman (2011).206 He identified severalshortcomings intheanalyses including:a)assumptionsthatall the leaseandroyaltypaymentsandthegreatmajorityofindustryexpenditureisspentlocally;b)thatthelevelofwellactivityisafunctionsolelyofthecurrentgasprice;c)erroneousinterpretationofdata;d)disregardoftheimpactonotherusersoftheresource;ande)failuretoassesswhethertheoverallbenefitsofgasextractionexceedthecosts.Kinnamanconsideredtheconsistentuseoftheterm‘conservativeestimates’inindustry-sponsoredreportagetobemisleadingandthatestimatesweremorelikelytobe‘overstated’.

222. LaveandLutz(2014)notedthatwhereresearchonthesocialeffectsofUNGisavailable,itis

notnecessarilyofadequatequalityandthatmostoftheeconomicanalysisisspeculativeandnotsubject to academic peer-review.207 The lack of funding for independent research has left aknowledge vacuum which has been largely filled by industry funded or produced literature.However,theyalsofoundthatthelimitedresearchonthesocialandculturalimpactsofUNGtobeoverwhelminglynegative.Theauthorsalsonotethatgovernmentagenciesvalueostensiblyapoliticaleconomicargumentssohighlythattheybehavelesslikemediatorsinthedebateandmoreasadvocatesfortheindustry.

223. Hughes(2013)alsoconcludedthatindustryandgovernmentprojectionsare‘wildly

optimistic’andthatshalegasandoilareneithercheapnorinexhaustible.208Thisanalysis,basedondatafor65,000shalewellsfromanindustryandgovernmentproductiondatabase,showed

201WeberJ,2012.TheeffectsofanaturalgasboomonemploymentandincomeinColorado,Texas,andWyoming.EnergyEcon.34(5),1580–1588(Sep).Doi:10.1016/j.eneco.2011.11.013.202PatridgeM,WeinsteinA,2013.Economicimplicationsofunconventionalfossilfuelproduction.NationalAgricultural&RuralDevelopmentPolicyCenter.Availablefrom:http://www.nardep.info/uploads/Brief15_EconomicsFossilFuel.pdf.203 MauroF,WoodM,MattinglyM,PriceM,HerzenbergSandWardS,2013.ExaggeratingtheEmploymentImpactsofShaleDrilling:HowandWhy.Multi-StateShaleResearchCollaborative.Availablefromhttps://pennbpc.org/sites/pennbpc.org/files/MSSRC-Employment-Impact-11-21-2013.pdf204JacquetJ,2009.EnergyBoomtowns&NaturalGas:ImplicationsforMarcellusShaleLocalGovernments&RuralCommunities.NERCRDRuralDevelopmentPaperN°43.Availablefrom:http://aese.psu.edu/nercrd/publications/rdp/rdp43.205ChristophersonS,RightorN,2011.Howshouldwethinkabouttheeconomicconsequencesofshalegasdrilling?AComprehensiveEconomicImpactAnalysisofNaturalGasExtractionintheMarcellusShale.WorkingPaper,CityandRegionalPlanning,CornellUniversity.Availablefrom:http://cce.cornell.edu/EnergyClimateChange/NaturalGasDev/Documents/PDFs/Comprehensive%20Economic%20Analysis%20project.pdf.206KinnamanT,2011.Theeconomicimpactofshalegasextraction:Areviewofexistingstudies.EcologicalEconomics70(2011)1243–1249207LaveandLutz,2014.HydraulicFracturing:ACriticalPhysicalGeographyReview.GeographyCompass8/10(2014):739–754,10.1111/gec3.12162208HughesDJ,2013.Arealitycheckontheshalerevolution.Nature494,307–308

51

wellandfieldproductivitydecliningrapidly,productioncostsinmanycasesexceedingcurrentgasprices,andproductionrequiringincreaseddrillingandmajorcapitalinputtomaintainproduction.Heidentifiesafamiliarpatternofaninitialdrillingboom,exploitationof‘sweetspots’(small,highlyproductiveareas)followedbythedrillingofmoremarginalareas,andthenrapiddeclinewithinafewyears.Theinvestmentrequiredfornewwellstomaintainsupplyoftenexceedssalesincome,whichinturnnecessitateshighergasprices.

224. Concernsaboutboom-bustcycleswerealsodescribedbyHaefeleandMorton(2009)intheir

assessmentofthelargeincreaseinnaturalgaswellsintheRockyMountainregionfrom1998-2008.Areviewofspecificcasestudieswhichhighlightedthespectreofasubsequentlocaleconomy‘bust’precipitatedbyadropinnaturalgasprices.209

225. Paredesetal(2015)usedtwoeconometricmethodstoisolateandquantifytheeffectofUNGonlocalincomeandemployment.210TheyfoundthatthedirectincomeeffectsofMarcellusshaleUNGdevelopmenthadanegligibleincomeimpactonthegeneralpopulation.Whilelocalemploymenteffectsweremoresubstantial,manyofthenewjobswerelowpaidandtakenupbyoutsiderswhowouldtendtospend/sendmuchoftheirincomehome.

226. Sovacool(2014)describedtheeconomicbenefitsofanumberofshalebooms.These

includedabout29,000newjobsand$238mintaxrevenuesinPennsylvaniain2008;acontributionof$4.8billiontogrossregionalproduct,57,000newjobsand$1.7billionintaxrevenueacrossWestVirginiaandPennsylvaniain2009;and$11.1billioninannualoutputrepresenting8.1%oftheregion’seconomyand100,000jobsintheBarnettShaleinTexasin2011.211However,thereviewalsoidentifiedthecomplexitiesofassessingeconomicimpactandtheexpenseofcostoverruns,accidentsandleakages,andconcludedthatthebenefitsofSGPareuncertainandconditionalonthe“right”mixoftechnologicalsystems;operatingprocedures,governmentregulations,andcorporatevaluesateachlocality.

227. Wrenetal(2015)notedthatvariationintheliteraturehighlightedthechallengeofcapturing

accuratedataonworkers’placeofresidenceandthatincreasesinemploymentmayhavelittlebenefittothoselocalitiesdirectlyfacedwiththecostsofUNGactivity.TheiranalysisoflocalemploymentinPennsylvaniafoundthatwhileUNGactivityhadhadapositiveeffectonemployment,itwasonlystatisticallysignificantforcountiesinwhich90ormorewellsweredrilledinagivenyear.HardyandKelsey(2014)foundmodestemploymentincreasesincountieswithdrillingactivityinMarcellusshaledevelopmentinPennsylvania,andthatmanyofthenewjobsweregoingtonon-residents,leavingminimalemploymentimpactonresidents.212

209Haefele,M.andP.Morton.2009.Theinfluenceofthepaceandscaleofenergydevelopmentoncommunities:LessonsfromthenaturalgasdrillingboomintheRockyMountains.WesternEconomicsForum8(2):1-13.210Paredesetal2013.Incomeandemploymenteffectsofshalegasextractionwindfalls:EvidencefromtheMarcellusregion.EnergyEconomics47(2015)112–120211Sovacool2014.Cornucopiaorcurse?Reviewingthecostsandbenefitsofshalegashydraulicfracturing(fracking)RenewableandSustainableEnergyReviews37(2014)249–264212HardyandKelsey2014.LOCALANDNON-LOCALEMPLOYMENTASSOCIATEDWITHMARCELLUSSHALEDEVELOPMENTINPENNSYLVANIA

52

228. MunasibandRickman(2014)consideredthatwhileunconventionalshaleoilandgasexplorationincreasedenergysectoremployment,theimpactsonotherpartsoflocaleconomieswerepoorlyunderstood.213TheyexaminedthebroaderregionaleconomiceffectsoftheindustryinthreeshaleplaysinArkansas,NorthDakotaandPennsylvaniaincludingtotalemployment,wageandsalaryemployment,percapitaincome,thepovertyrate,population,andemploymentinaccommodationandfoodservices,constructionandretailsectors.Asyntheticcontrolmethodwasusedtopredicteconomicactivityoccurringintheabsenceofincreasedunconventionalenergydevelopment.TheyfoundsignificantpositiveeffectsforoilandgascountiesinNorthDakotaacrossallregionallabourmarketmetrics.However,theyalsofoundthatpositiveeffectsinArkansaswereonlyidentifiedincountieswiththemostintensiveshalegasproduction.Theyconsideredthatthepositiveimpactsoftheemploymenteffectsonthelocaleconomyweresmallerthanthoseestimatedinotheranalysesandthatlocalinflationandotheradverseeffectshadanegativeimpactonthelocalqualityoflife.Inaddition,theyfoundnosignificantpositiveeffectsinPennsylvania.Thestudycautionsagainstoverestimatingthepotentialoftheindustrytorevivelocaleconomiesandhighlightsthatareaswithsignificantlevelsofeconomicactivitysuchasagricultureandtourism,maybemorelikelytoexperienceadverseeconomiceffects.

229. WeberJG(2012)hadalsopreviouslyestimatedmodestincreasesinemploymentandincomeassociatedwithincreasedUNGincountiesinColorado,TexasandWyoming.214Analysisofgasdepositandproductiondatawitheconomicdatafor1998/99to2007/08suggestedthecreationoffewerthan2.5jobspermilliondollarsofgasproduction;anannualemploymentincreaseof1.5%onpre-boomlevels.

230. RuralNorthDakotaexperiencedanoilandUNGboominthe2010swhichwasestimatedto

havecontributedoverabilliondollarstotheState’sfinancesandcreated65,000newjobs.Thisregionhadseenpreviousoilrelatedboomsinthe1950sandlate1970swhichhadledtohousingshortages,moreexpensivepublicservices,andalegacyofcostsforobsoleteinfrastructure.Weberetal(2014)assessedthebenefitsofthisfive-yearboom,theassociatedsocialchallengesandpotentialsolutions,throughinterviewswithsocialworkersandDirectorsofSocialCare.215Theynotedhousingasarecurrenttheme,especiallyinadequatesupplyandhighhousingcosts.SocialServicesDirectorsalsoreportedanincreaseinchildprotectionissues,increasingdaycareshortageandadiminishingsupplyoffosterhomes.Datafromthepolicesuggested‘troublingincreasesindomesticviolenceissuesdisproportionatetopopulation’.Benefitswerealsoraisedandincludedeconomicdevelopment,partnershipswiththeindustry,anddecreasesinbenefitsupport.However,thesewereregardedas‘mixedblessings’.Theauthorsadvisedthattheirfindingsshouldbetreatedwithcautionduetothelimitationsofasmallcross-sectionalstudy.

213MunasibandRickman,2014RegionalEconomicImpactsoftheShaleGasandTightOilBoom:ASyntheticControlAnalysis214WeberJ,2012.TheeffectsofanaturalgasboomonemploymentandincomeinColorado,Texas,andWyoming.EnergyEconomics34(2012)1580–1588215Weberetal,2014.Shalegasdevelopmentandhousingvaluesoveradecade:EvidencefromtheBarnettShale.

53

231. Muehlenbachsetal(2015)usedamethodologytoquantifytherealorperceivedeffectsofshalegasdevelopmentonpropertypricesinPennsylvania.216Theyhadaccesstoasubstantialpropertysalesdatasetandusedbothatechniquetocontrolforpotentialconfounders.Theyfoundthatthepricesofhomesdependentongroundwaterarenegativelyaffectedbyproximitytoshalegasdevelopments(upto-16.5%forthosewithin1km),whilethevalueofhomesonamainssupplyshowedasmallincrease.However,thelatterwasonlyapplicabletohomesproximaltoproducingwellswhichreceivedhomeownerroyaltypayments,andifthewellsarenotvisiblefromtheproperty.

232. Jonesetal(2014)reviewedthepotentialimplicationsforUKpropertyandinvestmentina

professionalbriefingnotebasedoninternetresources,peerreviewedpapersandgovernmentagencyresearch.217Theynotedreasonsforconcernaboutadequateandaffordableinsurancecoverandproblemswithobtainingmortgagesforhomesincloseproximitytoshalegasoperations.InEngland,aleadingfirmofsurveyorsnotedthathousepricescouldfallbyasmuchas30%.

233. Barth(2013)notedthatUNGactivitiescouldcauseincreaseddemandandcostsforrental

propertiesaswellasareductioninhouseprices,difficultiesinobtainingpropertyinsuranceandanegativeimpactonfutureconstructionandeconomicdevelopment.218WhileBarthrecognisedthatshalegaswillgeneratesomelocalandregionaljobsandrevenues,thelevelsofbothhaveprobablybeenexaggeratedintheindustry-fundedliterature.HenotesthatsomestudieshaveusedinappropriateeconomicmodellingassumptionssuchasusingcostsfromTexaswhichhasalongestablishedextractiveindustryinfrastructureandapplyingthemtoareaswithoutinfrastructure.Inaddition,costsfromsuchareaslikeTexaswhichispredominantlynon-urbanwithsmallerpopulationsandwithlowereconomicdiversitywouldbedifferentfromareasdependentonagriculture,tourism,organicfarming,hunting,fishing,outdoorrecreation,andwineandbrewing.

234. Large-scaleUNGimposescostsonlocalsocial,healthandemergencyservicesaswellasthe

environmentalcostssuchastrafficcongestionandroaddamage.Abramzonetal(2014)estimatedthatMarcellusUNG-relatedheavytrucktrafficcausedbetween$13-23,000ofdamageperwelltostatemaintainedroadsin2011.219

235. HaefeleandMorton(2009)concludedthatthesamenaturalgasindustry‘boom’thatbrings

somebenefitsforruralcommunitiesalsobringsaninfluxofnon-localworkers;increasedcrime,housingcostsanddemandforpublicservices;andadditionalburdensonlocalinfrastructure.

216MuehlenbachsL,SpillerEandTimminsC,2015.TheHousingMarketImpactsofShaleGasDevelopmentAmericanEconomicReview2015,105(12):3633–3659217JonesP,ComfortDandHillierD,2014.FrackingforshalegasintheUK:propertyandinvestmentissues’.JournalofPropertyInvestment&Finance,32,5:505–517218BarthJ,2013.THEECONOMICIMPACTOFSHALEGASDEVELOPMENTONSTATEANDLOCALECONOMIES:BENEFITS,COSTS,ANDUNCERTAINTIES.NEWSOLUTIONS,Vol.23(1)85-101,2013219Abramzonetal2014EstimatingTheConsumptiveUseCostsofShaleNaturalGasExtractiononPennsylvaniaRoadways.JournalofInfrastructureSystems10.1061/(ASCE)IS.1943-555X.0000203,06014001.

54

236. Followingastudy220thatreportedadeclineincownumbersandmilkproductionindrilledareas,Finkeletal(2013)comparedtheeffectofUNGactivitiesonmilkproductioninfivePennsylvaniacountieswiththemostunconventionaldrillingactivityweresixneighbouringcountieswithmuchfewerwells.221Theyfoundthatthenumberofcowsandtotalvolumeofmilkproductiondeclinedmoreinthemostfrackedcountiescomparedtothesixcomparisoncounties.TheauthorsrecognisedtheweaknessesoftheirstudybutrecommendedfurtherresearchgiventheimportanceofthemilkproductionindustryinPennsylvania.

237. Theliteratureongreenenergystronglysuggeststhathouseholdsarewillingtopay(WTP)a

premiumforelectricityfromgreenenergysourcessuchaswind,solar,andbiomass(Borchersetal.,2007;Roeetal.,2001andSusaetaetal.,2011)(GerpottandIlaha,2010,Oliveretal.,2011andScarpaandWillis,2010).

238. Popkinetal(2013)exploredthelikelywelfareimpactsofusingUNGextractedbyhydraulic

fracturingforhouseholdelectricityinaneconomicchoiceexperimentinvolving515householdsfromnineNewYorkcountieswithintheMarcellusShaleregionand18outsidetheshaleregion.222Theanalysiscontrolledforage,gender,education,placeofresidenceandproximitytoUNGsites.TheyfoundrespondentsbeingwillingtoacceptUNGderivedelectricityprovidedtheirmonthlybillswerereducedbybetween$22-$48(meanbill$124)withtherequireddiscountingincreasingwithincreasedproximitytoUNGsites.Respondentsalsogenerallyexpressedapreferencetocontinuewiththestatusquo(outofstatefossilfuelandnuclearenergy).

239. ThisnegativelocalperceptionofUNGisalsoreflectedinBernsteinetal’s(2013)contingent

valuationstudyofarandomsampleofSusquehannaValleyPennsylvaniaresidents’(n=186)WTPforeliminatingtherisksofwaterpollutionduetohydraulicfracking.223Thisfoundthatresidentswerewillingtopayupto$10.50amonthforadditionalsafetymeasurestoprotectlocalwatershedsfromshalegasextraction.

240. Acomprehensiveassessmentoftheeconomiceffectsofshalegasdevelopmentinvolves

lookingatwhowillbenefitfromtheeconomicbenefitsandnewjobs;whowillsufferthecostsassociatedwithshalegasdevelopment,andwhowillpayforthedifferentcostsassociatedwithshalegasproduction.Thelatterincludesthetaxpayerwhohastofootthebillforalargeamountoftherequiredinfrastructureandthenecessarylevelsofeffectiveregulation.

241. Government policy is also important. In the UK, the government has supported

recommendationstoprovidelocalcommunities£100,000perwellsitewherehydraulicfracturing

220AdamsandT.W.Kelsey,PennsylvaniaDairyFarmsandMarcellusShale,2007-2010,2012,PennStateCooperativeExtension,CollegeofAgriculturalSciences;MarcellusEducationFactSheet,http://pubs.cas.psu.edu/freepubs/pdfs/ee0020.pdf(accessedJune15,2012)221Finkeletal,2013.MARCELLUSSHALEDRILLING’SIMPACTONTHEDAIRYINDUSTRYINPENNSYLVANIA:ADESCRIPTIVEREPORT.NEWSOLUTIONS,Vol.23(1)189-201,2013222Popkinetal,2013.SocialcostsfromproximitytohydraulicfracturinginNewYorkState.EnergyPolicy62(2013)62–69223Bernstein,P.,Kinnaman,T.C.,&Wu,M.(2013).Estimatingwillingnesstopayforriveramenitiesandsafetymeasuresassociatedwithshalegasextraction.EasternEconomicJournal,39(1),28-44.

55

takesplaceattheexplorationorappraisalstage.Inaddition,localcommunitiescanexpectashareofproceeds fromtheproductionstageof1%of revenues. In January2014thePrimeMinistersuggestedthatthiscouldbeworth£5-10mforaproductionsiteoveritslifetime.Localcouncilshavealsobeenincentivisedtoencourageshalegasproductionbybeingallowedtokeep100%ofbusinessratestheycollectfromshalegassites(doublethecurrent50%figure).

Fugitiveemissions

242. Fugitiveemissionsaregases(mainlymethane,butalsootherhydrocarbonssuchasethane)thatareunintentionallylosttotheatmosphereduringtheprocessofgasextraction,collection,processingandtransportation.Theycanemanatefromaboveorbelowtheground.[Pressurereliefvalvesarealsodesignedtopurposefullyventgas.]

243. Abovetheground,leaksmayarisefromanyofthe55to150connectionsbetweenpiecesofequipmentsuchaspipes,heaters,meters,dehydrators,compressorsandvapour-recoveryapparatusofatypicalwell.224Leaksandemissionsalsooccurinthedistributionsystemusedtosupplygastoendconsumers.LargeemissionsofVOCshavebeenobservedonoilandgas(O&G)wellpadsbecauseofleaksfromdehydrators,storagetanks,compressorstations,andpneumaticdevicesandpumps,aswellasevaporationandflowbackpondwater.225

244. Keyemissionsourcesinthegasproductionprocessarefromwellcompletionsandliquids

unloading.Methaneisreleasedduringwellcompletionasfrackingfluidreturnstothesurfacepriortogasflowingatahighproductionrate.

245. Methaneemissionrateswillvaryfromoneareatoanotherbecausegasreservoirsvaryby

age,geologicproperties,easeofmaintenance(accessibility),andlocalpractice.Forexample,intermittentactivitiesthatcanresultinhighshort-termemissions,suchaswellcompletionsandliquidunloadingsmaybemorecommoninoneareacomparedtoanother.226

246. Currentunderstandingofthedistributionofemissionsacrosstheglobalwellpopulationis

extremelypoorwithintheliteratureandfurtherresearchisrequiredtodetailandquantifythefactorsaffectingunloadingemissionssuchaswellage,reservoirproperties,equipmentusedandoperationalstrategies.227

224HowarthandIngraffea2011.Methaneandthegreenhouse-gasfootprintofnaturalgasfromshaleformations.ClimaticChange(2011)106:679–690225WarnekeC,GeigerF,EdwardsPM,DubeW,PetronG,etal,2014.VolatileorganiccompoundemissionsfromtheoilandnaturalgasindustryintheUintahBasin,Utah:oilandgaswellpademissionscomparedtoambientaircomposition.Atmos.Chem.Phys.14,10977e10988.http://dx.doi.org/10.5194/acp-14-10977-2014.226Zavala-Aaraizaetal(2015)ReconcilingdivergentestimatesofoilandgasmethaneemissionsPNAS|December22,2015|vol.112|no.51|15597–15602227Balcombe,Anderson,Speirs,BrandonandHawkes,2015.MethaneandCO2emissionsfromthenaturalgassupplychain.London:SustainableGasInstitute

56

247. Estimatesofemissionsfromliquidsunloadingarehighlyvariable.Whilstthismaybehighforsomewells,manywellsdonotventatallduringunloading.228

248. AccordingtoareportproducedbytheSustainableGasInstitute(SGI),thereisstillan

incompleteandunrepresentativedatasetforanumberofkeyemissionsources.Specifically,moredataarerequiredforliquidsunloading,wellcompletionswithRECsandtransmissionanddistributionpipelines.229SGIalsonotealackoftransparencyindataandaccountingformethaneemissionsacrossalloftheLNGstages.

249. Fugitiveemissionsareamajorhealthhazardbecausemethaneisapotentgreenhousegas(GHG).Iftheamountoffugitiveemissionsexceedsacertainthreshold,theargumentthatshalegasisa‘cleanenergysource’relativetocoaloroilfallsapart.AccuratemeasuresoffugitiveemissionsproducedbytheO&Gindustryarethereforeimportant.

250. Methodstoquantifyfugitiveemissionsaretypicallydividedintotwogroups:bottomup

methodsandtopdownmethods.251. Bottomupmethodsusedirectmeasurementsofleakageratesfromempiricalstudiesto

calculateemissionfactors(EFs)fordifferentsourcesofleakage.TheseEFsarethenappliedtothenumberofsuchsources(andtheiractivitylevels)tocreateaninventoryofemissionsfromwhichatotalemissionestimateiscalculated.Inotherwords,inventoriesquantifyemissionsonthebasisofassumptionsaboutleakagefrequencyandratesacrossthedifferentpartsoftheshalegassystem,andreportsaboutactivitylevels.

252. ThisisthebasisfortheEPA’sInventoryofGreenhouseGasEmissionsandSinkswhich

providesanoverallnationalemissionestimatebysectorfortheUS.TheEPAalsohasaGreenhouseGasReportingProgram(GHGRP)whichinvolvesmandatoryreportingbyO&GoperatorsofGHGsfromallsourcesthatemitgreaterthan25000tofCO2eperyear.

253. IntheUS,attemptstoestablishaccurateemissionsinventorieshavebeenhinderedbydata

gaps,arelianceofself-reporteddatacollection,andtheuseofoutmodedemissionsfactors.230Maceyetal(2014)alsonotehowthedirectmeasurementofairpollutantsfromonshoregasoperationshasbeenlimitedbyinadequateaccesstowellpadsandotherinfrastructure;theunavailabilityofapowersourceformonitoringequipment;andunscheduledepisodesofflaring,fugitivereleasesandmovementsoftrucktraffic.231

228Balcombe,Anderson,Speirs,BrandonandHawkes,2015.MethaneandCO2emissionsfromthenaturalgassupplychain.London:SustainableGasInstitute229Balcombe,Anderson,Speirs,BrandonandHawkes,2015.MethaneandCO2emissionsfromthenaturalgassupplychain.London:SustainableGasInstitute230FieldRA,SoltisJ,MurphyS:Airqualityconcernsofunconventionaloilandnaturalgasproduction.EnvironSciProcessImpacts2014,16:954–969.231Maceyetal,2014.Airconcentrationsofvolatilecompoundsnearoilandgasproduction:acommunity-basedexploratorystudy.EnvironmentalHealth2014,13:82doi:10.1186/1476-069X-13-82

57

254. Bottom-upstudiesvaryintermsofdistancetosite,samplefrequency,andchemicalstargetedwhichhelpsexplaintherangeoffindingsinthepublishedliterature.

255. Topdownmethodsmeasuremethaneconcentrationsdirectlyintheatmosphere,usually

downwindfromasourceorgroupofsources,asabasisforestimatingtheemissionlevelsofagivensourcearea.Modelsarethenusedtoapportionapercentageofthetotalemissionstodifferentsourcesofmethaneinthegivensourcearea.

256. Bottom-upestimationsoffugitiveemissionsusedintheofficialUSinventoriesaregenerally

acceptedasbeingpronetounderestimation.Independenttop-downinvestigationssuggestthatGHGRPestimatesmayunderestimatetherealemissionratebyuptoafactorof3.8.232

257. ThereasonsforthisincludetheuseofoutdatedEFs(mostofthe80differentEPAEFs

associatedwithO&Goperationsarebasedonastudydoneinthe1990s233);inadequatesamplingandthefailuretoaccountfor‘super-emitters’(methaneemissionsfromindividualwellsandgasprocessingfacilitiesdonotexhibitanormaldistribution,buttendtodisplayaskeweddistributionwitha‘fat-tail’of‘super-emitters234);assumptionsthatoperatorsareapplyingbestpractice;inaccuratecountsandlocationofsites,facilities,andequipmentunderornon-reportingbyO&Goperators;235andtheassumptionthatEFsareconsistentacrosstheindustryanddifferentregions.236237

258. Brandtetal’sreviewof20yearsoftechnicalliteratureonnaturalgasemissionsintheUS

andCanadafoundthatofficialinventoriesconsistentlyunderestimateactualCH4emissions.238AccordingtoBrandtetal,becausemeasurementsforgeneratingEFsareexpensive,samplesizesareusuallysmallandaffectedbysamplingbiasduetorelianceuponself-selectedcooperatingfacilities.Inaddition,becauseemissionsdistributionshave‘fattails’,smallsamplesizesarelikelytounderrepresenthigh-consequenceemissionssources.

232Lavoie2015Aircraft-BasedMeasurementsofPointSourceMethaneEmissionsintheBarnettShaleBasin,Lavoieetal.,EnvironmentalScienceandTechnology,vol.49no.13pp.7904-7913,http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b00410233Karionetal,2013MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield,GeophysicalResearchLetters,vol.40no.16,http://onlinelibrary.wiley.com/doi/10.1002/grl.50811/pdf234Fat-tailsitesdonotnecessarilyhavepersistentlyhighemissionsbutmayrepresentshort-termemissioneventscausedbymaintenanceactivitiesormalfunctions.235Lavoie2015Aircraft-BasedMeasurementsofPointSourceMethaneEmissionsintheBarnettShaleBasin,Lavoieetal.,EnvironmentalScienceandTechnology,vol.49no.13pp.7904-7913,http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b00410236Karionetal,2013MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield,GeophysicalResearchLetters,vol.40no.16,http://onlinelibrary.wiley.com/doi/10.1002/grl.50811/pdf237Zavala-Aaraizaetal(2015)ReconcilingdivergentestimatesofoilandgasmethaneemissionsPNAS|December22,2015|vol.112|no.51|15597–15602238Brandtetal,2014.MethaneLeaksfromNorthAmericanNaturalGasSystems,Science,vol.343pp.733-735,http://psb.vermont.gov/sites/psb/files/CLF-SC-2%20Science-Methane%20Leaks.pdf

58

259. Themethodologicalchallengesinaccountingforfugitiveemissionsaredemonstratedbylargeyear-to-yearrevisionsofthereportedemissionsbytheEPA.239Forexample,theestimatednationalaverageproduction-sectorleakratefor2008increasedfromapproximately0.16%(oftotalgasproduced)inits2010report,to1.42%inthe2011and2012reports,beforebeingreviseddownto0.88%inthe2013report.240ThesechangesledtheEPA’sOfficeofInspectorGeneraltocallforimprovedemissionsdataforthenaturalgasproductionsector.241

260. AccordingtoHowarthandIngraffea,1.9%ofthetotalproductionofgasfroman

unconventionalshale-gaswellisemittedasmethaneduringwellcompletion[madeupoflossesfromflowbackfluids(1.6%)anddrillout(0.33%)].242Additionalfugitiveemissions(0.3–3.5%)continueatthewellsiteafterwellcompletion(fromleakageatconnections,pressurereliefvalves,pneumaticpumps,dehydratorsandgasprocessingequipment),whileemissionsduringtransport,storageanddistributionareestimatedtobeanadditional1.4%to3.6%.

261. Altogether,HowarthandIngraffeaestimatethat3.6%to7.9%ofmethanefromshale-gas

productionescapestotheatmosphere.Theyestimatethatemissionsareatleast30%andpossiblytwiceasgreatasthosefromconventionalgasduetotheextraemissionsthatarisefromhydraulicfracturing(asmethaneescapesfromflowbackfluids)andduringdrilloutafterfracturing.

262. Caultonetal’sassessmentoftheliteratureonestimatesofmethaneemissionsfrom

unconventionalgasproductionsince2010isthatemissionratesrangefrom0.6to7.7%atthewellsiteandduringprocessingoverthelifetimeproductionofawell;andfrom0.07to10%duringtransmission,storageanddistributiontoconsumers.Thehighestpublishedestimatesforcombinedmethaneemissions(2.3–11.7%)arebasedonactualtop-downmeasurementsinspecificregions.243244

263. Petronetal’s(2014)topdownmeasurementofmethaneemissionsintheDenver-Julesburg

BasininnortheasternColoradoover2daysinMay2012wasusedtoestimatetheemissionsfromoilandnaturalgasoperationsbysubtractingtheestimatedcontributionofothersourcesof

239Karionetal,2013MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield,GeophysicalResearchLetters,vol.40no.16,http://onlinelibrary.wiley.com/doi/10.1002/grl.50811/pdf240ThesechangeswerecausedbydifferentEFsforcalculatingemissionsfromliquidunloading,unconventionalcompletionswithhydraulicfracturing,andtherefracturingofnaturalgaswells.Themaindriverforthe2013reductionwasareportpreparedbytheoilandgasindustry,whichcontendedthattheestimatedemissionsfromliquidunloadingandrefracturingofwellsintightsandsorshaleformationsshouldbelower.241U.S.EnvironmentalProtectionAgencyOfficeofInspectorGeneral(2013),EPANeedstoImproveAirEmissionsDatafortheOilandNaturalGasProductionSector,EPAOIG,Washington,D.C.242HowarthandIngraffea,2011.MethaneAndTheGreenhouse-GasFootprintOfNaturalGasFromShaleFormations–ALetter,ClimaticChange,vol.106no.4pp.679-690.http://link.springer.com/content/pdf/10.1007%2Fs10584-011-0061-5.pdf243PétronG,etal.(2012)HydrocarbonemissionscharacterizationintheColoradoFrontRange:Apilotstudy.JGeophysRes,10.1029/2011JD016360.244KarionA,etal.(2013)MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield.GeophysResLett,10.1002/grl.50811.

59

methane(livestockfarming,landfills,wastewatertreatmentandnaturalmicro-seepage).245TheestimatedcontributionfromO&Goperationswasonaverage19.3±6.9t/h,75%ofthetotaltopdownmeasure.Themeasurementwasalmost3timeshigherthananhourlyemissionestimatebasedontheEPA’sGHGRP.Theleveloffugitiveemissionsasafractionoftotalgasproductionwas4.1±1.5%;similartofindingsreportedfromastudyin2008ofthesameregion.246

264. Peischletal’sstudyofmethane,carbondioxide,carbonmonoxideandC2–C5alkanelevels

acrosstheLosAngelesbasinin2010,foundthatmethaneemissionsweregreaterthanthatwhichwouldbeexpectedfrombottom-upstateinventories.Morethanhalftheemissionscamefromfugitivelossesfrompipelinesandurbandistributionsystemsandgeologicseeps.247

265. Karionetal’s(2013)studyofatmosphericmeasurementsofCH4fromanaturalgasandoil

productionfieldinUtahin2012foundanemissionratethatcorrespondedto6.2%-11.7%ofaveragehourlynaturalgasproduction.248Thefindingswereconsistentwithresultsfromprevioustop-downstudieswhichhavefoundinventoryestimatestobetoolow.

266. Anothertop-downmeasurementofmethaneoverseveralregions(representingoverhalfof

USshalegasproduction),foundemissionratesvaryingfromoneregiontothenext,andbeinggenerallylowerthanthosereportedinearlierstudies.249Methaneemissionsasapercentageoftotalvolumeofnaturalgasextractedwas1.0–2.1%intheHaynesvilleregion,1.0–2.8%intheFayettevilleregion,and0.18–0.41%intheMarcellusregioninnortheasternPennsylvania.Therelativelylowfugitiveemissionratesfoundinthestudyarethoughttobedueinparttothecompositionofthefossilfuelextractedandtheuseofmoreefficienttechnology.Itshouldbenotedthatthefiguresreportedheredonotincludeanestimateoffugitivelossesduringthetransmissionandfromend-usestagesofthegasproductionsystem.TheauthorsnotethatrepeatedmeasurementswouldbenecessarytodeterminetheextenttowhichtheironedaymeasuresofCH4arerepresentativeofemissionratesoverthefulllifecycleoffossilfuelproduction,andwhytwenty-folddifferencesinlossrateshavebeenreportedintheliteraturefordifferentoilandgas-producingregions.

267. Karionetal’s(2015)estimatesofregionalmethaneemissionsfromO&Goperations

(includingproduction,processinganddistribution)intheBarnettShale(Texas),usingairborne

245Pétronetal2014AnewlookatmethaneandnonmethanehydrocarbonemissionsfromoilandnaturalgasoperationsintheColoradoDenver-JulesburgBasin,JournalofGeophysicalResearch:Atmospheres,vol.119no.11pp.6836-6852,http://onlinelibrary.wiley.com/doi/10.1002/2013JD021272/pdf246Pétronetal2012HydrocarbonemissionscharacterizationintheColoradoFrontRange:Apilotstudy,JournalOfGeophysicalResearch,vol.117no.D4,http://www.fraw.org.uk/library/extreme/petron_2012.pdf247Peischletal2013.QuantifyingsourcesofmethaneusinglightalkanesintheLosAngelesbasin,California,JournalofGeophysicalResearch:Atmospheres,vol.118no.10pp.4974-4990,27thhttp://www.fraw.org.uk/library/extreme/peischl_2013.pdf248KarionA,etal.(2013)MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield.GeophysResLett,10.1002/grl.50811.249Peischletal,2015.QuantifyingatmosphericmethaneemissionsfromtheHaynesville,Fayetteville,andnortheasternMarcellusshalegasproductionregions,JournalofGeophysicalResearch:Atmospheres,vol.120pp.2119-2139,http://onlinelibrary.wiley.com/doi/10.1002/2014JD022697/pdf7

60

atmosphericmeasurements,foundmeasuresthatagreedwiththeEPAestimatefornationwideCH4emissionsfromthenaturalgassector,buthigherthanthosereportedbytheEDGARinventoryortheEPA’sGHGRP.250Theemissionsrateamountedto1.3−1.9%oftotalCH4productionwhichislowerthanratesrangingfrom4to17%foundinotherstudies.251252253

268. Lanetal(2015)quantifiedfugitiveCH4emissionsfrommorethan152facilities,including

wellpads,compressorstations,gasprocessingplantsandlandfillsfromONGoperationsintheBarnettShale.254Theyestimatedatotalwellpademissionrateof1.5×105kg/hinthearea,withratesbetweenindividualwellpadsrangingfrom0.009to58kg/handbeinglinearlycorrelatedwithgasproduction.Methaneemissionsfromcompressorstationsandgasprocessingplantsweresubstantiallyhigher,withsome“superemitters”havingemissionratesof3447kg/h,morethen36,000-foldhigherthanreportedbytheEPA’sGHGRP.Theemissionrateasaproportionoftotalgasproductionvariedfrom0.01%to47.8%withamedianandaveragevalueof2.1%and7.9%,respectively.

269. MeasurementsofmethaneemissionsbyLavoieetal(2015)ateightdifferenthigh-emitting

pointsourcesinOctober2013intheBarnettShale,Texas(fourgasprocessingplants,onecompressorstationandthreelandfills)werecomparedtootheraircraft-andsurface-basedmeasurementsofthesamefacilities,andtoestimatesreportedtotheEPA’sGHGRP.255Fortheeightsources,CH4emissionmeasurementswereafactorof3.2−5.8greaterthantheGHGRP-basedestimates.Summedemissionstotalled7022±2000kghr−1,roughly9%oftheentirebasin-wideCH4emissionsestimatedfromregionalmassbalanceflightsduringthecampaign.

270. Allenetal’s(2013)studywhichconsistedofdirectmeasurementsofmethaneemissionsat

190onshorenaturalgassitesintheUS(150productionsites,27wellcompletionflowbacks,9wellunloadings,and4workovers)alsofoundemissionsmeasurementsthatvariedbyordersofmagnitude.256However,theiroverallestimateofemissionsforcompletionflowbacks,pneumatics,andequipmentleaksamountedto0.42%ofgrossgasproductionwhichis

250Karionetal,2015.Aircraft-BasedEstimateofTotalMethaneEmissionsfromtheBarnettShaleRegion,EnvironmentalScienceandTechnology,vol.49no.13pp.8124-8131.http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b00217251Karionetal2013.MethaneemissionsestimatefromairbornemeasurementsoverawesternUnitedStatesnaturalgasfield.Geophys.Res.Lett.40(16),4393−4397252Peischl,J;etal.QuantifyingsourcesofmethaneusinglightalkanesintheLosAngelesbasin,California.J.Geophys.Res.:Atmos.2013,118(10),4974−4990.253Wennberg,P.Oetal.OnthesourcesofmethanetotheLosAngelesatmosphere.Environ.Sci.Technol.2012,46(17),9282−9289.254Lanetal,2015CharacterizingFugitiveMethaneEmissionsintheBarnettShaleAreaUsingaMobileLaboratory,EnvironmentalScienceandTechnology,vol.49no.13pp.8139-8146,https://www.researchgate.net/profile/Robert_Talbot/publication/279863703_Characterizing_Fugitive_Methane_Emissions_in_the_Barnett_Shale_Area_Using_a_Mobile_Laboratory/links/55a3bfdb08aee1d98de0f78d.pdf255Lavoieetal2015Aircraft-BasedMeasurementsofPointSourceMethaneEmissionsintheBarnettShaleBasin,EnvironmentalScienceandTechnology,vol.49no.13pp.7904-7913,http://pubs.acs.org/doi/pdf/10.1021/acs.est.5b00410256AllenDT,etal.(2013)MeasurementsofmethaneemissionsatnaturalgasproductionsitesintheUnitedStates.ProcNatlAcadSciUSA110(44):17768–17773.

61

considerablylowerthanotherfindingsfromotherstudiesandevenlowerthantheEPA’sinventory-basedrates.However,twopaperspublishedin2015haveindicatedthatthedataintheAllenetal’spapermayhavebeenflawed.257

271. Zavala-Aaraizaetal’s(2015)studyconstructedacustomisedbottom-upCH4inventoryinthe

barnettregionthatwasbasedonextensivelocalmeasurementsoffacility-wideemissionsfromproductionsites,compressorstations,andprocessingplants;updatedfacilitycounts;andanexplicitaccountofthecontributionofhigh-emitters(theestimatedemissiondistributionsimplythat,atanyonetime,2%offacilitiesareresponsibleforhalftheemissions).258High-emittersweredividedroughlyequallyamongproductionsites,compressors,andprocessingplants.TheyestimatedthatCH4emissionsfortheBarnettregiontobe59MgCH4/h(48–73MgCH4/h;95%CI),withthethreemainsourcesbeingproductionsites(53%),compressorstations(31%),andprocessingplants(13%).Thisequatestoalossof1.5%(1.2–1.9%)oftotalBarnettproduction.Theirmeasureofemissionswas1.9timestheestimatedemissionsbasedontheEPA’sGreenhouseGasInventoryand3.5timesthatoftheGHGRP.

272. Theleakagerateislowenoughforgas-firedelectricityinthisregiontobelessclimate

forcingthancoal-firedelectricity.However,long-distancetransmissionandstorageofnaturalgasresultsinasubstantialincrementofCH4emissionsthatwouldneedtobeconsideredwhenanalysingtheclimateimplicationsofnaturalgasconsumptioninregionsthatarenotproximatetoaproductionarea.259

273. Zavala-Aaraizaetalnotethatmoreworkisneededtounderstandthecharacteristicsthat

causeanindividualsitetobeahigh-emitter.260Theyalsonotethatthechallengefacingoperatorsisthathigh-emittersarealwayspresent(atthebasinscale)butoccuratonlyasubsetofsitesatanyonetime,andmovefromplacetoplaceovertime.

274. Lyonetal(2016)usedaspatiallyresolvedemissioninventory,tomeasuremethane

emissionsfromtheO&GindustryandothersourcesintheBarnettShaleregioninOctober2013.261Theywereestimatedtobe72,300(63,400−82,400)kg/hrofwhich46,200(40,000−54,100)kg/hrwereO&Gemissions(64%ofthetotal).About19%ofemissionscamefromfat-tailsitesrepresentinglessthan2%ofallsites.Themeasuredestimatewashigherthan

257 See: a) Howard T, Ferrarab TW, Townsend-Small A. Sensor transition failure in the high flow sampler:implicationsformethaneemissioninventoriesofnaturalgasinfrastructure.JAirWasteManagAssoc.2015;65:856–862;andb)39.HowardT.UniversityofTexasstudyunderestimatesnationalmethaneemissionsinventoryatnaturalgasproductionsitesduetoinstrumentsensorfailure.EnergySciEng.2015;DOI:10.1002/ese3.81.258Zavala-Aaraizaetal(2015)ReconcilingdivergentestimatesofoilandgasmethaneemissionsPNAS|December22,2015|vol.112|no.51|15597–15602259Zavala-Aaraizaetal(2015)ReconcilingdivergentestimatesofoilandgasmethaneemissionsPNAS|December22,2015|vol.112|no.51|15597–15602260Zavala-Aaraizaetal(2015)ReconcilingdivergentestimatesofoilandgasmethaneemissionsPNAS|December22,2015|vol.112|no.51|15597–15602261Lyonetal,2015.ConstructingaSpatiallyResolvedMethaneEmissionInventoryfortheBarnettShaleRegion,EnvironmentalScienceandTechnology,vol.49no.13pp.8147-8157,http://pubs.acs.org/doi/pdf/10.1021/es506359c

62

theEPAGreenhouseGasInventory,theEPA’sGHGRP,andtheEmissionsDatabaseforGlobalAtmosphericResearch(EDGAR)byfactorsof1.5,2.7,and4.3,respectively.Theirestimatedemissionratewasequivalentto1.2%(1.0−1.4%)ofgasproduction.

275. AstudypublishedbySchneisingetal(2014)assessedglobalandregionaltrendsin

atmosphericmethanebetween2003and2012andfoundthatmethaneconcentrationshadrisendramaticallyinthenorthernhemisphere.262ByevaluatingtrendsindrillingandhydraulicfracturingactivityintwolargeshaleregionsintheUS(theEagleFordinTexasandtheBakkeninNorthDakota),theauthorsestimatedmethaneemissionratesof9.5%(±7%)intermsofenergycontentduringthe2009–2011period.

276. Fugitiveemissionsfromabandonedwellshavealsobecomeagrowingconcern.Inastudy

whichinvolveddirectmeasurementsofmethanefluxesfromabandonedO&GwellsinPennsylvania,muchhighermethaneflowrateswerefoundwhencomparedtocontrollocations.263Threeoutof19measuredwellswerehighemittersthathadmethaneflowratesthreeordersofmagnitudelargerthanthemedianflowrate.GiventhattherearemillionsofabandonedwellsacrosstheUS,thismaymeanthattherearetensorhundredsofthousandsofhighemittingwells.Theauthorsrecommendthatmeasurementsofmethaneemissionsfromabandonedwellsbeincludedingreenhousegasinventories.

277. Astudyoffugitiveemissionsofmethanefromformeronshore(conventional)O&G

explorationandproductionintheUKselected66%(n=102)ofallwellswhichappearedtohavebeendecommissioned(abandoned)from4differentbasinsandanalysedthesoilgasaboveeachwellrelativetoanearbycontrolsiteofsimilarlanduseandsoiltype.264Ofthesewells,30%hadCH4levelsatthesoilsurfacethatwassignificantlygreaterthantheirrespectivecontrol.Conversely,39%ofwellsiteshadsignificantlylowersurfacesoilgasCH4concentrationsthantheirrespectivecontrol.TheauthorsinterprettheelevatedsoilgasCH4concentrationstobetheresultofwellintegrityfailure,butdonotknowthesourceofthegasnortheroutetothesurface.Thedatasuggestameanfugitiveemissionof364±677kgCO2eq/well/year.Buttheauthorsnotethatallthestudysiteshadbeendecommissionedinlinewithcurrentbestpracticerecommendationsandthatonshorewellswhichhavenotbeenappropriatelydecommissionedarelikelytoemitgreaterlevelsofmethane.Furthermore,thisstudydidnotassessthepotentialfordiffuseleakageintothesurroundinggroundwaterandenhancedreleaseoverabroadarea.

262SchneisingO,BurrowsJP,DickersonRR,BuchwitzM,ReutersM,BovensmannH.RemotesensingoffugitiveemissionsfromoilandgasproductioninNorthAmericantightgeologicalformations.EarthsFuture,2014;2:548–558263Kangetal,2014DirectmeasurementsofmethaneemissionsfromabandonedoilandgaswellsinPennsylvania.,PNAS,vol.111no.51pp.18173-18177,http://www.pnas.org/content/111/51/18173.full.pdf?with-ds=yes264Boothroydetal2016Fugitiveemissionsofmethanefromabandoned,decommissionedoilandgaswells,ScienceofTheTotalEnvironment,vol.547pp.461-469,http://www.sciencedirect.com/science/article/pii/S0048969715312535/pdfft?md5=28d125f6f39d20a2e7783d9dd6443062&pid=1-s2.0-S0048969715312535-main.pdf

63

278. Ingeneral,methaneemissionsintheUShavebeenunder-estimated.OnerecentquantitativeestimateofthespatialdistributionofanthropogenicmethanesourcesshowedthatEPAinventoriesandtheEmissionsDatabaseforGlobalAtmosphericResearch(EDGAR)haveunderestimatedmethaneemissionsbyafactorof∼1.5and∼1.7,respectively.265Thediscrepancyinestimateswereparticularlypronouncedinsouth-centralUSwherefossilfuelextractionandrefiningareprominent.266Accordingtothispaper,regionalmethaneemissionsduetofossilfuelextractionandprocessingcouldbe4.9±2.6timeslargerthaninEDGAR.

279. TheobservedincreaseinatmosphericmethaneconcentrationsovertheUSparallelsglobal

trends.Theglobalburdenofatmosphericmethaneroseby1–2%inthe1970sand1980s,stabilizedinthe1990s,buthasbeenrisingagainsincethemid-2000s.267268

280. TheincreaseofUSmethaneemissionsbymorethan30%overthepastdecadeisamajor

contributiontothistrend.AccordingtoTurneretal(2016),USanthropogenicmethaneemissionscouldaccountforupto30–60%oftheglobalincrease.269CaultonetalalsoagreethatincreaseinanthropogenicCH4emissionintheUS,causedprimarilybynaturalgassystemsandentericfermentation,playasignificantpartintheseglobaltrends.270

281. The20%increaseinO&Gproduction(includinganinefoldincreaseinshalegasproduction)

from2002to2014isalikelycausefortheriseinmethaneemissionsseenintheUS,althoughabetterunderstandingofUSanthropogenicmethaneemissions,particularlythosefromthelivestockandO&Gsectors,isneededbeforeanydefinitiveconclusionscanbemade.

282. Atmosphericmethanemostlyarisesfromthreesources:biogenicmethaneproducedby

microbesfromorganicmatterunderanaerobicconditions(e.g.inwetlands,ruminants,andwastedeposits),thermogenicmethaneformedingeologicalprocessesandreleasedbyoilandgasproduction,andpyrogenicmethaneproducedbyincompletecombustionprocessessuchasinbiomassburning.Theriseinmethaneconcentrationsatthegloballevelisbelievedtobedrivenbyacombinationofincreasedbiogenicmethaneemissionsfromthetropicalwetlandsandgrowingoilandnaturalgasproduction.Thecontributionmadebyoilandgasoperationsto

265Miller2013AnthropogenicemissionsofmethaneintheUnitedStates,PNAS,vol.110no.50pp.20018-20022,10thDecember2013http://www.pnas.org/content/110/50/20018.full.pdf?with-ds=yes266Emissionsduetoruminantsandmanurearewerealsouptotwicethemagnitudeofexistinginventories.267Turneretal,2016.AlargeincreaseinU.S.methaneemissionsoverthepastdecadeinferredfromsatellitedataandsurfaceobservations,Turneretal.,GeophysicalResearchLetters(preprint),2016–http://onlinelibrary.wiley.com/doi/10.1002/2016GL067987/pdf268FrankenbergC,etal.(2011)Globalcolumn-averagedmethanemixingratiosfrom2003to2009asderivedfromSCIAMACHY:Trendsandvariability.JGeophysRes116(D4):D04302.269Turneretal,2016.AlargeincreaseinU.S.methaneemissionsoverthepastdecadeinferredfromsatellitedataandsurfaceobservations,Turneretal.,GeophysicalResearchLetters(preprint),http://onlinelibrary.wiley.com/doi/10.1002/2016GL067987/pdf270Caulton2013.Towardabetterunderstandingandquantificationofmethaneemissionsfromshalegasdevelopmentwww.pnas.org/cgi/doi/10.1073/pnas.1316546111

64

theoverallincreaseinmethaneconcentrationsisunclear.Onestudyhassuggestedthataplausiblefigureisaround40%.271

283. Itisarguedthattechnologycanavoidorreducetheamountoffugitiveemissions.Methane

emissionsduringtheflowbackperiodcanintheorybereducedbyupto90%throughReducedEmissionCompletions(REC)technologies.Indeed,thelowerrangeofemissionsestimatesproducedbyHowarthandIngraffeareflecttheuseofbesttechnologytoalsominimiseroutineventingandleaksatwellsites,andfugitivelossesduringliquidunloadingandprocessing.However,technologiesarenotalwayseconomicallyviableorpracticable.Forexample,RECtechnologiesrequirethatpipelinestothewellareinplacepriortocompletionwhichmaynotalwaysbepossible.Theuseofbetterstoragetanksandcompressorsandimprovedmonitoringforleaksalsorequiresanindustrywillingtopayfortherequiredinvestments.

284. ReducedEmissionCompletions(RECs)equipmentisnowcompulsoryintheUS,andwould

beexpectedtobeobligatoryintheUK.However,theuseofemissions-minimisingtechnologyandoperationmaybeconstrainedbyeconomicfeasibility,whilstgeologicalcharacteristicsandregulationmayalsolimitemissionsminimisation.272

RegulationandRiskManagement

285. Regulationisonewaythatsocietyexpressesitspreferencesfordistributingthepotentialrisksandbenefitsassociatedwithanyindustrialoreconomicactivityacrosssociety(includingbetweencurrentandfuturegenerations).Itreflectsthewayinwhichweapplytheprecautionaryprinciple273andhowwevaluenatureandotherdimensionsoftheworldthathavenomarketvalue.

286. Giventherequirementofcommercialcompaniestomaximiseprofitasaprimarygoal(andthereforeseektoexternalisesocialandenvironmentalcostsasmuchaspossible),274regulationisimportanttoprotectthepublicinterestandensurethatcommercialoperatorsbehaveethicallyandsafely.Manywell-documentedcasestudiesfromavarietyofsectorsdescribehowtheimperativetomaximiseprofitresultsincompaniesignoringwarningsignalsaboutpotential

271HausmannPetal,2016.Contributionofoilandnaturalgasproductiontorenewedmethaneincrease.Atmos.Chem.Phys.,16:3227–3244.272Balcombe,Anderson,Speirs,BrandonandHawkes,2015.MethaneandCO2emissionsfromthenaturalgassupplychain.London:SustainableGasInstitute.273ThePrecautionaryPrincipleisrecognisedasguidanceto'erronthesideofcaution'whenanactivityisbelievedtothreatenhumanhealthortheenvironment,evenifthereissomescientificuncertainty.SeeTicknerandRaffensperger(1998),ThePrecautionaryPrinciple:AFrameworkforSustainableBusinessDecision-Making,EnvironmentalPolicy,(5/4)75–82.274LeMenestrel,M.,2002,'EconomicRationalityandEthicalBehavior.EthicalBusinessbetweenVenalityandSacrifice',BusinessEthics:AEuropeanReview,(11/2)157–166.

65

harmsanddangers.275TherecentcomprehensivestudybyChernovandSornetteontheconcealmentofriskinformationpriortotheemergenceofindustrialcatastropheshighlightstheneedforclosepublicscrutinyandarobustsanctionsregime.276

287. Companiesthatfacedifficultiesinsecuringaprofitwillbeplacedundertominimisecosts

andcompromiseonsafetyandethics,whichiswhytheeconomicviabilityofshalegasproductionisimportantfromapublichealthperspective.

288. Commonlyusedregulatorymechanismsarelegalconstraintsthatlimitorprohibitcertain

activities;lawsthatprescribemandatorysafetystandards;andliabilityandtaxsystemsthataredesignedtoaligntheeconomicinterestsofthecompanywiththeinterestsofsociety.Forregulationtowork,theremustalsobe:a)mechanismsformonitoringtheactivitiesofcommercialcompaniesandassessingtheirimpactonpeopleandtheenvironment;andb)theabilitytoenforcesanctionsintheeventofnegligenceornon-compliancewithregulation.

RegulationandSGP289. Inlinewithmanyotherindustrialprocessesandhumanactivities,SGPcannotbeconsidered

torisk-free.SGPwillleadtosomepollution,anditwillhavesomenegativesocialandeconomicimpacts.Thekeyquestioniswhethertherisksandharmsaredeemedacceptable–bothinabsoluteterms,butalsoinrelationtothepotentialbenefitsofSGP.

290. SGPisaparticularlydifficultindustrytoregulateforseveralreasons.Muchactivitytakesplaceundergroundandoutofsight.Thesourcesandtypesofpotentialpollutionaremanyandgeographicallydispersed,andtheleakageofmethaneintotheatmosphereisespeciallyhardtodetect.Italsoconcernslargeandpowerfuloilandgascorporationsthatareknowntobehostiletoregulationandreluctanttoacknowledgerisk.277Inaddition,shalegasoperationsmayinvolvemultiplecontractors(comprisingdrillingcompanies,hydraulicfracturingservicecompanies,chemicalsuppliers,wastehaulersandcementcontractors)whichmakescompliancedeterminationdifficult.

291. Muchhasalsobeenwrittenaboutthechallengesofconductingriskassessmentsof

engineeringprocessesbecausethedifficultyof:a)assessinguncertaintiesandassigningprobabilitiesandappropriatevaluesforestimations;b)distinguishingbetweenobjectiveknowledgeandsubjectivejudgments;c)workingwithintangiblesandtemporaldata;andd)non-disclosureagreementsthatallowcompaniestoholdbackdatarequiredformakingriskassessments.Anengineeringapproachtoriskassessmentwillalsoalwaysresultinanincompleteanalysisorbiasbecausehazardsarealsorelatedtopsychological,social,institutionalandculturalprocessesthataffectperceptionsofrisksandinfluenceriskbehaviours.278

275EEA,2001,Latelessonsfromearlywarnings:theprecautionaryprinciple1896–2000,EnvironmentalissuereportNo22,EuropeanEnvironmentAgency.276ChernovandSornette,2016.Man-madeCatastrophesandRiskInformationConcealment.Switzerland:SpringerInternaitonalPublichsing277KonschnikKEandBolingMK.Shalegasdevelopment:asmartregulationframework.EnvironSciTechnol2014;48:8404–8416.278See:Rennetal.,1992).Aven(2012),AvenandKristensen(2005)Pidgeon(1998)

66

292. ProponentsofSGPclaimthatSGPissafeifregulatedproperly.AccordingtoPHE,thepotential

risks from exposure to the emissions associated with shale gas extraction will be low “if theoperationsareproperlyrunandregulated”.279

293. There is also a view that regulation in theUK is better than in theUSA. For example, he

industry-funded Shale Gas Task Force is also satisfied that “current regulations in the UK areadequateandonthewholearemorerigorousandrobustthanthoseinoperationintheUS”.

294. Similarly, PHE stated that the concerns and problems associatedwith SGP in theUS “aretypicallya resultofoperational failureandapoor regulatoryenvironment” and that shalegasdevelopersandoperatorsintheUKcanbereliedupon“tosatisfytherelevantregulatorsthattheirproposalsandoperationswillminimisethepotentialforpollutionandriskstopublichealth”.280

295. However,nothoroughandindependentassessmentoftheadequacyoftheregulatory

system(includingthecapacityofregulatoryagencies)forshalegashasbeenconductedintheUK.

AnoverviewoftheregulatorysystemforSGPinEngland

296. TheregulatorysystemforSGPinEnglandisspreadacrossanumberofnationalandlocalgovernmentagencies.ResponsibilityforoverallcoordinationofpolicyonunconventionaloilandgaslieswiththeDepartmentofEnergyandClimateChange(DECC),withinwhichtheOfficeofUnconventionalGasandOil(OUGO)isresponsibleforencouragingunconventionaloilandgasexplorationandproduction.

297. TheDepartmentforEnvironment,FoodandRuralAffairs(DEFRA)hasleadresponsibilityfortheenvironmentalaspectsofshalegaspolicy,whiletheDepartmentforCommunitiesandLocalGovernment(DCLG)isresponsibleforthelocalplanningsystem.OverallresponsibilityforclimatechangeandseismicitylieswithDECC.

298. TheHealthandSafetyExecutive(HSE)whichreportstotheDepartmentforWorkand

Pensionsisresponsibleforensuringsafeworkingpracticesatandaroundthewellpad,includingsafeandproperwellconstruction.Finally,PublicHealthEnglandhavebeenmandatedtoprovideanoverallassessmentofthepotentialthreatsposedtohealthbySGP.

279KibbleA,CabiancaT,DaraktchievaZ,GoodingTetal,2014.ReviewofthePotentialPublicHealthImpactsofExposurestoChemicalandRadioactivePollutantsasaResultofShaleGasExtraction.CentreforRadiation,ChemicalandEnvironmentalHazards,PublicHealthEngland.Availablefrom:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/332837/PHE-CRCE-009_3-7-14.pdf280KibbleA,CabiancaT,DaraktchievaZ,GoodingTetal,2014.ReviewofthePotentialPublicHealthImpactsofExposurestoChemicalandRadioactivePollutantsasaResultofShaleGasExtraction.CentreforRadiation,ChemicalandEnvironmentalHazards,PublicHealthEngland.Availablefrom:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/332837/PHE-CRCE-009_3-7-14.pdf

67

299. OncePetroleumExplorationDevelopmentLicenceshavebeengrantedbyDECCto

operators,givingthemrightstodrillforshalegas,281operatorsmustobtainplanningpermissionfromthelocalMineralsPlanningAuthority(usuallylocatedintheplanningdepartmentsofcountycouncils).

300. TheoperatormustalsoconsulttheEnvironmentAgency(EA),anexecutivenon-

departmentalpublicbodysponsoredbyDEFRA,whichisresponsibleforregulationofairemissions,protectionofwaterresources(includinggroundwateraquifersandsurfacewater)andissuingtherequiredpermitsrelatedto,amongotherthings,waterabstraction;wastewaterdischarge;managementanddisposalofminingwastes,includingradioactivematerial;andflaringandventing.AnenvironmentalimpactassessmentisnowrequiredtobesubmittedbyoperatorstotheEAandplanningauthority.

301. Ifplanningpermissionisgranted,theHSEmustbenotifiedatleast21dayspriortoanydrillingcommencingsothatitcanassessthewelldesignandensuretheappropriatedesignandconstructionofawellcasingforanyboreholeandthatmeasuresareinplacetocontrolmajorhazards.Itisalsoexpectedtocontinuemonitoringoperationsbyreviewingweeklyreportssubmittedbythewelloperator.

302. One aspect of the regulatory system that has been criticised is that it is fragmented and

dispersed over too many agencies. Proponents of SGP argue that this results in delays andinefficiencies.Theindustry-fundedShaleGasTaskForcehasthereforerecommendedthatanew,bespoke regulator be created for onshore underground energy and assume the currentresponsibilitiesoftheEA,HSEandDECC.Theyalsorecommendthatwhilelocalissuesliketraffic,noise,visualimpactandtrafficcontinuetofallundertheremitoflocalauthorities,thereshouldbe a statutory duty p[laced on them to consult with the new regulator when assessing anyplanningapplications.

303. Inarguingthatanewbespokeregulatorwouldallowfortherequiredexpertiseandskillsto

bedeveloped,theTaskForceimplicitlyadmitsthattheexistinglevelsofcapacityandexpertisearecurrentlyinadequate.However,whiletheremaybeaneedtostrengthenregulatorycapacity,asingleandcentralisedbespokeregulatorforshalegasclearlyrunstheriskofregulatorycapture,especiallyifitistobepartlyfundedbyfeesfromcommercialoperators(asrecommendedbytheindustry-fundedTaskForce).

304. IntermsofdetailedstandardsandbestpracticeguidelinesforSGP,theUnitedKingdom

OnshoreOperatorsGroup(UKOOG),therepresentativebodyforUKonshoreoilandgascompanies.RecommendationsforgoodpracticearealsosetoutinareportproducedbytheRoyalSocietyandRoyalAcademyofEngineeringreport.282

281Thelicencesalsocoverconventionalexplorationandproductionofhydrocarbons.282RoyalSocietyandRoyalAcademyofEngineering,2012.ShaleGasExtractionintheUK:areviewofhydraulicfracturing.

68

305. Intermsofthegovernment,drafttechnicalguidanceproducedbytheEAaresimilarlylimitedtoexploratoryHVHF,vagueandnotlegallybinding.283DrafttechnicalguidancepublishedwaspublishedbytheEAin2013toclarifywhichenvironmentalregulationsapplytotheonshoreoilandgasexplorationandwhatoperatorsneedtodotocomplywiththoseregulationsissimilarlyonlyguidance.284Thisguidancewasputouttopublicconsultationhaveyettobeannounced.A‘regulatoryroadmap’publishedbyDECCinDecember2015providesanoverviewofregulationandbestpracticerelatedtothelicensing,permittingandpermissionsprocessforonshoreoilandgasexploration,developmentandproduction,includingshalegas.

306. BecauseSGPisanewactivityintheUK,legislationandguidanceareexpectedtoevolve.Tosomeextent,itisnotpossibletospecifysafetyandgoodpracticestandardsuntilsomeexploratorydrillingandfrackinghastakenplace.Itisnotable,however,thatinseekingtoencourageSGPintheUK,thegovernmenthassoughttoderegulatetheindustry.

307. Forexample,newlegislativetextwrittenintheUKInfrastructureAct,2015(underSection

4A)havechangedthedefinitionoffrackinginawaythatmayallowSGPactivitytobypasspreviouslyagreedsafeguards.Frackingisnowdefinedasthehydraulicfracturingofshalewhichinvolves,orisexpectedtoinvolve,theinjectionof‘morethan1,000m3offluidateachstage,orexpectedstage,ormorethan10,000m3intotal.285

308. AccordingtoGillfillamandHaszeldine,thereisnoexplanationastohoworwhythese

numberswerechosen,orwhyvolumesoffluidarechosenatallasthebasisfordefiningfracking.Bythisnewdefinition,almostahalfofthegaswellswhichwerehydraulicallyfracturedintheUSoverthisdecadewouldnownotbeclassifiedas”fracked”.

309. The2015InfrastructureActhasalsorelaxedtherequirementforshalecompaniestoseek

permissionofhomeownerstodrillundertheirland.

310. Finally,thegovernmenthasalsodecreedthatplanningpermissionmustnowbedeterminedwithin16weeksofanapplication.Furthermore,ifaplanningauthorityfailstomeetthisdeadlineorrejectsanapplicationongroundsthatareinconsistentwiththelocalplanornationalguidance,theapplicantmayappealandbeawardedcosts.Thischangeishighlysignificantbecauseitpreventslocalauthoritiesfrombeingabletoconductproperriskandimpactassessmentsandbecauseitallbutseverelyinhibitspublicparticipationfromtheplanning

283DECC,2013.RegulatoryRoadmap:OnshoreOilandgasExplorationintheUKRegulationandBestPractice.Availableathttps://www.gov.uk/government/publications/regulatory-roadmap-onshore-oil-and-gas-exploration-in-the-uk-regulation-and-best-practice.284EnvironmentAgency,2013b.DraftTechnicalGuidanceforOnshoreOilandGasExploratoryOperations.https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCIQFjAA&url=https%3A%2F%2Fconsult.environment-agency.gov.uk%2Ffile%2F2582905&ei=vB4PVff2FeOW7AbGooHAAQ&usg=AFQjCNHGvQ4f2PVbU94Stn9qS9XksN7n9Q285Hydraulicfracturingatawellpadforhorizontalshalegaswellsisnota“oneshot”process,butisperformedinstages,asthelengthoftheboreholesusuallyexceedsseveralkilometres.Sectionsof20-40metresareblockedoffalongthehorizontalwell(packed)andthenfrackedinstages.

69

process.TheEAalsonowhastosubmitreportsaboutenvironmentalrisktocouncilswithinsixteen-weeks.

Concernsabouttheregulatorysystem

Riskandimpactassessments

311. CurrentlyintheUK,shalegasoperatorsareseekingpermissiontoconductexploratoryfrackingandrelativelysmallscaleproductioninafewsites.Theprocessforapplicationinvolvesconductingenvironmentalriskandimpactassessments,aswellasotherimpactassessmentsincludingthoserelatedtonoiseandtraffic.

312. In2015,LancashireCountyCouncilrejectedtwoplanningapplicationssubmittedbyCuadrillatoconductexploratoryfracking.CuadrillaappealedthedecisionandthedisputebetweenthecouncilandthecompanyformedthebasisforaPublicInquirywhichtookplaceinearly2016undertheauspicesofthePlanningInspectorate.TheInquiryraisedanumberofissuesaboutriskandimpactassessments.

313. Thefirstissueconcernsthefactthatriskandimpactassessmentsarenotconductedina

comprehensiveandintegratedmanner.ThisincludesalackofrequirementforacomprehensivesocialandeconomicassessmentwhichwouldassesstheimpactofSGPonothereconomicactivitiessuchastourismandagriculture.RelatedtothiswasanabsenceofanassessmentoftheopportunitycoststhatareincurredbySGP.

314. ThesecondissueisthattheapplicationsinLancashireonlyinvolvedanassessmentofthe

risksandpotentialimpactoflimitedexploratoryfrackingontwosites,anddidnotinvolveanassessmentofthepotentialriskandimpactofSGPactivityinthescenariooffull-scaleSGP.Thishasledsomecriticstodescribetheprocessforapprovingapplicationsandassessingimpactasa‘salami-sliceapproach’whichavoidsanycumulative,holisticandcomprehensiveassessmentoftheimpactofSGP.

Designandconstructionofwells

315. Generallyspeaking,theUKadoptsa‘goal-settingapproach’toregulationinwhichoperatorsareencouragedtodemonstratetoregulatorsthatrisksare‘aslowasreasonablypracticable’.Thisisdesignedtoencourageoperatorstomovebeyondminimumstandardsinacontinuouseffortforimprovement.Inthisapproach,companiesaretrustedtobebothhonestandcompetentinthewaytheyoperateandreporttoregulators.Theroleofindependentmonitoringorindependentverificationofoperatorreportsislimited.

316. Thisisexemplifiedbythesystemforensuringthatwellsareadequatelyandsafelydesignedandconstructed.Thesysteminvolvesan‘independentandcompetentperson’whoischargedwithexaminingtheintegrityandqualityofwelldesignandconstruction.However,thefullindependenceofthispersonisconstrainedbythefactthats/heisoftenpaidfororemployedby

70

theoperator.Inaddition,thereviewandexaminationofwellspecificationsanddesignisconductedasapaperexerciseandbasedoninformationsuppliedbytheoperator.Assuch,thereisnomandatoryandindependentoversightoftheactualconstructionofwells,norprovisionforunannouncedspotchecksofwellintegrityacrossthelifecycleofawell,includingafterabandonment.

317. IndependentinspectionforwellintegritywasrecommendedbytheRoyalSocietyand

AcademyofEngineering.Eventheindustry-fundedShaleGasTaskForcenotedthatitisimportantnottorelysolelyonself-monitoringandself-reportingbytheoperator,andthat“regular(andsometimesrandom)visitsandinspectionsbytheregulators”isadvisable.TheTaskForcealsorecommendthatthereshouldbecommunityinvolvementinanoversightroleinthismonitoringandpublicdisclosureoftheresultsofwellinspections.However,mandatoryandindependentinspectionofwellswasrejectedduringthepassageoftheInfrastructureActonthegroundsthatthecurrentregulatorysystemisadequate.

Drilling

318. Whenitcomestodrilling,thecurrentregulationsappeartobeunclearandinadequate,particularlygiventhefaultednatureoftheUKgeologyandtheexperienceoffrackinginPreeseHall.

319. Asnotedearlier,therearereasonswhydrillingshouldavoidanygeologicalfaults(especially

majorfaults)onthewaytothetargetshale.Operatorsshouldthereforeensurethattheyhaveoptimaldataaboutthegeologybeforeandduringdrilling.Thismeanscarryingoutthenecessarygeophysicalsurveysinadvanceofdrilling;possiblydevelopingnewtechniquesforimagingfaultswithinthickshalesequences;andcloselyinspectingseismicdataduringdrilling.

320. TheapparentnegligencethattookplaceatPreeseHallhasbeenpartlymitigatedbythe

introductionofa'trafficlight'systemofseismicmonitoringduringfracking.However,itisnotclearifthisonitsownissufficienttoensuresafedrilling.

321. Intermsofprotectinggroundwaterfromcontamination,currentlawsandregulations

prohibitanydrillingin‘sourceprotectionzones’.Itmayhoweverbenecessarytogofurtherby,forexample,specifyminimumstand-offdistancesfromfaults(verticallyandhorizontally)forbothwellboresandthetargetformationstoavoidtriggeringearthquakes,ortoprohibitfrackingaltogetherinareaswherefaultspenetratethefullthicknessoftheoverburden.

322. Thereappearstobelittleifanyresearchintothepotentialseismichazardposedbyexisting

orfutureinjectionofwastewaterintheUK.Shouldhighvolumere-injectionactivityofflowbackfluidbecarriedoutintheUK,itwouldneedbecarefullymonitoredtocomplywiththeestablishedtrafficlightschemewhichwillbeusedtomeasureforinducedseismicityfromfuturefrackingoperations.InanarticlewrittenbyacademicsfromEdinburghUniversity,itisstronglyrecommendthataresearchbased,industryacceptedcodeofbestpracticetoreducetheriskof

71

environmentalcontaminationbeestablishedbeforeanyflowbackfluidre-injectionpermitsaregranted.286

Baselinemonitoring

323. Thereshouldalsobeadequatebaselinemonitoringbeforebothdrillingandfrackingcommences.Althoughtherearesomerequirementsforbaselinemonitoringinthebestpracticeguidanceandregulationsforshalegas,concernshavebeenraisedaboutthelackofspecificationoverthescope,quality,frequencyandstandardsofpollutionmonitoring.

324. Concernsaboutthelackofmandatoryminimumstandardsforthemonitoringofairpollutants,includingfugitivemethaneemissions,isjustifiedbythefactthatthereiscurrentlynodataregardingtheamountofgasventedbyexistingoilandgasoperationsintheUK.287

325. TheInfrastructureActrequiresaperiodofgroundwatermonitoringpriortothe

commencementoffracking.Thenon-bindingUKOOGCodeofPracticealsocommitscompaniestosomebaselinemonitoring,whiletheShaleGasTaskForcerecommendsthat“baselinemonitoring–forground,airandwater–shouldbeginwhenasitehasbeenidentified,beforetheenvironmentalpermittingandplanninghavebeenobtained”Theyalsorecommendthat“monitoringofgas,casingpressureandsoilshouldtakeplaceforthedurationofoperationsonawell”.

326. Thecompositionandpotentialtoxicityoffrackingfluidhasreceivedmuchpublicattention.

Theindustry-fundedShaleGasTaskForcerecognisesthatwhiletheexactcompositionofadditivesmaybe‘commerciallysensitive’andthatcommercialconfidentialitymaypromoteinnovation,italsorecognisesthatthepublicneedstobereassuredandrecommendsthattheEAcreatesapublicdocumentofagreedlimitsofacceptableadditivesandthatitconductstesting“atregularintervals”sothatthepubliccanbereassuredthatthereisnorisktopublichealth.

Reducedemissionsorgreencompletions

327. Whenitcomesto‘reducedemissioncompletions’,guidancepublishedbytheEAmakesthisarecommendedpractice.Theindustry-fundedShaleGasTaskForcenotesthattheUShasrecentlymandatedtheuseofgreencompletions,andrecommendsthatthesamepolicybeadoptedintheUKfor‘productionwells’.However,theyexplainthat‘greencompletions’arenotfeasiblefor‘exploratorywells’thatwillrequiresomeflaringofgas.

Forcompressorstations,localregulationmaybeabletoestablishsetbacks,maximumnoiselevels,fencingandlandscapingrequirements,andenhancedstandardsforunitsadjacenttoresidentialareas.

286HaszeldineS,GilfillanSandO’DonnellM,2016.UKFailingtoLearnUSLessonsonFrackingWastewater.http://www.talkfracking.org/news/uk-failing-to-learn-u-s-lessons-on-fracking-waste-water/287StamfordandAzpagic,2014.LifecycleenvironmentalimpactsofUKshalegas.AppliedEnergy134(2014)506–518

72

Abandonedwells

328. Accordingtocurrentguidance,beforewellscanbeabandoned,theymustbesecurelysealedtopreventleakagefromwithinthewellbore.Cementispumpedintotheproductioncasingandasteelcapisfittedtothetopofthewelltosealitoff.Operatorsarealsorequiredtohaveaclosureandrehabilitationplan(torestorethesitetoastatesimilartothatbeforedrilling)whichmustbeagreedbytheEAbeforedecommissioningbegins.OperatorswillnotbeallowedtosurrendertheirpermituntiltheEAissatisfiedthatthereisnoongoingrisktotheenvironment.

329. However,atpresent,itisnotclearwhowillmonitorwellsforleakageaftertheyhavebeenabandoned.

330. Eventheindustry-fundedShaleGasTaskForcenotesthattheGovernmentneedsto“clarify

whereresponsibilityforthecontinuedmonitoringanddocumentationofsealed-offsitesshouldlie”.Theyalsostatethat“itisnotclearwhoisresponsibleforanyissuesaroundanabandonedwelliftheoperatorhasgoneoutofbusinessatthetimewhenaleakorcontaminationhasbeenidentified”,andthatevencurrently,“thereislittlemonitoringofabandonedwells”intheUK.

331. Insettingouttoreassurethepublicaboutthisissue,theindustry-fundedTaskForceiscomfortablewiththeproposalthatwellsbeinspectedtwotothreemonthsaftertheconcreteplugshavebeeninsertedintothewell,andthatfurtherinspectionsfocusonsoilmonitoringandgroundwatermonitoring“atasuitablerecommendedinterval”and“ifthereisanyreasontobelievethatwellintegritymightbecompromised”.

332. IntheUS,weakrequirementsfortheindependentandadequatemonitoringofpluggedand

abandonedwellshasraisedconcernsgiventhatwellsmayleak(gasandliquid)foruptothirtyyearsaftertheyhavebeenpluggedandabandoned.288

Managementofwastewateranddeepinjection

333. Atpresent,specificationsaboutthetreatmentanddisposalofwastewaterremainunclear.Therecommendationoftheindustry-fundedShaleGasTaskForceissimplythatOperatorEnvironmentalImpactAssessments(EIAs)‘shouldclearlysetouttheproposedarrangementsforthedisposalofwastewater,clearlyidentifyingthedisposalroutesforallwastestreams,includingwastesgeneratedfromwastewatertreatmentprocesses’.

334. RecentlypublisheddraftguidelinesfortheonshoreoilandgassectoroutlinetheEA’scurrentpositiononwastewatermanagementinEnglandandWales.Thisincludesaimingto:a)

288KangM,KannoCM,ReidMC,ZhangXetal,2014.DirectmeasurementsofmethaneemissionsfromabandonedoilandgaswellsinPennsylvania.PNASvol.111no.51:18173–18177,doi:10.1073/pnas.1408315111

73

reducetheamountofwastegenerated;b)encouragethereuseofwastefluidswhereverpossible;andc)reducetheneedforfreshwaterandwatertreatmentfacilities.Forcontaminatedflowbackfluids,theguidancestatesthatre-useisthepreferredoption.Ifflowbackfluidcannotbere-used,itmustbesenttoanappropriatepermittedwastefacilityfortreatmentanddisposal.

335. ItalsostatesthattheEAwill“generallynotpermitthere-injectionofflowbackfluidfor

disposalintoanyformation”althoughthe“re-injectionofflowbackfluidfordisposalisnotnecessarilyprohibitedandmaybepermissiblewhere,forexample,itisinjectedbackintoformationsfromwhichhydrocarbonshavebeenextractedandwillhavenoimpactonthestatusofwaterbodiesorposeanyrisktogroundwater.”Thisnewpositionisadistinctcontrasttoapreviouspositionofprohibitingthedisposalofflowbackfluidbyre-injectingitintotheshalestrata.289

336. TheShaleGasTaskForcealsobelievesthat“theremaybesituationsandcircumstances–

wherethegeologyissuitable–wheredeepinjectionisasensible,costeffectiveandpopularpreferredmeansofwastedisposal”butrecommendsthat“acarefulanalysisshouldbemadeofthegeologicalconditions,togetherwiththeamountofwaterandspeedatwhichthewaterispumped,relatingtoanyparticularsitebeforeadecisionistakentodisposeofwastewaterbydeepinjection”.

337. IntheUS,re-injectionisthemostcommonandeconomicallyviablesolutiontodealwith

flowbackwastewatersbut,inadditiontoinducedearthquakes,thepracticehasalsoresultedinenvironmentalcontaminationthroughsurfacespillsandleakywells.290

338. AreviewbyEllsworth(2013)ofinjection-inducedearthquakesassociatedwithSGP

concludesthatearthquakescanbeinducedbybothhydraulicfracturingandthesub-surfacedisposalofwastewater.291WithinthecentralandeasternUnitedStates,theearthquakecounthasincreaseddramaticallyoverthepastfewyears.Severalcasesofearthquakes(associateddirectlywithfracking)werelargeenoughtobefeltbuttoosmalltocausestructuraldamagehavebeenreported.However,mostoftheconcerncentersontheinjectionofwastewater,andnotfrackingitself.Hearguesthatbetterknowledgeofthestressandpressureconditionsatdepth;thehydrogeolgicframework,includingthepresenceandgeometryoffaults;andthelocationandmechanismsofnaturalseismicityareneededtodevelopapredictiveunderstandingofthehazardposedbyinducedearthquakes.Industryneedsclearrequirementsunderwhichtooperate,regulatorsmusthaveafirmscientificfoundationforthoserequirements,andthepublicneedsassurancethattheregulationsareadequateandarebeingobserved.

339. ThepotentialpermittingofinjectionforflowbackfluidsinEnglandandWalesisparticularly

concerningasthereisacompletelackofresearchonthecompositionsofthewastewaterand

289http://energyandcarbon.com/uk-failing-lessons-fracking-waste-water/#_ftn24290http://energyandcarbon.com/uk-failing-lessons-fracking-waste-water/#_ftn24291EllsworthW,2013.Injection-inducedearthquakes,Science341(6142),doi:10.1126/science.1225942.

74

potentialchemicalreactionsinthesubsurface.IftheUKistodisposeofhigh-volumeflowbackfluidsfromshalegasbyusingre-injectionintogeologicalformations,muchfurtherresearchintothepotentialrisksoftheprocessandhowtoreducethemisrequired.

340. Itisalsoworthconsideringthevolumesinvolved.Theexistingonshoreconventionalindustry

intheUKdisposesofapproximately12millioncubicmetresofproducedwatereveryyear.TheInstituteofDirectorsforecastsaUKshaleindustrydeveloping,betweennowand2030,100padswith40multilateralwellseach,witheachpadusing0.5millioncubicmetresofwater.292Assumingthat50%ofthisfracturingfluidflowsback,atotalof27millioncubicmetresofflowbackwillneedtobedisposedofduringthisperiod.Incomparison,asstatedabove,theconventionalindustrywilldisposeofasmuchproducedwatereverytwo-and-a-bityears.

Sanctionsregime

341. Aneffectivesanctionsregimeintheeventofnegligenceornon-compliancewithsafetystandardsandbestpracticeisanimportantaspectoftheregulatorysystem.

342. Theproposaltorequirecompaniestosecureabondtoinsurethemagainstthecostofanypotentialliabilityhasnotbeenadoptedaspolicy.Thereareinadequatesafeguardstopreventfrackingoperatorsfrompassingtheownershipandliabilityofcommerciallynon-viablewellsontosubsidiarycompaniesthatsubsequentlygointoadministrationshortlyafter.

343. Althoughtheindustryhasstatedthattheywilldevelopaninsurancemechanismtocoverfull

liabilityintheeventofapollutionincident,thisremainsanon-bindingpromiseandwould,inanycase,offerweakerprotectionthanalegally-mandatedbondagreementthatwouldcoverthecostsofdecommissioning,faultywellremediation,andcompensationforpossiblepollutionofwaterresources,depreciationoflandandhouseprices,andearthquakedamage.

Capacityandexpertiseofregulatorybodies

344. ItisfrequentlystatedthatregulationoftheoilandgasindustryisofthehigheststandardintheUKandmoreeffectivethanintheUS.

345. Suchstatementsshouldnotbetakenatfacevalue.Asnotedabove,thereareuncertainties,andpotentialweaknessesintheproposedregulatorysystemforSGP.Thelastfewyearshavealsoseendeepcutstothebudgets,staffingandexpertiseofarangeofregulatoryagencies,whilecentralgovernment’sstrongsupportforSGPhasseencertainpowersdiminishedinregulatorybodies,includinglocalgovernment.

346. TheregulatorysystemintheUSvariesconsiderablyfromstatetostate,andinsome

instances,regulatorystandardsmaybemorestringentthanintheUK.ItisworthnotingthatNewYorkStatehasactuallybannedSGPonthegroundsthatitwouldbeharmfultohealth.

292InstituteofDirectors,2013.Gettingshalegasworking.

75

347. Theerosionofthecapacityofpublicinterestandregulatoryagenciesisespeciallyworrying.Localgovernmentbudgetsandcapacityhavebeenparticularlyhardhit,includingthoserelatedtopublichealth.AccordingtotheNationalAuditOffice,therehasbeena37%estimatedreal-termsreductioningovernmentfundingtolocalauthorities2010-11to2015-16.293Oncechangestocounciltaxincomearefactoredin,therehasbeenanestimated25%real-termsreductioninlocalauthorities’incomefrom2010-11to2015-16.Therehasalsobeena46%budgetedreal-termsreductioninspendingonplanninganddevelopmentservicesbetween2010-11and2014-15.

348. Netspendingbylocalauthoritiesonpublicservices(excludingspendingonpolice,fireandrescue,education,publichealthandasmallcomponentofsocialcare)inEnglandhasbeencutby20.4%inrealtermsbetween2009-10and2014-15.Someoftheserviceareaswiththelargestcutswereplanninganddevelopment(cuttolessthanhalfitsoriginallevel),regulationandsafety,housing,andtransport(allofwhichwerecutbyatleast30%).Localauthoritiesareexpectedtofacefurthercutstorevenuesperpersonof4.1%in2015-16(excludingspecificgrantsformandatoryhousingbenefitpaymentsandeducation,publichealth,fireandpoliceservices).294

349. Asfaraslocalgovernment’sresponsibilityfordecidingwhetherornotaparticularproposeddrillingandfrackingapplicationshouldgoahead,reasonableconcernsexistaroundcountycouncilslackingin-housegeologicalexpertiseorthetimeandmoneytoseekindependentadvice.Alltoooftentheyarereliantontheinformationprovidedbytheapplicant.

350. BudgetcutstotheEAhavealsobeensevere.AccordingtoUNISON,therehasbeena16%cutinthetotalgrantsmadein2009-10comparedto2013-14.295Takingintoaccountaninflationrateof11%;thisisequivalenttoacutofnearly25%inrealterms.Thousandshavejobshavebeenlostinthisperiod.296

351. Furthermore,theEA'sexperienceofhydrogeology–whichtendstobelimitedtotheupperfewhundredsofmetresofbedrock–maybeinsufficienttodealwiththeenvironmentalhazardsofSGP.

352. TheHSEbudgetwascutby13%from£228millionin2009–2010to£199millionin2011–2012.Itsstaffnumberswerereducedby22%from3,702in2010to2,889upto2012.297AccordingtoHSEchiefexecutiveGeoffreyPodgerin2010,‘thenumberofstaffhasfallendrastically,fromover4,200adecadeagotoaround2,200’.TheHSE’sAnnualReport&Accounts

293FromNationalAuditOfficereport,Theimpactoffundingreductionsonlocalauthorities,November2014.https://www.nao.org.uk/wp-content/uploads/2014/11/Impact-of-funding-reductions-on-local-authorities.pdf294DavidInnesandGemmaTetlow,2015.CentralCuts,LocalDecision-Making:ChangesinLocalGovernmentSpendingandRevenuesinEngland,2009---10to2014---15295https://www.unison.org.uk/at-work/water-environment-and-transport/key-issues/cuts-at-the-environment-agency/296http://www.endsreport.com/article/41653/environment-agency-cuts-surviving-the-surgeons-knife297WattersonandDinan,2015.HealthImpactAssessments,Regulation,andtheUnconventionalGasIndustryintheUK:ExploitingResources,Ideology,andExpertise.JournalofEnvironmentalandOccupationalHealthPolicy0(0)1–33.

76

for2014/15furthermorestateshowithasdelivereda40%realtermbudgetreductionfrom2011/12to2014/15.AccordingtoitsBusinessPlanfor2015/16,grantsprovidedbygovernmenttofundcertainactivitiesareplannedtoreducebyover£82min2015/16comparedto2011/12.TheextenttowhichdrillingwillbeproperlyscrutinisedbyspecialistwellsinspectorsfromtheHSE(oranynewbespokeregulator)isthereforeacontentiouspoint.

353. TheTaskForcerecommendthattheGovernmentestablishesaNationalAdvisoryCommitteeofindependentacademicexpertswitharemittoexamine,collateandevaluatehealthimpactsassociatedwithshalegasoperationsintheUKonceoperationshavebegunanddatafromthefirstwellsbecomesavailable.

Climatechangeandhealth

GlobalWarmingandclimatechange 354. Theproductionandconsumptionofenergyhasbeenanimportantingredientforthe

remarkableimprovementsinhumanhealthwitnessedoverthepasttwocenturies.However,becauseofglobalwarming,fossilfuelnowpresentsamajorthreattohumanhealth.298

355. Theaveragegloballandandseasurfacetemperaturehasrisenbyabout1°Csincepre-industrialtimes.299Lagsintheresponseoftheclimatesystemtohistoricalemissionsmeanthattheworldisalreadycommittedtofurtherwarmingoverthecomingdecades.

356. TheprimarycauseforthisincreaseintemperatureisthereleaseofGHGemissions.About

70%ofallGHGemissionscanbelinkedtotheburningoffossilfuelfortheproductionofenergyservices,goodsorenergyextraction.300Agriculture,deforestationandcementusearealsoimportantcausesofglobalwarming.

357. ThemetriccommonlyusedtoquantifythetotalamountofGHGsintheatmosphereis‘giga

tonnesofCO2equivalent’(GtCO2e).ThisconvertsquantitiesofmethaneandotherGHGsintoameasurethatisequivalenttothedominantGHGwhichiscarbondioxide.

358. About1600GtCO2ehasbeenemittedintotheatmospheresince1870.In2010,annual

globalGHGemissionswereestimatedat49GtCO2e.301

298Globalwarmingcausedbyhumanactivityisanincontrovertiblefact,backedbyempiricalevidenceandsoundscientifictheories.ItisdrivenbyGHGstrappingheatwithintheearth-atmospheresystem.299http://www.metoffice.gov.uk/research/news/2015/global-average-temperature-2015300Victor,D,Zhou,D,Ahmed,Eetal.IntroductoryChapter.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014301Summaryforpolicymakers.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportofthe

77

359. GlobalGHGemissionsfromheatandelectricityproductionandtransporthavetripledand

doubledrespectivelysince1970,whereasthecontributionfromagricultureandland-usechangehasslightlyreducedfrom1990levels.302

360. Theriseintemperatureincreasestheamountofenergyintheearth-atmospheresystemaswellastheamountofwaterintheatmosphere,bothofwhichleadtochangesintheweather.303

361. CO2(andsomeotherpollutants)alsocausesoceanacidificationwhichdamagesmarineorganismsandthreatensfreshwatersuppliesacrosstheworld.Theeffectoficemeltingandwaterexpansion(causedbytemperaturerise)andsubsequentsealevelriseisanotherimportantdimensionofglobalwarming.

Impactsonglobalhealth

362. Theimpactsofglobalwarmingonhealthcanbedirect(eg,heatwaves;extremeweathereventssuchasastorm,forestfire,flood,ordrought;andsealevelrise),orindirect,mediatedthroughtheeffectsofclimatechangeon,amongstotherthings,foodproductionsystems,economies,forcedmigrationandincreasinglevelsofconflictandviolence.

363. Therearealreadyobservedimpactsofclimatechangeonhealth.Thereisawell-established

relationshipbetweenextremehightemperaturesandhumanmorbidityandmortality304andstrongevidencethatheat-relatedmortalityisrisingacrossarangeoflocalities.305

364. Heatwavesandincreasesintheincidenceofextremeheatareprojectedunderallfuturescenariosofclimatechange.306Heatposessignificantriskstooccupationalhealthandlabourproductivityinareaswherepeopleworkoutdoorsforlonghoursinhotregions.307Lossof

IntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014302Bruckner,T,Bashmakov,I,Mulugetta,Yetal.EnergySystems.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014303McCoyDandHoskinsB,2014.Thescienceofanthropogenicclimatechange:whateverydoctorshouldknow.BMJ2014;349doi:http://dx.doi.org/10.1136/bmj.g5178304Aström,C,Orru,H,Rocklöv,J,Strandberg,G,Ebi,KL,andForsberg,B.Heat-relatedrespiratoryhospitaladmissionsinEuropeinachangingclimate:ahealthimpactassessment.BMJOpen.2013;3:e001842305Smith,KR,Woodward,A,Campbell-Lendrum,Detal.Humanhealth—impactsadaptationandco-benefits.Climatechange2014:impacts,adaptation,andvulnerabilityWorkingGroupIIcontributiontotheIPCC5thAssessmentReport.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014306Patz,JA,Campbell-Lendrum,D,Holloway,T,andFoley,JA.Impactofregionalclimatechangeonhumanhealth.Nature.2005;438:310–317307Kjellstrom,T,Holmer,I,andLemke,B.Workplaceheatstress,healthandproductivity—anincreasingchallengeforlowandmiddle-incomecountriesduringclimatechange.GlobalHealthAction.2009;2(10.3402/gha.v2i0.2047.)

78

agriculturalproductivitythroughimpairedlabourwillamplifydirectclimatechangebyimpactingnegativelyonfoodproduction.308

365. OnestudyestimatesthattheeffectsofheatcouldcostChinaandIndiabyasmuchas

US$450billionin2030.309Althoughtheremaybemodestreductionsincold-relateddeathsinsomeparsoftheworld;attheglobalscale,thesebenefitswillbeoutweighedbyheat-relatedmortality.310

366. Heatwavesalsocarryrisksforthewiderenvironment.Forexample,thesummer2010

heatwaveinRussia311wasaccompaniedbymorethan25,000firesoveranareaof1·1millionhectares312andraisedconcentrationsofcarbonmonoxide,nitrogenoxides,aerosols,andparticulates(PM10)acrossEuropeanRussia.

367. Changingweatherpatternswillaffecttheincidenceofcertainvector-bornediseases.For

example,risingtemperaturesandchangesinprecipitationpatternwillalterthedistributionofdiseasevectorssuchasmosquitoescarryingdengueormalaria.Denguefeverforexamplehas390millionrecordedinfectionseachyear,andthenumberisrising.Changingweatherpatternswillalsoincreasewaterbornediseasessuchascholerainthecomingdecades.313

368. Airborneparticulatematter(PM)producedfromthecombustionofcoalandoilalsoimpingesnegativelyuponhealthbycausingrespiratoryandcardiovasculardisease.Householdandambientairpollutionisestimatedtohavebeenresponsiblefor7millionadditionaldeathsgloballyin2012.314IntheUK,around40,000deathsareattributabletoexposuretooutdoorairpollution.315TheOECDestimatesthatthevalueofliveslostandillhealthduetoambientairpollutioninOECDcountries,plusIndiaandChina,ismorethan$3·5trillionannually(about5%grossworldproduct),withIndiaandChinaaccountingfor54%ofthistotal.316

308Porter,JR,Xie,L,Challinor,AJetal.Foodsecurityandfoodproductionsystems.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:485–533309DARAandtheClimateVulnerabilityForum.Climatevulnerabilitymonitor2012:aguidetothecoldcalculusofahotplanets.FundacionDARAInternacional,Barcelona;2012310Ebi,KandMills,D.Wintermortalityinawarmingclimate:areassessment.WileyInterdiscipRevClimChange.2013;4:203–212311Russo,S,Dosio,A,Graversen,RGetal.Magnitudeofextremeheatwavesinpresentclimateandtheirprojectioninawarmingworld.JGeophysResDAtmospheres.2014;199:500–512312Ryazantzev,S.Demographicandsocio-economicconsequencesofheatwaveandforestfiresof2010inEuropeanRussia.EcolLife.2011;5:80–85313Lipp,EK,Huq,A,andColwell,RR.Effectsofglobalclimateoninfectiousdisease:thecholeramodel.ClinMicrobiolRev.2002;15:757–770314WHO.Burdenondiseasefromairpollutionin2012.http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf;2014.315RoyalCollegeofPhysicians.Everybreathwetake:thelifelongimpactofairpollution.Reportofaworkingparty.London:RCP,2016.316OrganisationofEconomicCo-operationandDevelopment,2014.Thecostofairpollution:healthimpactsofroadtransport.Paris:OECD.

79

369. Byalteringtemperatureandprecipitationfrequency,climatechangecanfurtherelevatelevelsofatmosphericparticulatematterandgroundlevelozoneincertainregions.317318319Onestudyestimatesthatozone-relatedacutemortalityintheUSAcouldriseby4·5%from1990to2050throughclimatechangealone.320

370. Mostclimate-relatedhealthimpactsaremediatedthroughcomplexecologicalandsocialprocessesasshowninthediagrambelow.

371. Theimpactofclimatechangeonpushingupfoodpricesandaffectingfoodavailabilityandaffordabilitywillbesubstantial,especiallyforregionsandpopulationsthatarealreadyfoodinsecure.321Policiesrelatedtopolicesonfoodstocks,reactionstofoodpricesbyproducer

317Giorgi,FandMeleux,F.Modellingtheregionaleffectsofclimatechangeonairquality.CRGeosci.2007;339:721–733318Tagaris,E,Manomaiphiboon,K,Liao,K-Jetal.ImpactsofglobalclimatechangeandemissionsonregionalozoneandfineparticulatematterconcentrationsovertheUnitedStates.JGeophysRes,D,Atmospheres.2007;112:D14312319Jiang,H,Liao,H,Pye,HOTetal.Projectedeffectof2000–2050changesinclimateandemissionsonaerosollevelsinChinaandassociatedtransboundarytransport.AtmosChemPhys.2013;13:7937–7960320Knowlton,K,Rosenthal,JE,Hogrefe,Cetal.Assessingozone-relatedhealthimpactsunderachangingclimate.EnvironHealthPerspect.2004;112:1557–1563321Grace,K,Davenport,F,Funk,C,andLerner,AM.ChildmalnutritionandclimateinSub-SaharanAfrica:AnanalysisofrecenttrendsinKenya.ApplGeogr.2012;35:405–413

80

countries,anddemandforlandtohedgeagainstclimateshiftsmayfurtherincreasevolatilitywithintheglobalfoodsystemandcompoundthethreatofreducedfoodproductivityformanypopulations.322

372. Addedtothechallengeofworseningfoodsecurity,isthecriticalfactorofwateravailability.Groundwaterresourcesarealreadyinacriticalstateinmanyregions323324andincreasedexposuretodrought-likemeteorologicalconditionsoverthecomingdecadesisaconsiderablethreat.Oneanalysisshowsthatclimatechange,whencombinedwithpopulationchanges,couldleadto1·4billionadditionalpersondroughtexposureeventsperyearbytheendofthecentury.325

373. Thepotentialimpactofincreasedfrequencyoffloods,stormsurgesandhurricanesis

exemplifiedbythe6000plusfatalitiesthatresultedfromtyphoonHaiyaninthePhilippinesin2013.Floodsalsohavelong-termandshort-termeffectsonwellbeingthroughdiseaseoutbreaks,mentalhealthburdens,anddislocation.326327TheinvoluntarydisplacementofpopulationsasaresultofextremeeventshasmajorhealthandpolicyconsequencesasevidencedrecentlyintheUK.

374. TheIPCCconcludesthatclimatechangewilldirectlyaffectpoverty,resourceuncertaintyand

volatility,andtheabilityofgovernmentstofulfiltheirobligationstoprotectsettlementsandpeoplefromweatherextremes.328329

375. Thecontinuedmovementofmigrantpopulationsintocities,thepotentialforclimate

hazardsinhigh-densitycoastalmega-cities,andimpairedairqualitycreatesignificantpublic

322Porter,JR,Xie,L,Challinor,AJetal.Foodsecurityandfoodproductionsystems.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:485–533323TaylorRG,ScanlonB,DollPetal.Groundwaterandclimatechange.NatureClimChange.2013;3:322–329324Schewe,J,Heinke,J,Gerten,Detal.Multimodelassessmentofwaterscarcityunderclimatechange.ProcNatlAcadSciUSA.2014;111:3245–3250325WattsN,AdgerWN,AgnolucciPetal,2015.Healthandclimatechange:policyresponsestoprotectpublichealth.TheLancet,Vol.386,No.10006,p1861–1914326Ahern,M,Kovats,RS,Wilkinson,P,Few,R,andMatthies,F.Globalhealthimpactsoffloods:epidemiologicevidence.EpidemiolRev.2005;27:36–46327Paranjothy,S,Gallacher,J,Amlôt,Retal.Psychosocialimpactofthesummer2007floodsinEngland.BMCPublicHealth.2011;11:145328Adger,WN,Pulhin,JM,Barnett,Jetal.Humansecurity.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelofClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:755–791329Olsson,L,Opondo,M,Tschakert,Petal.Livelihoodsandpoverty.in:CBField,VRBarros,DRDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014:793–832

81

healthchallenges,notleastformigrantsthemselves.330331Theeffectsoffoodandresourceinsecurity,migration,displacement,uncertaintyandpovertyallcombinetomakeclimatechangeathreattopeaceandhumansecurity.332

376. Scientistsarealsohighlyconfidentthatclimatechangeisbleachingcoralonreefs

worldwide;affectingriverflows;forcingplantandanimalspeciestowardsthepolesandtohigherelevationsaroundtheworld;andnegativelyimpactingthoselivingintheArctic.Therehasbeenanegativeeffectonthegrowthinproductivityofsomekeycrops,includingforwheatandmaize.

377. Althoughthemagnitudeandnatureoffuturehealthimpactsarehardtopredictwith

precision,unlessactionistakentostopthenetincreaseinGHGemissions,allplausiblefuturesresultingfromanticipatedemissionstrajectorieswillexposetheglobalpopulationtoserioushealthconsequences.

378. Furthermore,thereisarealriskofunforeseeninteractionsandtheamplificationofknownclimaterisks.Ofgreatconcernistheriskofcrossingthresholdsandtippingpointswhichwouldproduceaccelerationsinwarmingandlarger-than-expectedchancesofcatastrophicoutcomes.333334

379. AccordingtotheLancet-UCLCommissiononClimateChangeandHealth,climatechange

couldbe“sufficienttotriggeradiscontinuityinthelong-termprogressionofhumanity”335andthatonthebasisofcurrentemissiontrajectories,“temperaturerisesinthenext85yearsmaybeincompatiblewithanorganisedglobalcommunity”.336

380. Whilstinitiallycertainregionsandcommunitieswillsufferdisproportionately,the

interconnectedandglobalnatureofclimatesystems,ecosystemsandhumansocietywillmeanthatallpartsoftheworldwillbeaffected.337Regionsthatmightbelessaffectedbythedirecteffectsofclimatechangewillbenegativelyaffectedbytheeconomicandsocialdisruptioninthoseregionsthataremoredirectlyaffected.338

330McMichael,C,Barnett,J,andMcMichael,AJ.Anillwind?Climatechange,migration,andhealth.EnvironHealthPerspect.2012;120:646–654331Black,R,Arnell,NW,Adger,WN,Thomas,D,andGeddes,A.Migration,immobilityanddisplacementoutcomesfollowingextremeevents.EnvironSciPol.2013;27:S32–S43332Gleditsch,NP.Whithertheweather?Climatechangeandconflict.JPeaceRes.2012;49:3–9333Rockström,J,Steffen,W,Noone,Ketal.Planetaryboundaries:exploringthesafeoperatingspaceforhumanity.EcolSoc.2009;14:32334Lenton,TM,Held,H,Kriegler,Eetal.TippingelementsintheEarth'sclimatesystem.ProcNatlAcadSciUSA.2008;105:1786–1793335WattsN,AdgerWN,AgnolucciPetal,2015.Healthandclimatechange:policyresponsestoprotectpublichealth.TheLancet,Vol.386,No.10006,p1861–1914336Anderson,KandBows,A.Beyond‘dangerous’climatechange:emissionscenariosforanewworld.PhilosTransAMathPhys.EngSci.1934;2011:20–44337SmithKR,WoodwardA,Campell-LendrumDetal.Humanhealth—impactsadaptationandco-benefits.Climatechange2014:impacts,adaptation,andvulnerabilityWorkingGroupIIcontributiontotheIPCC5thAssessmentReport.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014338AdgerWN,PulhinJM,BarnettJetal.Humansecurity.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionof

82

381. Althoughthereissomeuncertaintyinunderstandingtheearth’sfutureclimatesystemand

howfurtherglobalwarmingwillimpactonweatherpatterns,biodiversity,foodproductionandwaterstress,therisksoutlinedaboveindicatetheneedtotakeclimatechangeasaseriousandpotentiallyexistentialthreattoorganisedandpeacefulcivilisation.

GlobalGHGemissions,carbonbudgetsandinternationalpolicy

382. ItisdifficulttoforecastwithanycertaintythefuturepatternofGHGemissions,energyuseorglobaltemperaturerise.However,climatescientistshaveconstructedvariousriskmodelsthatrelateGHGemissiontargetstofuturetemperaturerise.These‘integratedassessmentmodels’arehighlycomplexandincorporatemultipleassumptionsaboutcosts,markets,humanbehaviour,populationgrowthandthephysicsofclimatechange.

383. Akeyoutputoftheiranalyseshasbeentheconstructionof‘globalcarbonbudgets’thatareassociatedwithvariousprobabilitiesforlimitingtheriseinglobaltemperaturestobelowadefinedlimit.Thetablebelowshowstheestimatedcarbonbudgetfortheperiod2011to2100thatwouldbeconsistentwithvariousprobabilitiesoflimitingglobalwarmingtolessthan1.5°Cand2°C.

CumulativecarbondioxideemissionsconsistentwithwarmingtargetsatdifferentlevelsofprobabilityNetanthropogenicwarming <1.5oC <2oCProbability 66% 50% 33% 66% 50% 33%CumulativeCO2emissionsfrom2011-2100(GtCO2e) 400 550 850 1000 1300 1500CumulativeCO2emissionsfrom1870(GtCO2e) 2250 2250 2550 2900 3000 3300

(Source:IPCCFifthAssessmentReport,2014)

384. Tohaveabetterthan66%chanceoflimitingglobalwarmingtobelow2°C,cumulativeGHGemissionsfrom2011onwardswouldneedtobelimitedtoaround1,000(630–1180)GtCO2e.339Tohaveabetterthan50%chanceoflimitingglobalwarmingtobelow1.5°C,cumulativeGHGemissionsfrom2011onwardswouldneedtobelimitedtoaround500GtCO2e.340Aglobal

WorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:755–791339ClarkeL,JiangK,AkimotoKetal.Assessingtransformationpathways.InEdenhofer,Pichs-Madruga,Sokona(Eds.)Climatechange2014:MitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014340ClarkeL,JiangK,AkimotoKetal.Assessingtransformationpathways.InEdenhofer,Pichs-Madruga,Sokona(Eds.)Climatechange2014:MitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014

83

carbonbudgetofabout850GtCO2efortheperiod2011-2100wouldequatewithan“unlikely”(<33%)chanceofstayingbelow1.5°C.

385. Estimatesaboutfutureemissionstrajectories,includingcarboncyclefeedbacks,andtheirimpactonglobaltemperaturesarefullofuncertainty,beingbasedonmultipleassumptionsandlimitsinknowledge.However,manymodelsusedmaybeoptimisticbecausetheytendtoassumerelativelyearlypeaksinglobalemissionsandthat‘negativeemissiontechnologies’willbepracticallyandeconomicallyviableinremovingCO2fromtheatmosphere.341342

386. The850to1000GtCO2ebudgetrangeiscommonlyusedinpolicycircles.Thisreferstothe

globalbudgetwehaveforallemissionsfromallsectorsfortheperiod2011to2100.Tounderstandwhatemissionsareavailablefrom2016onwards,itisnecessarytosubtractthoseemissionsreleasedbetween2011and2016.BasedonCDIACdata,thisisatleast150GtCO2whichleavesabudgetof700-850GtCO2efortheperiod2016-2100.

387. AlthoughenergyproductionisamajorsourceofGHGemissions,agriculture,deforestation,

andcementusearealsoimportantsources.Anoptimisticestimateofemissionsfromdeforestationandcementprocessfor2016to2100wouldbeintheregionof60GtCO2and150GtCO2respectively,leavingan‘energy-only’globalbudgetof490-640GtCO2efortheperiod2016to2100.343

388. Combiningoptimisticassumptionsaboutcurtailingdeforestationandcementemissionswith

theIPCC’sheadlinebudgetof1,000GtCO2wouldequatewithglobalreductionsinenergy-relatedemissionsofatleast10%perannumfrom2025,transitioningrapidlytowardszeroemissionsby2050.344345

389. CurrentGHGemissionstrendsarenotreassuring.Globally,since2000,GHGemissionshavebeenrisingataround2%everyyear,poweredlargelybygrowthinChinaandotheremergingeconomies.346Overallglobalenergydemandgrewby27%from2001to2010,largelyconcentratedinAsia(79%),theMiddleEastandAfrica(32%),andLatinAmerica(32%)onthebasisofterritorialaccounting.347However,consumption-basedaccountingshowsthatmostof

341AndersonK,2015.OntheDualityofClimateScientists.NatureGeoscience,DOI:10.1038/ngeo2559.342Fuss,S.etal.Bettingonnegativeemissions.Nature.4.850-853(2014)343AndersonK,2015.OntheDualityofClimateScientists.NatureGeoscience,DOI:10.1038/ngeo2559.344Krey,V,Masera,G,Blanford,Tetal.AnnexII:metrics&methodology.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014345EvenstabilisingCO2econcentrationstobetween450–650ppm(whichwouldbeconsistentwith2-4°Cofwarming),theglobalemissionratewouldneedtofallby3–6%peryear,aratethatsofarhasonlybeenassociatedwithmajorsocialupheavalandeconomiccrisis.See:Beyond‘dangerous’climatechange:emissionscenariosforanewworld.PhilosTransAMathPhys.EngSci.2011(1934):20–44346Summaryforpolicymakers.In:Edenhofer,Pichs-Madruga,Sokona(Eds.)Climatechange2014:MitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014.347Bruckner,T,Bashmakov,I,Mulugetta,Yetal.EnergySystems.in:OEdenhofer,RPichs-Madruga,YSokona,(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY;2014

84

therecentgrowthinenergyexpenditurehasbeendrivenbyconsumptioninhigh-incomeregions.348

390. Accordingtooneassessment,energyexpenditureinnon-OECDcountrieswilldoubleby2035from2010levels,withOECDcountriesseeinga14%increaseoverthesameperiod.349Onceagain,mostofthefutureprojectedgrowthinenergyexpenditureisexpectedtobedrivenbyconsumptioninhigh-incomeregions.

391. Atthecurrentglobalemissionrate,the‘carbonbudget’describedabovecouldbedepletedwithinaslittleas24years,possiblysooner.Thewindowofopportunitytopreventpotentiallycatastrophicclimatechangeisthereforesmall.

392. TheParisAgreement(December2015)hasbeenheraldedasmarkinganewlevelofinternationalcommitmenttoaddressingthethreatofglobalwarming.TheprincipalaimoftheAgreementistohold“theincreaseintheglobalaveragetemperaturetowellbelow2°Cabovepre-industriallevelsandtopursueeffortstolimitthetemperatureincreaseto1.5°Cabovepre-industriallevels,recognizingthatthiswouldsignificantlyreducetherisksandimpactsofclimatechange”.

393. TheParisAgreementalsonotesthatcountrieswillaimtoreachglobalpeakingofGHGemissions“assoonaspossible”,whilstrecognisingthatpeaking“willtakelongerfordevelopingcountryparties”.

394. However,thevoluntarypledgesmadebyindividualcountriestoreducetheirGHGemissions

donotmatchtheambitionoftheAgreement’sgoal.TheUS,forexample,hasonlypledgedtoreduceitsemissionsby12-19%from1990levels.Evenifallcountriesdeliverontheircurrentpledges,thepredictedlevelofglobalwarmingarisingfromcumulativeemissionswouldbebetween2.8oCand4oCabovepre-industriallevels.

395. AnalysisofthelatestUNpledgesbyClimateActionTrackersuggeststhatglobalemissions

areontracktoreach53-59GtCO2ein2030,whichissignificantlyabovepresentglobalemissionsofabout48GtCO2e.Furthermore,therearegapsbetweencurrentpolicyprojectionsandcountrypledgesmeaningthatcurrentpoliciesarenotstrongenoughtoachievetheseconservativepledges.350

396. ThegapbetweentheclimatescienceandtheactualpoliciesandplanstoreduceGHGemissionsisthereforeconsiderable.Thispartlyreflectsareluctancetoabandonourdependence

348BarrettJ,LeQuéré,LenzenM,PetersG,RoelichK,andWiedmannT,2011.Consumption-basedemissionsreporting.MemorandumsubmittedbyUKERC(CON19).http://www.publications.parliament.uk/pa/cm201012/cmselect/cmenergy/writev/consumpt/con20.htm;.349InternationalEnergyAgency(IEA).Worldenergyoutlook2013.IEA,Paris;2013350See:http://climateactiontracker.org/global/173/CAT-Emissions-Gaps.html

85

onbothfossilfuelsandunsustainableconsumptionpatterns.ItalsoreflectsafaithinfuturetechnologiesbeingdevelopedtosequesterGHGsfromtheatmosphere.351

Theroleofshalegasinmitigatingglobalwarming

397. Proponentsofnaturalgasarguethatitisacleanformofenergywhencomparedtocoalandoilandthatitsuseforelectricitygenerationinsteadwillhelpreducetherateatwhichthecarbonbudgetisdepleted.Inordertoassessthepotentialfutureimpactofnaturalgasoncarbonbudgetsandglobalwarming,lifecycleanalyses(LCAs)areconductedtodeterminetheamountofGHGsemittedacrossallstagesofgasproductionandend-use.

398. TheseLCAsareinevitablyinfluencedbyanumberofvariableswhichproduceawiderangeofmeasuresoftheglobalwarmingpotentialofnaturalgas.Thevariablesinclude:i)theamountoffugitiveemissionsreleaseddirectlyintotheatmosphere;ii)whetherthegasproducedisliquefiedandtransportedbeforeuse(becausebothliquefactionandtransportationrequiredenergy);iii)theefficiencyofthepowerstationsusedtoconvertgasintoelectricity;iv)theuseofCCStechnologies;andv)thetimehorizonoverwhichtheglobalwarmingpotentialofmethaneandcarbondioxideareassessed.Whencomparingtheglobalwarmingpotentialofgasagainstotherenergysources,therelativeefficienciesofcoalpowerstationsandtheimpactofgasoncoal,oilandrenewableenergyarealsorelevant.

399. AkeyfactorinLCAsofnaturalgasisfugitiveemissions.AccordingtoHowarth,whilefora

givenunitofenergyproduced,carbondioxideemissionsarelessforshalegasandconventionalnaturalgasthanthoseforoilandcoal,thetotalGHGfootprintofshalegasmaybegreaterthanotherfossilfuelswhenmethaneemissionsareincluded.352

400. SanchezandMays(2015)modelledwhatleakagerateofnaturalgasinelectricitygeneration

wouldcauseCO2eemissionsofnaturalgastobecomeequivalenttothoseofcoal,andfoundthattheleakageratemustbelowerthan3.9%inthelife-cycleofitsproduction,distributionanduse,whenlookedatovera20-yeartimehorizon.AbovethisthresholdtheGHGfootprintadvantageofnaturalgasiseliminated.353

401. TheGWPofshalegasrelativetoconventionalnaturalgasiscontentious.Burnhametal’s

analysisoflifecycleGHGemissionsconcludedthatshalegaslife-cycleemissionswere6%lower

351Inparticular,biomassenergycarboncaptureandstorage(BECCS)hasbecomeprominentafterParis.BECCSinvolvescoveringlargeareasoftheplanetwithbio-energycropsthatwillabsorbcarbondioxidethroughphotosynthesis.Periodicallythesecropswouldbeharvested;processedforworldwidetravel;andeventuallycombustedinthermalpowerstations.Thecarbondioxidewouldthenbeextractedfromthewastegases,compressed(almosttoaliquid);pumpedthroughlargepipes(potentiallyoververylongdistances);andfinallystoreddeepundergroundinvariousgeologicalformations(e.g.exhaustedoilandgasreservoirsorsalineaquifers).352HowarthR,2015.Methaneemissionsandclimaticwarmingriskfromhydraulicfracturingandshalegasdevelopment:implicationsforpolicy.EnergyandEmissionControlTechnologies2015:345–54353SanchezN&MaysD,2015Effectofmethaneleakageonthegreenhousegasfootprintofelectricitygeneration,ClimaticChangeNovember2015,Volume133,Issue2,pp169-178

86

thanconventionalnaturalgas(23%lowerthangasolineand33%lowerthancoal).However,therangeinvaluesforshaleandconventionalgasoverlap,sothedifferenceisnotstatisticallysignificant.354Keyfactors,highlightedbythisstudy,aretheassumptionsmadeabouttheuseof‘greentechnologies’andtherateofupstreamfugitiveemissions,aswellastherelativeefficiencyofpowerstations.

402. LaurenziandJersey’s(2013)LCAofshalegasfromtheMarcellusshaleforpowergeneration

foundthatatypicalgaslifecycleyields466kgCO2eq/MWh(80%confidenceinterval:450−567kgCO2eq/MWh)ofGHGemissions.Theirresultswereinfluencedstronglybytheestimatedultimaterecovery(EUR)ofthewellandthepowerplantefficiency(theirresultswerebasedonelectricitygenerationatacombinedcyclegasturbinepowerplantanda100yeartimehorizon).TheyfoundthatthecarbonfootprintofMarcellusgasis53%(80%CI:44−61%)lowerthancoal,andcomparabletothatofonshoreconventionalnaturalgas.355Operationsassociatedwithhydraulicfracturingconstitutedonly1.2%ofthelifecycleGHGemissions.

403. WeberandClavin’sreviewoftheLCAliteratureconcludedthattheupstreamcarbon

footprintsofdifferenttypesofgasproductionarelikelytobesimilar.However,theyfoundthattheupstreamfootprintislessthan25%ofthetotalcarbonfootprintofgas,andnotethattheefficiencyofproducingheat,electricity,andtransportationservicesisofequalorgreaterimportancewhenidentifyingemissionreductionopportunities.Theyalsonote,asdomostotherauthors,thatbetterdataareneededtoreducetheuncertaintyinnaturalgas’scarbonfootprint,andthatunderstandingsystem-levelclimateimpactsofshalegasthroughshiftsinnationalandglobalenergymarketsisalsoimportantandrequiresmoredetailedenergyandeconomicsystemsassessments.356

404. RegardlessofanymeasureoftheGWPofnaturalgasperunitofenergyservice(e.g.electricityorheating),thetotalvolumeofgasproductionandconsumptionisalsoimportant.Forexample,accordingtoMcLeodatel’s(2014)model,ifgaspricesarekeptlow(asanticipated)aglobalwarmingpotentialofmethaneof72over20yearsgeneratesoverallenergysystemGHGemissionsin2050thatare6%higherthanin2010.357

405. Usingsimulationsoffivestate-of-the-artintegratedassessmentmodelsofenergy–

economy–climatesystems,McJeonetal(2014)indicatethatafuturescenarioofgloballyabundantgaswouldleadtoanoverallincreasein‘climateforcing’.358Themodelsfoundthat

354Burnham,A.eta,2012.Life-cyclegreenhousegasemissionsofshalegas,naturalgas,coal,andpetroleum.Environ.Sci.Technol.46,619–627.355LaurenziIJ.AndJerseyGR,2013.LifecyclegreenhousegasemissionsandfreshwaterconsumptionofMarcellusshalegas.Environ.Sci.Technol.47,4896–4903.356WeberCandClavinC.Lifecyclecarbonfootprintofshalegas:Reviewofevidenceandimplications.Environ.Sci.Technol.2012,46,5688−5695.357McLeodetal,2014,EmissionsImplicationsofFutureNaturalGasProductionandUseintheUSandintheRockyMountainRegion,EnvironSciTechnol2014;48,13036-13044358McJeon,Hetal(2014)Limitedimpactondecadal-scaleclimatechangefromincreaseduseofnaturalgas,Nature514,482–485,doi:10.1038/nature13837

87

whilegassubstituteslargelyforcoal,italsosubstitutesnuclearandrenewableenergy,andtendstoincreaseeconomicactivity.Thisfindingechoesthe‘GoldenAgeofGas’scenariopresentedbytheIEAwhichindicatedaprojected3.5°Cwarmingasaconsequence.359

406. ThereisevidencethatwhileUSshalegasdisplacedcoaluseforelectricitygeneration(andhelpedreduceGHGemissionsfromtheenergysectorby12%between2005and2012),thedisplacedUScoalwasexportedandburntabroad.360Asaresult,CO2eemissionsfromthecombustionofallfossilfuelsgeneratedfromtheUSactuallyrosebyapproximately10%.361

407. Thepointaboutnewgasreservesincreasingthethreatofglobalwarmingbysimplyadding

totheavailablestockoffossilfuelwasmadebyDECC’sformerChiefScientificAdvisorwhonoted:“Ifacountrybringsanyadditionalfossilfuelreserveintoproduction,thenintheabsenceofstrongclimatepolicies,webelieveitislikelythatthisproductionwouldincreasecumulativeemissionsinthelongrun.Thisincreasewouldworkagainstglobaleffortsonclimatechange.”362

408. TheEnvironmentalReportpublishedbyDECCinrelationtothe14thonshorelicensingroundalsopointstothedangersofshalegasmerelydisplacingcoalandoilratherthanreplacingthemaltogetherasasourceofenergy.363Similarly,theLancet-UCLCommissiononClimateChangeandHealthnotedthatthetimewhenfuelswitchingcoulddecarbonisetheglobaleconomysufficientlyquicklytoavoiddangerousclimatechangehasalmostcertainlypassed.

409. Fossilfuel‘reserves’areknownfossilfuelsthatareeconomically‘extractable’.Thevolumeoffossilfuelreservesisthereforepartlyafunctionofthefossilfuelpricewhichishighlyvolatile.Somereportsdistinguishbetweentheconceptsof‘carbonbubble’beingafinancialissue,and‘unburnablecarbon’beingatechnologicalissue.

410. Theestimatedamountof‘unburnablecarbon’rangesfrom49%to80%ofoverallreserves.364McGladeandEkins(2015)concludedthat50%ofexistingglobalgasreservesare‘unburnable’(including>80%ofglobalpotentialunconventionalgasreserves),inadditiontoathirdofoiland80%ofcoalreserves.365

411. McGladeandEkins(2015)notethatCCShasthelargesteffectofanytechnologyoncumulativefossilfuelproductionlevels.CCScouldenablecountriestocontinuetoincludefossil

359IEA,WorldEnergyOutlook2011SpecialReport:AreWeEnteringAGoldenAgeofGas?,InternationalEnergyAgency,Paris,France,2011360BroderickandAnderson,2012.HasUSShaleGasReducedCO2Emissions?ExaminingrecentchangesinemissionsfromtheUSpowersectorandtradedfossilfuels,TyndallManchester,UniversityofManchester361USEIADecember2014MonthlyEnergyReview362DJMacKay&TJStonePotentialGreenhouseGasEmissionsAssociatedwithShaleGasExtractionandUse(DECC,2013)363StrategicEnvironmentalAssessmentforFurtherOnshoreOilandGasLicensingEnvironmentalReport(December2013)–p.88.364Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute365McGlade,C.andEkins,P.(2015)Thegeographicaldistributionoffossilfuelsunusedwhenlimitingglobalwarmingto2°C,Nature517,187—190,doi:10.1038/nature14016

88

fuelsintheirenergymixandthereforecanunlockassetsthatwouldotherwisebestranded.366AccordingtotheWorldEnergyOutlook(2012),withoutCCS,lessthanathirdofglobalcarbonreservescanbeburntinthe2°Cscenario.367OnestudyestimatedthatCCScouldenable65%ofreservestobeusedinsteadof33%.368

412. RegardlessoftheavailabilityandaffordabilityofsafeCCStechnologies,thereisstillalimitedcarbonbudgetandatimeframewithinwhichtheworldneedstoachievenetzeroGHGemissions.AccordingtoHowarth(2015),theimperativetoreducemethaneemissionstoslowglobalwarmingoverthecomingfewdecadesmeansthattheonlypathforwardistoreducetheuseofallfossilfuelsasquicklyaspossible.Thereisnobridgefuel,andswitchingfromcoaltoshalegasisacceleratingratherthanslowingglobalwarming.

413. Akeyargumentagainstthedevelopmentofmoreshalegasreservesisthatinvestmentinefficiencyandrenewableswouldbeamorecost-effectivesolutionthancoal-to-gassubstitution.

414. Oneconcernisthatthedeploymentofnaturalgasrisksdelayingthedeploymentofrenewableenergysystems.AccordingtoZhangetal(2016),thiscouldoffsetallthepotentialclimatebenefitsderivedfromreplacingcoalenergysystemswithnaturalgasenergysystems.369Theynotethattherisksarehigherwhenthenaturalgasenergysystemisinefficientandthecoalenergysystemisefficient.Inaddition,theyhighlighttheimportanceofthechoiceoftimehorizonbecausemethaneisamuchstrongerGHGthancarbondioxidebutwhichactsforamuchshortertime.370

415. Zhangetal’sanalysisshowsthatnaturalgascanprovideclimatebenefitasa‘bridgingfuel’if

thecoalenergysystemisinefficient;thenaturalgasenergysystemisefficient;thenaturalgasleakagerateislow;andtheevaluationtimehorizonfortheglobalwarmingpotentialofmethaneislongerthan40years.However,intheabsenceofCCS,naturalgasusecannotprovidethedeepreductionsinGHGemissionsneededtopreventdangerousclimatechange.Theywarnthat“Iftheintroductionofnaturalgassubstantiallydelaysthetransitiontonear-zeroemissionsystems,thereispotentialthattheintroductionofnaturalgascouldleadtogreateramountsofwarmingthanwouldhaveoccurredotherwise.

366IPCC(2005).IPCCSpecialReport:Carboncaptureandstorage.Availableonline:www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf[Accessed05/02/2016].367IEA(2012).WorldEnergyOutlook2012.www.worldenergyoutlook.org/publications/weo-2012/368Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute369ZhangX,MyhrvoldN,HausfatherZ,CaldeiraK(2016)Climatebenefitsofnaturalgasasabridgefuelandpotentialdelayofnear-zeroenergysystems,AppliedEnergy167(2016)317–322370AccordingtoHowarth,theGWPofmethaneis86morethanthatofcarbondioxidewhenaveragedover20years(fortwoequalmassesofthegasesemittedintotheatmosphere).

89

TheUK:GreenhouseGasEmissionsandenergypolicy

TheUK’scarbonbudgets

416. TheUKGovernment’spositiononGHGemissionsisbasedonrecommendationsmadebytheCommitteeonClimateChange(CCC).TheCCC’sfirstreport,whichbuiltontheIPCC’sfourthassessmentreport(2007),concludedthateconomicandpoliticalconstraintsmadeitimpossibletoensure“withhighlikelihood”thatatemperatureriseofmorethan2°Ccanbeavoided.Insteaditproposedtoreducetheriskof“extremelydangerousclimatechange”(definedasa4oCtemperaturerisethiscentury)to“verylowlevels”.371

417. TheCCCthenofferedtwonationalandcentury-widecarbonbudgets,alongwithamid-centuryobligationtoreduceemissionsin2050by80%comparedto1990levels.Thetwobudgetswererelatedtoa56%anda63%chanceofexceeding2°C.TheUKgovernmentchosetoaccepta63%chanceofexceeding2°C.

418. TheCCChassubsequentlypublishedaseriesofcarbonbudgetsforasetofsequentialfive-

yearperiods.Thefourthcarbonbudget(2023-2027)cappedemissionsat1,950MtCO2e,whichisequivalenttoanaverage52%below1990levels.Thefifthcarbonbudget(2028-2032)372whichwasproposedat1,765MtCO2e(includingemissionsfrominternationalshipping)andwhichwouldlimitannualemissionstoanaverage57%below1990levelsisduetobeformallyenactedintolawinJuly2016.

419. Thetargetsetforthefirstcarbonbudget(2008-2012)hasbeenmet,andthetargetforthesecondbudget(2013-2018)isoncoursetobemet.373

420. Thepastandprojectedemissionstrajectoryisshowninthediagrambelow.ThetrajectoryproposedbytheCCCinvolvesasmoothandincrementalreductioninemissionsacrosstheeconomyofaround13MtCO2e(3%)peryearfrom2014to2030.

371CCC,2008.Buildingalow-carboneconomy-theUK'scontributiontotacklingclimatechange.372CCC,2015.TheFifthCarbonBudget–Thenextsteptowardsalow-carboneconomy373Thecarbonbudgetfor2014was520MtCO2e,excludingemissionsfrominternationalaviationandshipping.

90

Source:DECC(2015)FinalUKgreenhousegasemissionsnationalstatistics:1990-2013;DECC(2015)ProvisionalUKgreenhousegasemissionsnationalstatistics;DECCEnergyModel;CCCanalysis.Notes:Datalabelsshowreductionsinannualemissionsrelativeto1990.Historicalemissionsareona‘gross’basis(i.e.actualemissions).Projectionsandcarbonbudgetsareonthecurrentbudgetaccountingbasis:netcarbonaccountexcludinginternationalaviationandshipping(IAS),butallowingforIAStobeincludedinthe2050target.

421. Thepatternofenergyproductionandconsumptionhasshownimportantchangessince1990,bothintermsofGHGemissions,energymixandenergyuse.ThefigurebelowshowsthepatternofUKGHGemissionsbysectorsince1990.ThisisapatternforterritorialemissionsanddoesnotreflecttheGHGemissionsofgoodsandproductsproducedelsewherebutconsumedintheUK.

HistoricalUKemissionsofgreenhousegases(1990-2014)

91

Source:DECC(2015)FinalUKgreenhousegasemissionsnationalstatistics:1990-2013;DECC(2015)ProvisionalUKgreenhousegasemissionsnationalstatistics;CCCanalysis.

422. AlthoughtheUK’sstatutorytargettoreduceGHGemissionsby80%comparedto1990levelssoundsambitious,therearereasonswhythetargetisinadequate.First,thetargetsarebasedontheintegratedassessmentmodelsoftheIPCCwhich,forreasonsdescribedearlier,arebelievedtobeover-optimistic.Second,thebudgetisarguablybasedonadangerouslevelofriskthatacceptsa63%chanceofexceeding2°C.

423. Third,theUKcarbonbudgetrepresentsanunfairshareoftheglobalcarbonbudget,makinglittleallowanceforhistoricalresponsibilityforGHGemissions,ortheconsiderablysuperiorfinancialandtechnicalcapabilityoftheUKcomparedtomostothercountries.374

424. Fourth,theUK’sGHGemissionstargetsarealsocalculatedas‘territorialemissions’and

thereforedonottakeintoaccounttheGHGsemittedelsewheretoproducegoodsandcommoditiesthatareeventuallyimportedintotheUK.IntheUK,whileterritorial-basedemissionshaveshowna19%reductionbetween1990and2008,consumption-basedemissionshaveincreasedby20%inthesameperiod(drivenbyGHGsembodiedinimportedproducts,particularlyfromChina).375

425. Finally,theplannedreductionofemissionsisspreadacrosstheperiodto2050ratherthanfront-loaded.ThisrunscountertotheclearmessagefromclimatescientiststhatweneedtofrontloadasmuchofourGHGemissionsreductionsaspossible.ModelsreviewedintheIPCC's

374FriendsoftheEarth,2015.WhytheUKmustcommittoitsfairshareofemissionscutsaheadoftheParisclimatetalks.November.375http://www.publications.parliament.uk/pa/cm201012/cmselect/cmenergy/1646/1646vw13.htm

92

WorkingGroupIIIFifthAssessmentReport(AR5)indicatethatmoreneedstobespentearlierratherthanlaterifevenamoderatevalueisgiventotheintermediateandlongtermfuture.376

426. Earlyemissionsreductionwilldelayclimatedisruptionandreducetheoverallcostofabatementbyavoidingdrasticandexpensivelast-minuteaction.Furthermore,itallowsthewindowofopportunityforthedevelopmentanddeploymentofnewtechnologiestobeheldopenforlonger.Delayedemissionreductioncouldalsoforcetheuptakeofriskierandunprovenmitigationtechnologieswithincreasedriskofunintendedconsequencesforhumanwellbeingandecosystems.377

Trendsinenergyuse

427. ThereductioninGHGemissionssince1990hasbeenputdowntoacombinationoffactors:

economicrecessionpost-2008;amoveawayfromcoalandoiltowardsgasandrenewablesingeneratingelectricity;contractionofenergy-intensiveindustries(includingironandsteel);improvedefficiencyofboilersandbuildings;areductionincattlenumbers,syntheticfertiliserapplicationandbiodegradablewastesenttolandfill;andtheimplementationofmethanerecoverysystems.

428. However,inspiteofimprovementsintheaveragefuelefficiencyofvehicles,transportsectoremissions(excludingemissionsfrominternationalaviationandshipping)havenotdecreasedsubstantiallyandactuallyincreasedby1.1%between2013and2014.378

429. In2014,directdomesticenergyconsumptionintheUKwas142.8milliontonnesofoilequivalent(Mtoe).Thetwolargestsourcesoffuelwerepetroleumliquids(86%ofwhichwereusedfortransport)andnaturalgas(60%ofwhichwasusedinthedomesticsector).Overall,fossilfuelsaccountedfor84.5%oftheUK’senergysupply.Intermsofenduse,thetransportsectoraccountedfor38%oftotalenergyuse.379

430. UKemissionsfor2014weresplitbetweensixsectorsbytheCCCasfollows:power/electricitygeneration(23%),industry(21%),buildings(16%),transport(23%),agricultureandland-use,land-usechangeandforestry(9%),andwasteandfluorinatedgases(7%).

376Edenhofer,Pichs-Madruga,Sokona(Eds.)Climatechange2014:mitigationofclimatechangecontributionofWorkingGroupIIItotheFifthAssessmentReportoftheIPCC.CambridgeUniversityPress;2014.377Mills,E.Weighingtherisksofclimatechangemitigationstrategies.BullAtSci.2012;68:67–78378DECC,2015.https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416810/2014_stats_release.pdf379DECC,2015.EnergyConsumptionintheUK.https://www.gov.uk/government/statistics/energy-consumption-in-the-uk

93

431. Inthefourthquarterof2015,themixoffuelstogenerateelectricitywas:gas(29.7%),renewables(26.9%),coal(19.9%),nuclear(15.6%),andoilandothersources(2.3%).380

432. ThepatternofprimaryfuelsusedtogenerateelectricityintheUKhaschangedtoreflectalowerdependenceoncoalandagreaterrelianceongasandrenewableenergy.Thesubstitutionofcoalbygashasbeenoccurringsincethemajorreductionsincoaluseover1970-1980;andtheso-called‘dashforgas’inthe1990s.

433. TheshareofcoalinUKprimaryenergyconsumptionhasfallenfrom40%in1970to16%by2014,whilegasuseincreasedfrom5%to47%.Ofthecoalusedin2014,nearly80%wasusedtogenerateelectricity.381Projectionsto2030showthatcoalgenerationwillfallby63%from2015levelsin2020,andby96%in2025.Thegovernmenthascommittedtophaseoutallcoaluseforelectricitygenerationby2025.

434. Becausemostcoalplantswillhavebeenretiredbeforeanysubstantialproductionofshale

gasoccurs,theGHGfootprintofshalegasrelativetocoalisnotrelevant.Rather,shalegasneedstobecomparedwithotherpotentialsourcesofelectricityandheatingincludingbiogas,conventionalgas,biomassandrenewables.

435. Ofthetotalnaturalgasconsumedin2011,about52%wastoprovideheatforbuildingsandindustry,while34%wasburnedinpowerstationstomakeelectricity.382In2010,85%ofhomeswereheatedbygas.383

436. In2013,11.2Mtoeofprimaryenergyusewasaccountedforbyrenewables,75%wastogenerateelectricity,and15%wasusedtogenerateheat.384In2013,70%ofrenewableenergycamefrombioenergy(includingwood,woodwasteandagriculturalby-products),whileaboutafifthcamefromwind.Hydro-electricandsolarPVcontributedlessthan10%.

AchievingtheUK’s2050targetforGHGemissionsreductions

437. ThecurrentpatternofGHGemissionssourcesin2014andthestatutorytargetfor2050areshowninthediagrambelow.

380Statistics-NationalStatistics.EnergyTrendsSection5:Electricity.[Online].Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/437802/Electricity.pdf381DECC,2015.EnergyConsumptionintheUK.https://www.gov.uk/government/statistics/energy-consumption-in-the-uk382DepartmentofEnergyandClimateChange.(2013).TheFutureofHeating:MeetingtheChallenge.[Online]Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/190149/16_04-DECCThe_Future_of_Heating_Accessible-10.pdf383NationalGrid.(2014).UKFutureEnergyScenarios;UKGasandElectricityTransmission.[Online]Availableat:http://www2.nationalgrid.com/uk/industry-information/future-ofenergy/future-energy-scenarios/384DepartmentofEnergyandClimateChange.(2014c).UKEnergyinBrief2014.[Online]Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/350941/UK_Energy_in_Brief_2014_revised.pdf

94

Source:DECC (2015) Final UK greenhouse gas emissions national statistics: 1990-2013; DECC (2010) Final UK greenhouse gas emissions national statistics: 1990-2008; CCC analysis. Notes:International aviation and shipping data are for 2013.

438. DECC’slatestinterimprojection(October2015)suggeststhatGHGemissionswillfallby15%between2014and2020,drivenlargelybyasignificantreductioninpowersectoremissions(duetothe2020renewablestargetandashiftawayfromcoal).FurtherreductionsarealsoexpectedintransportduetotheimpactoftheEUnewcarandvanCO2targetsfor2020,andfromapartialreplacementofoil-basedfuelswithbiofuels.385

439. However,maintainingprogresstowardsthe2050targetwillbecomeincreasinglydifficult.AccordingtoDECC,althoughtheUKissettomeetitscarbonbudgettargetsuptotheyear2022,achievingthetargetsetfor2027andbeyond“willbemuchmorechallenging”.Despiteprimaryenergydemandbeingprojectedtofall11%overthenext10years,demandmaystarttoincreaseagainbecausefurtherimprovementsinenergyefficiencymaybeinsufficienttooffsettheimpactofeconomicandpopulationgrowth.

440. TheCCCnotethatDECC’sfutureprojectionsassumethatcurrentpoliciestoreduceemissionsaredeliveredinfull.However,theCCChavenotedintheir2014and2015ProgressReportsthatanumberofpoliciesareatriskoffailureduetodesignanddeliveryproblems,orbecausetheyareunfunded.TheseincludetheAgriculturalActionPlan,policiestoimprovethefuelefficiencyofHGVs,theRenewableHeatIncentivepost-2016,ZeroCarbonHomesandtheRenewableTransportFuelsObligation.Sincethen,therehasbeenfurtherweakeningofpolicies,includingthecancellationofZeroCarbonHomes.

385ItremainstobeseenwhatimpacttherecentreferendumresultonEuropewillhaveintermsofEUdirectivesthatunderpintheUK’semissionsreductionstargets.

95

441. Threeaspectsofdecarbonisationarecrucial:energyefficiency,energyconservation,andashifttolow-carbonelectricity.

442. TheCCChighlightsthatreachingthe2050targetwouldrequire:a)continuedtake-upofultra-lowemissionvehiclesandlow-carbonheat(e.g.heatnetworksandheatpumps);b)improvedhomeinsulation;andc)deepreductionsinemissionsfromelectricitygeneration.Notably,by2030,themeancarbonintensityforelectricitygenerationwouldneedtobebelow100gCO2/kWh,andprobablyaslowas50gCO2/kWh(comparedto450gCO2/kWhin2014and200-250gCO2/kWhexpectedby2020).386[TheNovember2015projectionsfromDECChaveacentralscenarioof100g/kWh387,whichisattheupperendoftheCCC-recommendedrange].

443. TheCCCarguethatthecriticalpartplayedbyearlydecarbonisationofthepowergenerationsectorandincreasedelectrificationofend-usesectorsfrom2030willrequireastrongpolicyframework,includingelectricitymarketreform388andradicalchangesinenergyvectorsafter2030includingswitchingfromgastoheatpumpsforheating.389Industrywillalsoneedtobedecarbonisedthroughuseofelectricityorcombustionofhydrogenfromlow-carbonsources.

444. TheCCCalsoemphasisestheneedtoenablethecommercialisationofCCS,andforinvestmentindevelopingheatnetworks,electricvehiclechargingnetworksandpotentially,infrastructureforhydrogenapplications.Electricitynetworkswillalsoneedtobestrengthenedtocopewithnewdemands(e.g.fromheatpumps)andincreasinggenerationfromlow-carbonsources.Optionsdeemedtorepresentgoodvalueinvestmentsbefore2030includeonshoreandoffshorewind,ground-mountedsolar,andnuclear.390

445. OtherthemesintheCCC’sscenarioplanningformeetingthe2050targetinclude:agricultureemissionsfallingduetochangedfarmingpractices(e.g.on-farmefficiencies,improvedanimalfertility),reducedfoodwasteandadjustmentofdiettowardslesscarbon-intensivefoods;andaswitchtosustainablebioenergyprovidingaround10%ofprimaryenergyin2050.TheCCCassumesthatdemandforinternationalaviationislikelytogrowconsiderablyandthattherewillthereforeneedtobestrongefficiencyimprovementsinthatsector.

446. AccordingtotheCCC,carboncaptureandstorageis“veryimportantinmeetingthe2050targetatleastcost,givenitspotentialtoreduceemissionsacrossheavyindustry,thepowersectorandperhapswithbioenergy,aswellasopeningupnewdecarbonisationpathways(e.g.basedonhydrogen)”.ThecriticalissueofCCSisdiscussedlater.

386TheCommitteeonclimatechange.FourthCarbonBudgetReview–technicalreport–Chapter2387DECC,2015.Updatedenergyandemissionsprojections:2015.Nov18th388Dependingontheextentofelectrificationintransport,heatandotherapplications,thelevelofelectricityconsumptionin2050couldbe50-135%abovethelevelin2014.389CCC,2015.TheFifthCarbonBudget–Thenextsteptowardsalow-carboneconomy390CCC,2015.Powersectorscenariosforthefifthcarbonbudget

96

Theroleofgasingeneratingelectricity

447. AccordingtotheCCC,toeffectivelydecarbonisepower,transportandheatgenerationby

2050,itwillbenecessarytodecarboniseallnewinvestmentby2020forpower(withtheexceptionofback-upandbalancingplant);andby2035fortransport.

448. TheCCC’sscenariosforthepowersectorin2030includesomeroleforunabatedgasgenerationtocontinue,withnewnuclear,CCSandrenewablesmeetingincreasesindemand.However,theCCC’sscenarioforenergyproductionhavenowmovetowardstheupperendofthe50-100gCO2/kWhrangebecauseofdelaystonewnuclearandCCSprojects.391

449. TwocrucialfactorsdeterminingthefutureroleofgasaretheavailabilityofCCSandtheefficiencyofgas-firedpowerstations.

450. Anefficientnew-buildgas-firedelectricitypowerstation(combinecyclegasturbines,CCGT)emitsaround345gCO2/kWh(thisfigurecanbehigherdependingontheefficiencyoftheparticularplantandwhetherlife-cycleemissionsaretakenintoaccount).Toputthisinperspective,thelife-cycleemissionsformaturerenewablesandnuclearcanbeintheregionof5-30gCO2/kWh.392However,ascenarioofefficientgaspowerstationscombinedwithCCScouldproducelifecycleemissionsof50-80gCO2/kWh.393394395

451. Whilesubstitutingcoalwithgasoverthenextnineyearswillhelpreducecarbonemissions,after2025,iftheUK’scarbontargetsaretobemetcost-effectively,theuseofgasinpowerstationswouldneedtodecline,especiallyiftheyarenotfittedwithCCS.Themajorityofthedropincoalgenerationwillbecoveredbyrenewablesgrowth,ratherthangas.TheDECCscenariohasgasgenerationat76TWhin2030whichislowerthanpresent.AnythingmorethanthiswouldbeincompatiblewiththeUK’sclimatechangegoals.

452. AccordingtoDECC’sprojections,beyond2025,newgaspowerstationsneedonlytobeusedasback-upplantsatpeakswhichmakesitimportantthattheUKdoesnotbuildtoomanynewgaspowerstationsandbeleftwithunder-usedorredundantgas-powerstationcapacity.

453. AccordingtoUKERC,theriskofcarbonlock-inneedstobeconsideredwithmodernCCGTplantshavingatechnicallifetimeofatleast25yearsandpolicymeasureswouldthereforebe

391CCC,2015.PowerSectorScenariosfortheFifthCarbonBudget.392TurconiR,BoldrinA,AstrupT(2013)Lifecycleassessment(LCA)ofelectricitygenerationtechnologies:overview,comparabilityandlimitations.RenewSustEnergRev28:555–565393Odeh,HillandForster,2013.CurrentandFutureLifecycleEmissionsofKey‘LowCarbon’TechnologiesandAlternatives.Seehttps://www.theccc.org.uk/wp-content/uploads/2013/09/Ricardo-AEA-lifecycle-emissions-low-carbon-technologies-April-2013.pdf394HammondGR,HowardHRandJonesCI,2013.TheenergyandenvironmentalimplicationsofUKmoreelectrictransitionpathways.EnergyPolicy52,103-116395CCC,2015.PowerSectorScenariosfortheFifthCarbonBudget.

97

neededtoensurethatanyCCGTsthatarestillrequiredby2040areeitherfittedwithCCSoroperatedatmuchlowerloadfactors.396

454. Intermsofheat,gasemitsapproximately200gCO2/kWhofheat,alevelwhichalsocannotbereconciledwiththeUK’scarbonbudget.Consequently,gashasamarginalandrapidlydecliningroleingeneratingelectricitypost-2030.

455. Intermsofsupplyingdomestic,commercialandindustrialheat,neitherDECCnortheCCChavebeenabletodeveloplow-carbon(~2°C)post-2030scenariosthatmaintainasignificantroleforgas.397

456. Followingrecentmodellingwork398designedtoanalysearangeofpossiblefutureenergyscenariostheUKEnergyResearchCentre,concludedthatgasisunlikelytoactasacost-effective‘bridge’toadecarbonisedUKenergysystemexceptforashortperiodoftimefrom2015tillabout2020.Forthisreason,theysuggestthatitismoreappropriatetocharacterisegasas“ashort-termstop-gapuntillow-orzero-carbonenergysourcescancomeonstream”andthatwithoutCCS,“thescopeforUKgasusein2050islittlemorethan10%ofits2010level”.399

457. CCSemergesasacriticaltechnologyifgasistohaveasignificantrole,consistentwithUKcarbonreductiontargets,outto2050.ButevenwithCCS,theremaybelimitedcost-effectivescopeforgasuseinpowergenerationbeyond2030,andthatbecauseanynewgas-firedpowerstationswouldneedtooperateonrelativelylowloadfactors,theeconomicallyviabilityofinvestmentsinsuchnewgas-firedpowerstationsisquestionable.

458. TheCCCadmitsthatCCSiscrucialtomeetingtheUK’s2050targetforreducedemissions,andrecommendsthatcoalandgasCCSbeusedinconjunctionwithotherlow-carbonenergysources.However,uncertaintyremainsoverwhetherCCScanbedeployedatthescalerequired,atreasonablecost,andwiththerequiredlevelofeffectiveness.Thegovernment’swithdrawalofsupportforthedevelopmentofCCS,maythereforecompromisetheUK’sdecarbonisationambitions.

RenewableEnergy

459. TheCCCexplicitlypromotesamixedportfolioapproachtowardsenergysecurityinthenearfuture.Somecontinuedroleforfossilfuelinthemediumtolongtermfutureisimplicated,butthisisheavilydependentdependsonthedevelopmentofCCSandnegativeemissionstechnologies(NETs).

396McGladeC,PyeS,WatsonJ,BradshawMandEkinsP,2016.ThefutureroleofnaturalgasintheUK.London:UKEnergyResearchCentre397AEAfortheCCC.Decarbonisingheatinbuildings:2030–2050398Twomodelswereused.Onewasusedtogeneratealargenumberofsensitivityscenariosincorporatingavarietyoftechnological,resourceandpriceassumptionsandkeyuncertaintiesaboutthedevelopmentofthefutureenergysystem.AsecondwasusedtoprojectfutureUKenergyuse.399McGladeC,PyeS,WatsonJ,BradshawMandEkinsP,2016.ThefutureroleofnaturalgasintheUK.London:UKEnergyResearchCentre

98

460. Whatiscleareristhecentralimportanceofrenewableenergy,andnuclearpower.400401The

notespresentedheredonotcoverthesubjectofnuclearenergywhichproducesfewerGHGemissionsthanfossilfuels,butwhichcarriesrisksintermsofradioactivewaste,accidentsandtheproliferationofnuclearweapons.TheexorbitantcostsassociatedwithHinckleyCalsopointtonuclearenergypresentingconsiderableeconomicandfiscalthreatstosociety.

461. ThecontributionofREtothetotalenergymixintheUKisgrowing.Since2010theUKhasincreaseditsgenerationfromrenewables25TWhto73TWhin2015.402Currentlyrenewablessupplyaround20-25%ofUKelectricityandDECCestimatesthattheywillsupplymorethan40%by2030.403IntheNationalGrid’s2015projectionoftheUK’sFutureEnergyScenarios,REsupplies11-30%oftheannualpowerdemandby2030.404

462. However,groupssuchasFriendsoftheEarthbelievethatanelectricitymixcomprisingover75%renewablesby2030wouldbeafeasibleandmoreappropriatetarget.

367. Theindustry-fundedShaleGasTaskForcehasarguedthatweshouldembrace“alongtermevolutionaryapproach”towardsrenewableenergy,ratherthan“ashorttermrevolution”.Thereasonstheygiveforthisslowapproachinclude:a)inadequategridinfrastructureforabsorbingwind,tidalandwaveenergy;b)publicdisapprovalofbiggeronshoretransmissionpylons;c)investorshavinglimitedfunds;d)renewableenergybeingeconomicallyunviable;e)theintermittencyofRE;f)REtechnologybeingunder-developedandsociallyunacceptable.

463. However,accordingtotheCCC,itwillbepossible“toensuresecurityofsupplyinadecarbonisedsystemwithhighlevelsofintermittentandinflexiblegeneration”.405Partsofthesolutionincludeachievinggreaterinter-connectiontosystemsbeyondtheUK;makingiteasierforenergydemandtorespondmoreeffectivelyandefficientlytoshort-termpricesignals;increasingthecapacityforelectricitystorage;andensuringthatback-upcapacityisflexibleenoughtoincreasegenerationwithouthavingtorunpart-loaded.

464. TwostudiesusedbytheCCCindicatethattheUKcouldgenerateover80%ofelectricitydemandfromrenewableswithoutjeopardisingsecurityofsupply,throughtheuseofstorage,interconnectorsanddemandsidemanagement.406407

400InternationalEnergyAgency.Energytechnologyperspectives2012.IEA,Paris;2012401InternationalEnergyAgency.Coalmedium-termmarketreport2012.IEA,Paris;2012402DECC,2015.Updatedenergyandemissionsprojections.AnnexJ403DECC,2015.Updatedenergyandemissionsprojections.AnnexJ404NationalGrid.(2015).UKFutureEnergyScenarios;UKGasandElectricityTransmission.[Online]Availableat:http://investors.nationalgrid.com/~/media/Files/N/National-Grid-IR/reports/future-energy-scenarios-2015.pdf405CCC,2015.Powersectorscenariosforthefifthcarbonbudget406GarradHassan,2011.UKgenerationanddemandscenariosfor2030.March.407Poyry,2011.Analysingtechnicalconstraintstorenewablegenerationto2050.

99

465. Renewablesareprovidingelectricityatincreasinglylowercosts.Recentagreedcontractsforfuturepower(ContractsforDifference)signedbyonshorewindandsolar(£79/MWhfor15years),andoffshorewind(£115/MWhfor15years)arealreadycheaperthannewnuclear(£92.50/MWhfor35years).408Offshorewind’scostisalsofallingfast;andprojectedtocostlessthan£100/MWhby2020.409TheCCCsayonshorewindandlarge-scalesolarwillbecheaperthannewgaswhichpaysitspollutioncostsbefore2025.410Furthermore,sincewindandsolarproduceelectricityatzeromarginalcost,theyhavethepotentialtolowerelectricityprices.411

466. TheCCCnotesthattherateandextentofchangeneededtostaywithinourcarbonbudgetindicatesaneedformuchgreatereffortstoreduceourconsumptionofenergyaswellasrapidlyexpandingonthedeliveryofrenewableenergy.

467. Thefeasibilityofmovingrapidlytowardsadecarbonisedenergysystemhasbeen

substantiatedbyotherstudies.TwostudiesforthestatesofNewYork412andCalifornia413havedemonstratedthepossibilityofmovingtowardsaneconomydriventotallybyREsources(largelysolarandwind)inacost-effectivewayusingtechnologiesthatarecommerciallyavailabletodaywithinthenext15-35years.

Energysecurity

468. OneoftheimportantargumentsinfavourofSGPisthatitwillimprovetheUK’senergysecurity.Energysecuritytypicallyhastwodimensions:ensuringthelightsstayon,andavoidingbeingoverly-reliantonothercountriesforenergy.

469. Since1999,therehasbeenasharpriseinfossilfuelimportsintheUK.Thehighestlevelofimportedenergysince1974wasreportedin2013duetoanongoingdeclineindomesticoilandgasproduction.NearlyhalfoftheUK’snetenergysupplycamefromimports.414

470. About46%oftheUK’suseofnaturalgascomesfromtheNorthSea.Theremainderisimported415fromNorway(about30%),theNetherlands(about8%)andBelgium(about4%).416Theremaining20%ofimportedgasisliquefiednaturalgas(LNG),mainlyfromQatar.

408CCC,2015.PowerSectorScenariosforthe5thCarbonBudget.Box4.1409Catapult,2015.Costofwindenergyfallssharply.Feb26th410CCC,2015.PowerSectorScenariosforthe5thCarbonBudget.egFigure2411GoodEnergy,2015.Windandsolarreducingconsumerbills.412JacobsonMZ,HowarthRW,DelucchiMA,etal.ExaminingthefeasibilityofconvertingNewYorkState’sall-purposeenergyinfrastructuretooneusingwind,water,andsunlight.EnergyPolicy.2013;57:585–601413JacobsonMZ,DelucchMA,IngraffeaAR,etal.AroadmapforrepoweringCaliforniaforallpurposeswithwind,water,andsunlight.Energy.2014;73:875–889.414DepartmentofEnergyandClimateChange.(2014c).UKEnergyinBrief2014.[Online]Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/350941/UK_Energy_in_Brief_2014_revised.pdf415DepartmentofEnergyandClimateChange.(2014d).UKEnergyStatistics.[Online]Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/296183/pn_march_14.pdf416DepartmentofEnergyandClimateChange.(2014c).UKEnergyinBrief2014.[Online]Availableat:

100

471. Accordingtoestimatesofrecoverableshalegasreserves,SGPcouldhelpeliminatetheUK’s

relianceongasimports.However,thiswouldrequirealargeonshoregasindustry.BloombergNewEnergyFinanceestimatedin2013thateliminatingimportswouldrequirethedrillingofaround10,000wellsovera15-yearperiod,basedonoptimisticassumptionsforflowrates.Alowerflowratemightmeanupto20,000wells,draininganareatwicethesizeofLancashire.417

CarbonCaptureandStorage(CCS)

472. CCSreferstoaprocessinvolvingthreemainsteps:1)theseparationofCO2fromagasstream;2)CO2compressionandtransport(viapipelineorshipping);and3)CO2storageinasuitablegeologicalsite(e.g.salineaquifersanddepletedoilandgasreservoirs).

473. CCStechnologiesarecategorisedaccordingtotheclassofcaptureprocess(post-

combustion,pre-combustion,andoxy-combustion)andtypeofseparationtechnology(absorption,adsorption,membranes,cryogenicdistillation,gashydrates,andchemicallooping).418

(Source:Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute).

474. Post-combustioncaptureinvolvestheseparationofCO2fromafluestreamafterafossilfuel

hasbeencombusted.Pre-combustionCCSseparatesCO2fromahydrogen-richgascalledsyngaspriortocombustion.Thesyngasisobtainedbygasificationofafuel.Oxy-combustioncaptureischaracterisedbythecombustionofafossilfuelwithenrichedoxygenwhichgeneratesaflue

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/350941/UK_Energy_in_Brief_2014_revised.pdf417BloombergNewEnergyFinance,2013.UKshalegasno“getoutofjailfreecard”.Feb21st418Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute.

101

streamwithoutimpurities,whereCO2canbeseparatedmoreeasilybycondensingthewatervapour.

475. CCScanalsobecombinedwithNegativeEmissionTechnologies(NETs)suchasreforestation,

afforestation,agriculturalsoilcarbonstorage,biocharandbioenergywithcarboncaptureandstorage(BECCS).BECCStechnologieswhichcombinebiomasswithCCScanbedeployedforprocessesinthebio-refiningsector,biofuelsector,powerandheatsector,andinindustrialprocessesforthecement,steelandpapersector.

476. ThetechnicalpotentialofNETshasbeenestimatedtobe120GtCO2until2050.Thiswould

representanextensionofthe2050carbonbudgetby11–13%fora50–80%probabilityofremainingbelowa2°Ctemperatureincrease.419AnotherhigherendprojectionofthefuturepotentialofBECCSseesnegativeGHGemissionsbeinggeneratedbyupto10.4GtCO2e/yrby2050.420

477. AkeyissueaboutCCSandBECCSistheextenttowhichitisviableandaffordable,andthe

speedatwhichitcanbedeployedinlightoftheshrinkingcarbonbudgetavailable.

478. TheInternationalEnergyAlliance(IEA)whichconsidersCCSakeyoptionformitigatingCO2emissions,highlightstheuncertaintyofitspaceofdeploymentandconcludesthatitseffectbefore2050islikelytobemodest.421AproposedIEAroadmaptoassistgovernmentsandindustrytointegrateCCSintotheiremissionsreductionstrategiessuggestsCCSbeingabletostoreatotalcumulativemassofapproximately120GtCO2between2015and2050.Thisisequivalenttoabout3.5GtCO2/yr(whichislessthan10%ofthecurrentannualamountofCO2eemissions).

479. QuestioningthevalidityofmanyprojectionsaboutthefutureofCCSandBECCSisimportant

giventhevastandpowerfulvestedinterestsinvolvedinmaintainingandprolongingtheroleoffossilfuelsinenergysystemsworldwide.

480. KeybarrierstotheuptakeupofCCSarecost,energypenalty,andlocationaswellascapacityofstoragesites.422Severalbarriersarenon-technical,including:

• Lackofmarketmechanism/incentive• FeweffectivemechanismstopenalisemajorCO2emittingsources• Inadequatelegalframeworkallowingtransportandstorage(bothinlandandoffshore)

419Caldecott,B.,etal.(2015).StrandedCarbonAssetsandNegativeEmissionsTechnologies.Availableonline:www.smithschool.ox.ac.uk/research-programmes/stranded-assets/Stranded%20Carbon%20Assets%20and%20NETs%20-%2006.02.15.pdf420Koornneef,J.,etal.(2012).Globalpotentialforbiomassandcarbondioxidecapture,transportandstorageupto2050.InternationalJournalofGreenhouseGasControl,11,117–132.421IEA (2013). Technology Roadmap: Carbon Capture and Storage 2013. Online. Available online: www.iea.org/publications/freepublications/publication/technology-roadmap-carbon-captureand-storage-2013.html422GlobalCCSInstitute(2014).Summaryreport.http://hub.globalccsinstitute.com/sites/default/files/publications/180928/global-statusccs-2014-summary.pdf

102

• Publicawarenessandperception.481. Majorpotentialsupplychainconstraintsincludehydrogenturbinesforthecapturestep,

pipelinesforthetransportstep,geo-engineersanddrillingrigsforthestoragestepaswellasashortageofpetroleumengineersacrossthefullCCSchain.423PrivateinvestmentinCCSishamperedbyvariousrisksincludingtechnologyandconstructionissues,highup-frontcapitalcosts,infrastructurebarriers,andoperatingcosts(alsoaffectedbyafuelpricerisk).

482. AccordingtotheGlobalCCSInstitute,onemajorbarriertoCCSinthepowerindustryisthe

highcapitalcostand‘energypenalty’comparedtotraditionalfossilfuelfiredgenerators.Atthemoment,aplantwithCCSismoreexpensive(intermsofcapitalandoperatingcosts)thanthesameplantwithoutCCS.

483. ReportsofthecostofCCSshowagreatvariability,withalackofdataforspecificprocesses

orcapturetechnologies.ThecapturestepisthemostexpensivestepoftheCCSchain,withacostofcarbonequivalentto20–110$2015/tCO2.Transportcostrangesbetween1.3and15.1$2015/tCO2/250km,dependingonthelocationandlengthofthepipeline.Storagecostdependsonthetypeofstoragesiteandthepossiblereuseofexistingfacilitiesandisbetween1.6and31.4$2015/tCO2.424

484. BudinisetalhypothesisethattheconstraintonCCSisnotcostrelatedorsupplychain

related(particularlyinlateryears)butthatCCSisnotadequatelyeffectiveinreducingresidualemissionstomakeitafavourableoptioninclimatechangemitigationscenarios.Developershavesofarfocussedon85–90%capturerateswhichwouldnotbesufficientwithtighterglobalemissionlimits.However,highercaptureratesfrom2050onwards(evengreaterthan95%)mayleadtonaturalgasbecomingviableagainasasafefossilfuel.

485. Factorsdeterminingthefeasibilityoflocationandcapacityofstoragesitesinclude:a)

cumulativecapacityofcarbonstorage;b)ratesofreleaseanduptake;c)connectionfromsourcetostore;andd)climateimpactofstoragetimescale.

486. Globalgeo-storagecapacityisbelievedtobelargerthantheCO2embodiedinpresent-day

fossilfuelreserves.425However,reservoirpressurisationinsalineaquiferswilllimittheaccessibleCO2geo-storagecapacityintheabsenceofpressuremanagementstrategies.Theexactfractionofavailablespacehascomplexdependenciesonreservoir,rock,andfluidproperties.

487. Itisestimated1,000Gtofstoragecapacityisavailableinoilandgas(hydrocarbon)

reservoirsalonewhichwouldmeanlittleinthewayofstoragecapacitylimitsaffectingthefirstgenerationofcommercialCCSdeploymentinscenariosinvolvinglessthan500GtofCO2.

423IEAGHG(2012).BarrierstoimplementationofCCS:capacityconstraints,ReportIEAGHG2012/09.424Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute425IEAGHG(2016).Cancarboncaptureandstorageunlock‘unburnablecarbon’?,ReportIEAGHG2016/05.

103

488. AstudyofsourcesandsinksshowsthatCCSwillnotbeconstrainedbylocalavailabilityof

storageresourcesinNorthAmerica,EuropeandBrazil.Outsidetheseareas,storageavailabilityisuncertain,althoughtheglobaldistributionofsedimentarybasinsissuchthatitispossiblethattherewillbefewlocationswherelocalstorageavailabilitywillbealimitingfactor.426

489. TechnologyReadinessLevels(TRLs)isametricusedtoassessthestageofdevelopmentof

newtechnologies.TRLsrangefrom1to9,whereTRL1means“basicprinciplesobservedandreported”andTRL9means“actualsystemflightproventhroughsuccessfulmissionoperations”.Accordingtoonestudy,post-combustioncaptureprocessesliebetweenTRL1andTRL5(duetotheearlystagesoftechnologydevelopmentforthiscaptureprocess);pre-combustioncaptureprocessesare“likely(tobe)decadesawayfromcommercialreality”;andoxy-combustionprocessesare“attheearlystagesofdevelopment”,withoutaclearpossibilitytounderstanditsfuturedevelopment.427

490. Whilepost-combustionandpre-combustioncapturetechnologiesarewidelyused,atthe

momentthereisonlyonefull-scaleinstallationofacoal-powerplant,theBoundaryDamCarbonCaptureProject.428AccordingtotheGlobalCCSInstitute,therearecurrently55large-scaleCCSprojectsworldwideineither‘identify’,‘evaluate’,‘define’,‘execute’or‘operate’stage.However,thetotalnumberhasreducedfrom75(2012)to65(2013)to55currently(2014).429

491. PolicyoptionstoincreasethedeploymentofCCSinclude:carbontradingortaxation;

targetedinvestmentsupport;feed-inschemeswhichguaranteeafixedfee;aguaranteedcarbonpriceforCCS;andminimumstandards,suchasaCCSobligationfornewinstallations.

492. IntheUK,governmentencouragementofCCShaswaned.In2007,thegovernment

launchedacompetitionfordemonstratingpost-combustioncaptureofCO2onacoal-firedpowerplant.In2010,thecompetitionwasopenedtogasandin2013,twobidderswereannounced:theWhiteRoseproject(acoal-firedpowerplant)andthePeterheadproject(afull-scalegasCCSproject).However,inNovember2015,the£1billionring-fencedcapitalbudgetfortheCCSCompetitionwaswithdrawnbythegovernment.

493. AlthoughCCSappearsimportantinunderpinninganyroleforfossilfuelsinthefuture,CCS

hasnotbeenadoptedtoagreatextent.Forsomepeople,BECCSandreforestationareattractive

426KoelblBS,etal,2014.UncertaintyinCarbonCaptureandStorage(CCS)deploymentprojections:across-modelcomparisonexercise.ClimaticChange,123,461–476.427RubinESetal,2012.Theoutlookforimprovedcarboncapturetechnology.ProgressinEnergyandCombustionScience,38,630–671.428Budinis,Krevor,MacDowelletal,2016.CanTechnologyunlock‘unburnable’carbon?London:SustainableGasInstitute429GlobalCCSInstitute(2014).Summaryreport.http://hub.globalccsinstitute.com/sites/default/files/publications/180928/global-statusccs-2014-summary.pdf

104

optionsforcreatingnegativeemissions.430However,EstimationsofNETspotentialuntil2100areaffectedbygreatuncertainties,especiallywithregardtotheavailabilityandaccessibilityofgeologicalstorage,andarethereforedifficulttoestimate.Theyalmostcertainlydonotofferaviablealternativetomitigationinthecomingdecades.431

Energyefficiencyandconservation

494. Improvingenergyefficiencyandreducingoveralllevelsofenergyconsumptionarevital

componentsofanyplantomitigateglobalwarming.However,improvementsinenergyefficiencywillhavelittleimpactifmoney‘saved’throughenergyefficiencyisthenspentonfurtherenergyservices.Thisisaphenomenonreferredtoas“Jevons’paradox”.

495. Mostenergyservicesarehighlyinefficient.Forexample,carsintheUKstreethaveemissionsofover160gCO2/kmonaverage,eventhoughthereareover200modelvariantsofstandard-enginecars(i.e.notelectricorhybrid)withemissionsofunder100gCO2/kmbeingsoldatlittletonopricepremium.TelevisionsandITequipmenthavehugevariationsinenergyconsumptionforessentiallythesamelevelofservice.AnAratedrefrigeratorconsumesintheregionof80%moreenergythananA+++alternative;againatverylittlepricepenalty.AvastamountoftheUKhousingstockhasanEnergyPerformanceCertificateratingofDorbelow.

496. AGreenAlliancereportthatdescribesthefailureoftheUKtoharnessthepotentialforsavingelectricityproposesastrategytocreateincentivesforcompaniestobenefitfromenergyefficiencymeasuresbymakingtwochangestotheelectricitymarket:a)a‘negawattsfeed-intariff’paidonthebasisofavoidedenergyconsumption,withrecipientscompetinginanauctiontodeliverenergysavingsinhomesandbusinessesatlowestcost;andb)openingthecapacitymarkettocompetitionfromdemand-sideresponseandenergydemandreductiononanequalbasiswithelectricitygeneration.432

EconomicsandPoliticalLeadership

Economics

497. Theeconomicsoftheenergysectorisanothercriticaldimensionofthedebateonshalegas.

430vanVuurenD,etal,2013.TheroleofnegativeCO2emissionsforreaching2°C-insightsfromintegratedassessmentmodelling.ClimaticChange,118,15–27.431McLarenD,2012.Acomparativeglobalassessmentofpotentialnegativeemissionstechnologies.ProcessSafetyandEnvironmentalProtection,90,489–500.432GreenAlliance,2015.Gettingmorefromless

105

498. Crucially,thefossilfuelindustryisheavilysubsidised.433AccordingtotheIMF,pre-taxsubsidiesinthefossilfuelsectorhavebeendecliningfromabout0.7%ofglobalGDPin2011toabout0.4%($333billion)in2015.Thisisstillalargesubsidy,butdwarfsincomparisontotheestimatedpost-taxsubsidyoffossilfuelswhichwascalculatedtobeabout$5.3trillion(6.5%ofglobalGDP)in2015.Aboutthree-fourthsofthepost-tax-subsidyisfromtheexternalisationofthecostsofairpollutionandaboutaquarterisfromtheexternalisationofcostsofglobalwarming.434

499. Forpetroleum,totalsubsidieswerebrokendownasfollows:externalisedcostsofcongestion,accidentsandroaddamage(39%);pre-taxsubsidies(17%);globalwarming(13%),airpollution(18%),andforegoneconsumptiontaxrevenue(14%).Fornaturalgas,totalsubsidieswerebrokendownasfollows:globalwarming(53%),pre-taxsubsidies(26%),andforgoneconsumptiontaxrevenue(10%).435

500. Energysubsidiesforthefossilfuelsectorcurrentlydamagetheenvironment;causeprematuredeaththroughlocalairpollution;exacerbatecongestionandotheradversesideeffectsofvehicleuse;increaseGHGconcentrations;imposelargefiscalcostsontaxpayers;discourageinvestmentsinenergyefficiency,renewables,andmoreefficientenergyinfrastructure;andincreasethevulnerabilityofcountriestovolatileinternationalenergyprices.

501. AccordingtotheIMF,theremovalofpost-taxenergysubsidiescouldreducepremature

deathsfromlocalairpollutionbymorethan50%andgenerateasubstantialfiscaldividendingovernmentrevenues,estimatedat$2.9trillion(3.6%ofglobalGDP)in2015.436

502. TheSternReviewcalledthemarketexternalityofGHGemissionsintheglobaleconomy“the

greatestandwidest-rangingmarketfailureeverseen”.437

503. Anotheraspectofmarketfailureintheenergysectoritthelackoflarge-scale‘positiveinvestment’inacleanenergysystem.

504. Fornewtechnologiesintheearlierstages,concertedR&Deffortsarerequired.438SucheffortsmaybeanalogoustotheManhattanProjectfornucleartechnology,theApolloProgramforspaceflight,ortheMarshallPlanforthepost-warreconstructionofEurope.Otherclimateadaptationmeasuressuchasfloodprotectiondefenceswhicharecapital-intensiveinvestmentswithuncertainreturns,alsorequirepublicinvestment.

433Victor,D.Thepoliticsoffossil-fuelsubsidies:globalsubsidiesinitiative&theinternationalinstituteforsustainabledevelopment.GlobalSubsidiesInitiative,InternationalInstituteforSustainableDevelopment,Geneva;2009434CoadyD,ParryI,SearsLandShangB,2015.HowLargeAreGlobalEnergySubsidies?WashingtonDC:IMF.435CoadyD,ParryI,SearsLandShangB,2015.HowLargeAreGlobalEnergySubsidies?WashingtonDC:IMF.436CoadyD,ParryI,SearsLandShangB,2015.HowLargeAreGlobalEnergySubsidies?WashingtonDC:IMF.437Stern,N.SternReviewontheeconomicsofclimatechange.HMTreasury,London;2006438Mazzucato,M.Theentrepreneurialstate:debunkingpublicvsprivatesectormyths.AnthemPress,London;2013

106

505. TheIEAestimatedthattohavean80%chanceofremainingona2°Cstabilisationpathway,

additionalcumulativeinvestmentof$36trillionisrequiredby2050,roughly$1trillionperyear(intheorderof1%GDPundermoderategrowthassumptions),withlow-carbontechnologiesandenergyefficiencyaccountingforaround90%ofenergysysteminvestmentby2035(currently,thisvalueisaround23%).439Anotherestimatehassuggestedalowervalueof$270billionperyear.440

506. In2013,only0·1%ofinstitutionalinvestorassets(excludingsovereignwealthfunds)werein

low-carbonenergyinfrastructureprojects($75billion).441

507. Therearemanypolicyoptionsforavailableforcorrectingmarketfailuresintheenergy

sector.Taxesonenergyproducts(suchastransportfuels)couldberealignedtoreflecttheircarboncontent.Carbonpricingthatinternalisesthecostsofsocialandenvironmentaldamagemayalsobeachievedthroughawelldesignedandequitablecap-and-tradeemissionstradingsystems(ETS).

508. Byincreasingtheburdenoftaxationonenvironmentallydamagingactivitiesandreducingit

ondesiredinputs,suchaslabour,anincreaseinenergypricescanbeneutralisedfromamacroeconomicperspective.Althoughfossil-fuelsubsidiesandthepresenceofexternalitiestenddisproportionatelytobenefitthewealthiestinsociety(inbothnationalandinternationalcontexts),theintroductionofcarbonpricingandtheremovaloffossilfuelsubsidiesmayberegressive,asthepoorestinsocietyspendagreaterproportionoftheirdisposableincomeonenergy.Additionalfiscalinterventionswillthereforeberequiredtoprotectlow-incomeorvulnerablehouseholds.

509. CorrectivetaxationthatinternalisesCO2emissions,airpollution,andtransport-related

externalities(suchascongestionandaccidentalinjury)arisingfromfossilfuelcouldalsoraiseadditionalrevenuesof2·6%GDPglobally,whilstsimultaneouslyreducingCO2emissionsby23%andpollution-relatedmortalityby63%.442

510. Additionally,feed-intariffs(FiTs),usedintheelectricitysectortoprovideaguaranteedrate

ofreturntolow-carbongenerators,havebeenshowntobeaneffectivepolicyinstrumentthathasbeenresponsibleforasignificantmajorityofinstalledglobalrenewablepowercapacity.

439InternationalEnergyAgency.Worldenergyoutlook.IEA,Paris;2012440TheNewClimateEconomy.Bettergrowth,betterclimate.TheGlobalCommissionontheEconomyandClimate,NewYork;2014441Kaminker,C,Kawanishi,O,Stewart,F,Caldecott,B,andHowarth,N.Institutionalinvestorsandgreeninfrastructureinvestments:selectedcasestudies.OrganizationforEconomicCo-operationandDevelopment,Paris;2013442Parry,IWH,Heine,D,andLis,E.Gettingthepricesright:fromprincipletopractice.InternationalMonetaryFund,Washington,DC;2014

107

511. Otherinterventionstocorrectmarketfailureintheenergysectorincludedemand-sideregulationsuchasmandatoryenergyefficiencystandards.ExamplesincludeacaponCO2emissionsfrompassengercarsperkilometredriven,orontheannualenergyconsumptionofanewbuildingperunitoffloorarea.Technologystandardscanalsobeemployedtoproscribetheuseofcertaincomponentsinproducts,orpreventthesaleoftheleastefficientmodelsofaproducttype.

512. Theglobalpatternofheavysubsidisationoffossilfuelandunder-investmentincleanenergy

isapparentintheUK.Nationalsubsidiestofossilfuelproductionhavebeenestimatedatanannualaverageof$9billionin2013and2014.443Inthe2015Budget,ChancellorGeorgeOsborneawardedafurther£1.3binsubsidiestotheoilindustry.444ThismakestheUKoneofthefewG20countriesthatisincreasingitsfossilfuelsubsidies.

513. Atthesametime,theUKiscuttingbackonrenewableenergyinvestments,whilst

implementingtaxreformsthatwouldmakerenewableenergycompaniespaymoretax.Asnotedearlier,thegovernmentremovedsupportfromsolarpowerin2015(causingthelossofupto18,700jobs).445

514. Thelargesubsidisationoffossilfuelcontinuesdespitethegovernmentagreeingwiththe

IPCCandotherinternationalbodiesthattheremovalofsubsidiesfromthefossilfuelindustryisimportant.Atthe2014climatesummitinNewYork,DavidCameronhimselfdescribedfossilfuelsubsidiesas“economicallyandenvironmentallyperverse",asthey“distortfreemarketsandripofftaxpayers”.446

515. Atthesametime,oilcompaniesintheUKNorthSeathathavemadevastprofits(33%rate

ofreturn)from2008and2014havepaidrelativelylittleinthewayoftax.AccordingtoPlatform,theUKtakesalowershareofrevenuefromitsoilresourcesthanmostothercountries.Onaverage,governmentsreceive72%ofnetrevenuefromoilproduction,comparedto50%frommostUKfields.Norway,operatinginthesamefieldsintheNorthSea,takes78%.447

Politicalleadership

516. Transformingtheglobaleconomywithintherequiredtimescaledemandsunprecedentedactioninbothindustrialisedanddevelopingcountries.AccordingtotheLancet-UCLCommission,industrialisedcountriesneedtoembarkimmediatelyonCO2reductionprogrammes“withahighlevelofambition”.Putanotherway,transitiontoalow-carbonenergyinfrastructureimpliesa

443BastE,DoukasA,PickardS,vanderBurgLandWhitleyS,2015.Emptypromises:G20subsidiestooil,gasandcoalproduction.London:OverseasDevelopmentInstituteandandOilChangeInternational.444Seehere:http://platformlondon.org/wp-content/uploads/2016/03/NorthSea_Oil_Tax_Facts.pdf445Calculationsshowthatindustrieslikewind,waveandtidalandcouldemploy40,000moreNorthSeaworkersthantheexistingfossileconomy.446Seehere:http://blueandgreentomorrow.com/2014/09/24/un-climate-summit-cameron-calls-for-ending-fossil-fuel-subsidies-and-a-strong-climate-deal-in-paris/447Seehere:http://platformlondon.org/wp-content/uploads/2016/03/NorthSea_Oil_Tax_Facts.pdf

108

radicaltransformationofnotjusttheenergysector,butthebehavioursandconsumptionpatternsthatfeedoffourburningoffossilfuel.

517. TheLancet-UCLCommissiononClimateChangeandHealthalsonotedthattransitiontoa

low-carboninfrastructure“requireschallengingthedeeplyentrencheduseoffossilfuels”.Decarbonisationandreducingenergydemandisnotasimplechallengeofcleaninguppollutantsorinstallingnewequipment:itrequiressystemictransformationsofenergyinfrastructuresandassociatedsystems.

518. Acollectivepolitical,policyandscientificfailureisexemplifiedbytherecentexpansionof

coaluseacrosstheworldthatreversedtheglobalpatternthroughmostofthe20thcenturyofshiftingtowardslesscarbonintensiveandlesspollutingfossilfuels.

519. Thefactthatglobalemissionshaverisenoverthepastdecadedemonstratesaremarkable

inabilitytorespondeffectivelyandcollectivelytothethreatofclimatechange.Italsodemonstratesthatmostofourinstitutionsarebuiltaroundnarrow,short-termhorizons,andvestedinterests;andthatwearelockedintoamodelofeconomicgrowththatiscentredaroundmaterialconsumptionandtiedtofossilfuel.448

520. Otherreasonswhyeffectiveactionhasbeenpreventedincludethefactthatclimatescience

iscomplexandunavoidablyinvolvesadegreeofuncertaintywhichcreatesroomforequivocationandmisunderstanding,449andthatclimatechangeispsychologicallydistantintemporal,socialandgeographictermsformanypeoplewhichdampensconcernandwillingnesstoact.450

521. Finally,asnotedbytheLancet-UCLCommission,“theactivepromotionofmisinformation,

motivatedbyeitherideologyorvestedeconomicinterests”hashinderedeffectiveaction.

522. Inthepasttwodecades,muchoftheboldandinnovativepolicy-makingtoaddressclimatechangehavebeendrivenatthelevelofcities,whichhavecreatedtheplatformfornewadvocacycoalitionsandevenfornewcross-borderpara-diplomaticlinks(e.g.throughLocalGovernmentsforSustainability,theWorldMayorsCouncilonClimateChangeandtheClimate

448Unruh,GC.Understandingcarbonlock-in.EnergyPol.2000;28:817–830449Hulme,M.Whywedisagreeaboutclimatechange:understandingcontroversy,inactionandopportunity.CambridgeUniversityPress,Cambridge;2009450Spence,A,Poortinga,W,andPidgeon,N.Thepsychologicaldistanceofclimatechange.RiskAnal.2012;32:957–972

109

LeadershipGroup).451452,453454Theseexperiencespointtotheemergingimportanceofsub-nationalleadersinglobalenvironmentalgovernance.455

523. Asawealthynationwithaskilledworkforceandaworld-leadingrenewableenergyresourcebase,choosingtodevelopanewfossilfuelindustrywouldnotonlythreatentobreakournationaltargetstoreduceGHGemissions,butalsodamagetheUK’sinternationalreputationandunderminethedelicatenegotiationsbeingundertakentostrengtheninternationalresolvetopreventrunawayglobalwarmingandclimatecollapse.

CoBenefits

524. Althoughtheprimaryreasonfordecarbonisingofourenergysystemistomitigateclimatechange,variousimportantandrelevantpositivesocial,ecologicalandhealthdividendswouldarise.

525. Severallinksbetweenclimatemitigationpracticesandtechnologiesandimprovedhealthandwellbeinghavebeenestablished.456457Fromaglobalperspective,cropyieldshavemuchtogainfromthemitigationofshortlivedclimatepollutantssuchasmethane,blackcarbon,hydrofluorocarbons,andtroposphericozone.458

526. ThehealthbenefitsofreducedairpollutionintheEUalone(tomitigateclimatechange)havebeenvaluedat€38billionayearby2050.459AnotherestimatesuggeststhatadoublingofREusefrom2010to2030couldavoidupto$230billionofexternalhealthcostsannuallyby2030globally.460Similarly,ithasbeenestimatedthatthehealthbenefitsofreducingmethane

451Roman,M.Governingfromthemiddle:theC40CitiesLeadershipGroup.CorpGov.2010;10:73–84452Bulkeley,H.Betsill.M.Citiesandclimatechange:urbansustainabilityandglobalenvironmentalgovernance.Routledge,NewYork;2003453Boutiligier,S.Cities,networks,andglobalenvironmentalgovernance.Routledge,London;2013454Curtis,S.GlobalCitiesandtheTransformationoftheInternationalSystem.RevIntStud.2011;37:1923–1947455Gordon,DJ.Betweenlocalinnovationandglobalimpact:cities,networks,andthegovernanceofclimatechange.CanForeignPolJ.2013;19:288–307456Proust,K,Newell,B,Brown,Hetal.Humanhealthandclimatechange:leveragepointsforadaptationinurbanenvironments.IntJEnvironResPublicHealth.2012;9:2134–2158457Shaw,MR,Overpeck,JT,andMidgley,GF.Cross-chapterboxonecosystembasedapproachestoadaptation—emergingopportunities.in:CBField,VRBarros,DJDokken,(Eds.)Climatechange2014:impacts,adaptation,andvulnerability.PartA:globalandsectoralaspectscontributionofWorkingGroupIItotheFifthAssessmentReportoftheIntergovernmentalPanelofClimateChange.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA;2014:101–103458Scovronick,N,Adair-Rohani,H,Borgford-Parnell,Netal.Reducingglobalhealthrisksthroughmitigationofshort-livedclimatepollutants:scopingreportforpolicymakers.WorldHealthOrganizationandClimateandCleanAirCoalition,Geneva;2015459EuropeanCommission.CommunicationfromtheCommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommitteeandtheCommitteeoftheRegions:aroadmapformovingtoacompetitivelowcarboneconomyin2050.EuropeanCommission,Brussels;2011460InternationalRenewableEnergyAgency.REmap2030:arenewableenergyroadmap.IRENA,AbuDhabi;2014

110

emissionsinindustrialisednationswouldexceedtheabatementcostsevenundertheleastaggressivemitigationscenario.461

527. Policiesthatencourageactivetravel(eg,walkingandcycling)wouldproducesignificant

reductionsincardiovasculardisease,dementia,obesity,diabetes,severalcancers,andinthedurationandseverityofdepressiveepisodes.462463OnestudyestimatesthatincreasedlevelsofactivetravelcoupledwithincreasedfuelefficiencyintheUK'surbanareascouldleadtoacumulativenetsavingtopublicfundsofmorethan£15billionby2030,whilstachievingGHGreductionsofover15%intheprivatetransportsector.464

528. IntheUK,retrofitsaimedatimprovingtheenergyperformanceofhouseshavethepotentialtooffersubstantialhealthbenefitprovidedadequateventilationtocontrolindoorpollutantsisinstalled.Increasedenergyefficiencywillalsohelpreducefuelpoverty,excesswintermortalityrates,andrespiratoryillnessratesinchildren.465NicolandcolleaguesestimatedthatimprovedhousinginEnglandalonecouldsavetheNHSmorethan€700millionperyearintreatmentnolongerrequired.466

529. AccordingtoCopenhagenEconomics,improvementsinhousingenergyefficiencyinEuropewouldproducebothenergyandhealthcaresavings,andreducepublicsubsidiesforenergyconsumptionby€9–12billionperyear.467AmodellingstudybyHamiltonetal.assessesthepotentialhealthbenefitsof5.3mloftinsulations,6.5msolidwallinsulations,5.7mcavitywallinsulations,2.4mdouble-glazinginstallations,10.7mhigh-efficiencycondensingboilerinstallationsandseveralventilationsysteminstallations.468

530. Clearly,therearealsopotentialrisksfromdecarbonisationandtheuseofpoliciesandtechnologiesaimedatreducingenergyconsumption.Theseincludeerraticandinadequate

461West,J,Fiore,A,andHorowitz,L.Scenariosofmethaneemissionreductionsto2030:abatementcostsandco-benefitstoozoneairqualityandhumanmortality.ClimChange.2012;114:441–461462Woodcock,J,Edwards,P,Tonne,Cetal.Publichealthbenefitsofstrategiestoreducegreenhouse-gasemissions:urbanlandtransport.Lancet.2009;374:1930–1943463Patz,JA,Frumkin,H,Holloway,T,Vimont,DJ,andHaines,A.Climatechange:challengesandopportunitiesforglobalhealth.JAMA.2014;312:1565–1580464Jensen,HT,Keogh-Brown,MR,Smith,RDetal.Theimportanceofhealthco-benefitsinmacroeconomicassessmentsofUKgreenhousegasemissionreductionstrategies.ClimChange.2013;121:223–237465Liddell,CandMorris,C.Fuelpovertyandhumanhealth:Areviewofrecentevidence.EnergyPol.2010;38:2987–2997466Nicol,S,Roys,M,Davidson,M,Ormandy,D,andAmbrose,P.Quantifyingtheeconomiccostofunhealthyhousing—acasestudyfromEngland.in:MBraubach,DEJacobs,DOrmandy(Eds.)Environmentalburdenofdiseaseassociatedwithinadequatehousing:amethodguidetothequantificationofhealtheffectsofselectedhousingrisksintheWHOEuropeanRegion.WorldHealthOrganizationRegionalOfficeforEurope,Copenhagen;2011:197–208467CopenhagenEconomics.Multiplebenefitsofinvestinginenergyefficientrenovationofbuildings:impactonpublicfinances.RenovateEurope,Copenhagen;2012468HamiltonIG,MilnerJ,ChalabiZ,etal.ThehealtheffectsofhomeenergyefficiencyinterventionsinEngland:amodellingstudy.BMJOpen2014;5(4).

111

energysuppliesandunintendedconsequencessuchassub-standardhousingventilationcausedbypoorlydesignedhomeinsulationimprovements.469

531. Theeconomiceffectsofatransitiontoadecarbonisedenergyandeconomicsystemwillbesubstantial.Whilstemploymentinfossilfuel-relatedandemission-intensiveindustrieswoulddeclineovertime,low-carbontechnologyindustrieswouldexpandandincreaseemployment.IRENAestimateanetglobalincreaseof900 000jobsincoreactivitiesalone(i.e.notincludingsupplychainactivities)ifthelevelofrenewableenergyinglobalfinalenergyconsumptiondoublesfrom18%in2010to36%ofby2030.470

469Davies,MandOreszczyn,T.Theunintendedconsequencesofdecarbonisingthebuiltenvironment:aUKcasestudy.EnergyBuild.2012;46:80–85470InternationalRenewableEnergyAgency.REmap2030:arenewableenergyroadmap.IRENA,AbuDhabi;2014