silicon photomultipliers - slac · 2006-10-09 · Æhigh single electron dark rate (105 –106...

38
Silicon Photomultipliers a new device for frontier detectors in HEP, astroparticle physics, nuclear medical and industrial applications Nepomuk Otte MPI für Physik, Munich

Upload: others

Post on 15-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Silicon Photomultipliersa new device

for frontier detectorsin

HEP, astroparticle physics, nuclear medical and industrial applications

Nepomuk OtteMPI für Physik, Munich

Page 2: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Outline

• Motivation for new photon detectors

• APDs in proportional and Geiger mode

• From single APDs in Geiger mode to Silicon Photomultipliers

• SiPM characteristics

• Current status of development

• PET as one example of application of SiPM

Page 3: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Many future experiments will use>> 100,000 photon detectors

• robust and stable• easy to calibrate• blue sensitive• low cost (+ low peripheral costs)• compact• low power consumption• …• highest possible photon detection efficiency

Experiments that will use this photon detector

Requirements to be fulfilled by the photon detector candidate:

Page 4: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Ground based Gamma Ray Astronomy

http://wwwmagic.mppmu.mpg.de/

Gamma Ray induces electromagnetic cascade

relativistic particle shower in atmosphere

Cherenkov light

fast light flash (nanoseconds)100 photons per m² (1 TeV Gamma Ray)

MAGIC: world largest air Cherenkov telescope

Page 5: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

to be achieved with

• Lowering Energy threshold down to 10 GeV

• Improve sensitivity by factor of 10

• Extend Observations into moonshine time

Future Plans

• High Performance Photon Detectors

and

• Large Array of Telescopes (10…20)

Page 6: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Cosmic Ray Physics from Space

30°

400

km

≈ ≈

ČerenkovFluorescence

EECR

230 kmEarth

Atmosphere

M .C .M . ‘0 2

30°

400

km

≈ ≈

ČerenkovFluorescence

EECR

230 kmEarth

Atmosphere

M .C .M . ‘0 2

Atmospheric SoundingAtmospheric Sounding

http://www.euso-mission.org/

• Highest energy cosmic rays > 1020 eV• GZK mechanism• sources of CR• …

One promising photon detector candidate

The Silicon Photomultiplier

Page 7: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

A look into basic operationsof

semiconductor photon detectorswith

internal amplification

Page 8: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

• Bias: (10%-20%) ABOVEbreakdown voltage

• Geiger-mode: it’s a BINARYdevice!!

• Count rate limited

• Gain: “infinite” !!

• Bias: slightly BELOW breakdown

• Linear-mode: it’s an AMPLIFIER

• Gain: limited < 300 (1000)

• High temperature/bias dependence

• No single photo electron resolution

Linear/Proportional Mode

Geiger Mode

Slide adapted from Cova et al. NIST 2003Workshop on single photon detectors

log

(Ga

in)

Reverse Bias Voltage

Geigermode

Linearmode

0

Working modes of Avalanche Photodiodes

no gain

Page 9: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Advantages of APDs in Geiger Modeor

Single Photon Avalanche Diodes (SPADs)

• Large standardized output signalhigh immunity against pickup

• High sensitivity for single photons

• Excellent timing even for single photo electrons (<<1ns)

• Good temperature stability

• Low sensitivity to bias voltage drifts

• Devices operate in general < 100 V

• Complete insensitive to magnetic fields

• No nuclear counter effect (due to standardized output)

Page 10: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

The principal disadvantage for many applications:

It is a binary device

One knows: There was at least one electron/hole initiating the breakdown

but not

how many of them

solved in SiPM concept

Page 11: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Basic unit in a SiPM is a Single Photon Avalanche Diode (SPAD)

Breakdown in SPAD is quenched by individual polysilicon resistor (passive quenching)from B. Dolgoshein (ICFA 2001)

http://www.slac.stanford.edu/pubs/icfa/

Substrate p+

p+Guardring n-

n+ SiO2

Si Resistor* Al-conductorVbias

p-

Page 12: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

...

Vbias

The Silicon Photomultiplier or Geiger-APD

typically 100…2000 small SPADs / mm²

All SPADs connected in parallel

30µm

1mm

Bias andOutput

Only one common signal line

SiPM

Page 13: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

SiPM output is the analog sum of all SPADs

Well defined output signal per SPAD multi pixel resolution

Page 14: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Dynamic Range

Dynamic range naturally limited by number of available SPADs

working condition:Number of photo electrons < SPADcells

⎥⎥⎦

⎢⎢⎣

⎡−⋅=

⋅−

available

photon

NPDEN

availablefiredcells eNN 1

From probability considerations:

1 10 100 1000 100001

10

100

1000

Number of pixels fired

Number of photoelectrons

576 1024 4096

from B. Dolgoshein Light06

workin

g range

20% deviation from linearity if 50% of cells respond

Page 15: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Photon Detection Efficiency (PDE)or

Effective Quantum Efficiency

Most important parameter of a photon detector!!

limiting factors:

• Fraction of sensitive area (20% - 80%)

• Intrinsic quantum efficiency

• Surface reflection losses

• Probability for Geiger breakdown(depends on electric field)

W.Oldham, P.Samuelson, P.Antognetti, IEEE Trans. ED (1972)

In total: Currently claimed best PDE values are ~40% >60% seem feasible

• SPAD recovery time (passive quenching

• Active volume / absorption length

Page 16: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Problems:

Optical Crosstalk

High Dark Count Rate

Page 17: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

• Hot-Carrier Luminescence 105 avalanche carriers 3 emitted photon

e.g A. Lacaita et al, IEEE TED (1993)

• SPADs not only detect photonsthey also emit photons during breakdown

Emission microscopy picture of a prototype SiPM

Optical Crosstalk

Page 18: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Optical crosstalk

Artificial increase in signal

Excess Noise Factor of SiPM

Photons can trigger additional cells

Sketch from Cova et al. NIST 2003Workshop on single photon detectors

can be quite significant

Page 19: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

How to suppress Optical Crosstalk?

Possible counter measures:

• Lowering bias voltage decrease in breakdown probability

• Lowering SPAD cell capacity

• Optical insulation between SPAD cells

(Price to pay: lower PDE)

Page 20: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Blocking Photons with Grooves

0 100 200 300 400 500 6001

10

100

1000

10000

eve

nts

channel

200 400 600 800 1000

1

10

100

1000

10000

1

0

Co

unts

QDC channel

SiPM Z-type. U-Ubd

=8V. kopt

=1,85. tgate

=80ns.

QDC LeCroy 2249A. Noise.

Gain: 3•106; No grooves

Gain: 3•107; with grooves

from B. Dolgoshein MEPhI

Suppression of crosstalk seems possibleExcess Noise Factor ~1

Page 21: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Dark Count Rate

Two main contributions:

Free Carrier Generation: Tunneling:

It is a Complex Topic; here only the very basics:

Depends on temperature(Can be cooled away)

Depends on operation voltage Influenced by design of the device

Page 22: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Dark Count Rate

high single electron dark rate (105 – 106 1/sec*mm² at room temp.)

In most applications trigger threshold at several photoelectrons

accidental trigger rate << single electron dark rate

Silicon photomultipliers are sensitive to every single electron

But:

Strong reduction of noise by lowering operation temperature(Factor two every 8°C)

In addition:

Y. Musienko

Page 23: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Let’s go shopping

In general devices are still in prototype stage

Various very intense developments ongoing in Industry (>4) and Research Institutes:

• Center of Perspective Technology and Apparatus CPTA, Moscow

• MEPhI/Pulsar Enterprise, Moscow

• JINR(Dubna)/Micron Enterprise

• HAMAMATSU

• RMD (Abstract 218)

• SensL, Ireland

• Max-Planck Semiconductor Lab, Munich

Page 24: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

MEPhI/Pulsar/MPI

In collaboration with MPI for Physics (Munich)

Intended application:

Air Cherenkov Telescopes (MAGIC)

Cosmic Ray space missions (e. g. EUSO)

Development aimed at:

sensor area 10x10 mm²

Photon Detection Efficiency >60%Largest existing SiPM 5x5 mm²

2500 APD cells

Current device parameters @ 56V:

Dark rate: 500kHz at -60°C

Gain: 107

PDE: (see next slide)

Page 25: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

5x5mm² SiPM: Photon Detection Efficiency

QETPDE GeigerpackingSiO ⋅⋅⋅= εε2

εpacking = 0.5 εGeiger ≈ 1

300 350 400 450 500 550 600 650 7000

10

20

30

40

50

60

70

80

90

Absorption length x0, µm

T (70 nm SiO2)

SiPM (T = -60 0C)

Eff

icie

ncy

ε,

%

Wavelength λ, nm

PMT XP2020Q

0,00573 4,433,31,721,380,3120,09740,0145

B.Dolgoshein,LIGHT06

No antireflection coating of SiPM

QETPDE GeigerpackingSiO ⋅⋅⋅= εε2

εpacking = 0.5 εGeiger ≈ 1

300 350 400 450 500 550 600 650 7000

10

20

30

40

50

60

70

80

90

Absorption length x0, µm

T (70 nm SiO2)

SiPM (T = -60 0C)

Eff

icie

ncy

ε,

%

Wavelength λ, nm

PMT XP2020Q

0,00573 4,433,31,721,380,3120,09740,0145

B.Dolgoshein,LIGHT06

No antireflection coating of SiPM

limiting above400nm

Page 26: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Hamamatsu: Digital Pixel Photon Detector

Device from early 2005

T. TakeshitaSnowmass 05

Page 27: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Hamamatsu

0-100-1.5 (100 pixels), U=48.9V, T=22.6C

0

5

10

15

20

25

30

350 400 450 500 550 600 650 700 750 800

Wavelength [nm]

PDE

[%]

D. Renker (2005)Latest devices achieve ~40% PDE @ 450nm (D. Renker)

Gain: 107

Dark noise: 550kHz @ room temperatureCrosstalk: 30%

Page 28: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Metal Resistive layer Semiconductor (MRS)

from K. Voloshin NIM A 539 (2005)

~100% Geometrical occupancy

PDE limited by semitransparent metal electrode

10,000 cells/mm² are possiblewith this technology

See results on PET later

Page 29: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

MRS: PDE

Photon detection efficiency (Room temperature)

0

5

10

15

20

25

350 400 450 500 550 600 650 700 750 800

Wavelength [nm]

PDE

[%]

XP2020 PMT

INR/JINR APD

CPTA APD

Y.Musienko (2005)

Page 30: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Ongoing Development:SiPM exploiting Backillumination

predicted characteristics:

• PDE > 80%• Single photo electron time jitter ~ nsec• Cooling is mandatory

By the Semiconductor Laboratory affiliated to the MPIs for Physics and Extraterrestrial Physics

Si

photondepleted bulk

avalanche regionspath of the photo electron

output

50µm … 450µm

Blow up of one “cell”

Page 31: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

drift rings p+

shallow p+

avalanche region

photondrift path of the photo electron

µm100

µmµm 450...50

quenching resistor

output line

deep n

n type depleted bulk

• test structures of novel avalanche structure will be finished next month• After successful evaluation prototypes end 2007

Crosstalk problem can be a showstopper!!will be evaluated by dedicated structuressmall cell capacitance is of advantage

Page 32: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Possible Applications of SiPM

The SiPM opens up a great variety of possible applications

• Calorimeter readout in magnetic fields (CALICE, ILC, …)• Space applications (EUSO, …)• Astroparticle experiments (MAGIC,…)• Medical imaging (PET)• Fast timing applications (<1nsec)• time resolved X-Ray correlation spectroscopy• Fiber trackers• Large pixilated photon detectors• …

In some applications the SiPM is already superior to PMT’s or APD’s

Some examples

Page 33: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

SiPMs in PET

Advantage: very compact, no sophisticated amplifier needed, …

Otte, et al. NIM A 545 (2005)

• direct coupling of SiPM to crystal

• no cooling

• Factor 4 area miss match between SiPM and crystal

• Energy resolution 22% FWHMon 22Na coincidence spectrum

• Time resolution 1.5 nsec FWHM

Things have quite improved since then

Page 34: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

First result of measurments with MW-3 (3x3 mm2) Geiger- mode APDs from Dubna (Z. Sadygov) + LYSO crystals (2x2x10 mm3)

0 200 400 6000

500

1000

1500

2000

150 200 2500

500

1000

1500

2000

Amplitude (pC)

Co

un

ts

511 keV : ∆A/A = 12.7% (FWHM)1275 keV : ∆A/A = 7.7% A

1275 / A

511 = 2.60

22Na + LSO (2x2x10 mm3; reflector = teflon)

MW-3 (3x3 mm2, n.1): RT, U = 138.0V, I = 1.05µA

Alexey Stoykov,Dieter Renker (PSI)

Energy Resolution:12% FWHM

Time Resolution:540ps

(limited by crystal)

MRS diode used

Page 35: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

CAlorimeter for the LInearCollider Experiment

High granularity needed

SiPM is equivalent to PMTs and APD (not shown)

Calicecollaboration

see also:Gerald EigenAbstract 211

Page 36: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Things not discussed

30 minutes are by far not enough to give an overview on SiPM

• Cell recovery• Quenching mechanisms• Importance of parasitic capacitances• Afterpulsing• …

Page 37: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Summary

The silicon photomultiplier is a real breakthrough in photon detection!!

CMOS like technology prospects for cheap mass production <10$ per mm²

It can not be damaged by exposure to strong source of light

Offers high internal amplification (>105)

Fast timing (<nsec)

No aging

Low power consumption (1…100µW/mm²)

High photon detection efficiency (>60%)

Page 38: Silicon Photomultipliers - SLAC · 2006-10-09 · Æhigh single electron dark rate (105 –106 1/sec*mm² at room temp.) In most applications trigger threshold at several photoelectrons

Max-Planck-Institut für PhysikA. Nepomuk Otte

Summary

High dark count rate not a showstopper for most applications

Optical crosstalk is a problem but solvable

Current parameters of available prototypes:

Detector area: 5x5 mm²

Photon detection efficiency: ~40%

Dark rate at room temperature: 105-106 counts/sec/mm²