single-bubble sonoluminescence from air...
Embed Size (px)
TRANSCRIPT
-
In the name of God
Single-bubble sonoluminescence from air bubbles
1/
A. Moshaii, R. Rezaii, R. Sadighi-bonabiK. Imani, M. Silatani
13th Spring Theoretical Physics ConferenceInstitute for Studies in Theoretical Physics and Mathematics
May 3-5, 2006
-
Contents
1- A review of sonoluminescence phenomenon1- A review of sonoluminescence phenomenon
3- Simulation of sonoluminescence from air bubbles
2/
2- Bubble dynamics equations and modeling of a gas bubble evolution
2- Bubble dynamics equations and modeling of a gas bubble evolution
-
Barber et al., Phys. Rep., 1997SL resonator
Resonance condition3/
Sonoluminescence PhenomenonSonoluminescence Phenomenon
-
Measuring the bubble radius
Light (laser) scattering from the bubble surface
)()()( tVtVtR −∝
Photodetector (PMT) Voltage:
Noise level:
4/
Barber et al., Phys. Rev. Lett., 1992
-
a:PMT response (Bubble radius) b :Microphone response (sound radiation)c:Sonoluminescence radiation
5/
Spectrum of radiation of a typical SL bubble
Barber et al., Phys. Rep., 1997 Hiller et al., Phys. Rev. Lett. , 1992
Special characteristics of SL radiation
-
)()()( tVtVtR −∝
6/
PMT voltage of light scattering from bubble surface
Barber et al., Phys. Rev. Lett., 1992
Special characteristics of SL radiation
PMT Voltage:
Noise level:
Four important time scales in the dynamics of a SL bubble:tA ≈ 15 μstB ≈ 5 μstC ≈ 0.5 μstD ≈1 μs
-
Bubble dynamics description
).PP(dtd
CR
R2
RR4)tsin(PP
)aR()aR(P1R
23RR agao33
33oo2 −
ρ+
ρσ
−ρ
μ−⎥⎦
⎤⎢⎣
⎡ω−−
−−
ρ=+ γ
γ &&&&
Rayleigh Plesset Equation: (RP)
Phase parameters: Pa=1.45 atm, Ro=4.3 μm
Po=1.0 atm ρ=998.0 Kg/m3C=1483.0 m/s σ=0.0728 Kgs2μ=1.0×10-3m/s2 a=Ro/8.745γ=5/3
7/
Barber et al., Phys. Rep., 1997
-
Bubble dynamics equations and modeling of a gas bubble evolution
(A. M. and R. Sadighi, PRE, 2004) A hydrochemical ODE model:
1- Bubble radius equations:Gas
LiquidR(t)
( ) ( ) ( ) .PPdtd
C2)tsin(PPP
CR1PP
dtd
CRR
23
C3R1RR
CR1 l22
a0ll
2∞∞ −ρ
μ+λ+
ρ
ω−−⎟⎟⎠
⎞⎜⎜⎝
⎛++−
ρ=⎟⎟
⎠
⎞⎜⎜⎝
⎛−+⎟⎟
⎠
⎞⎜⎜⎝
⎛−
&&&&&&
.244RR
RPRRP ggl
σμμ −+=+&&
8/
-
Modeling of the gas bubble evolution
,4 2th
gl
lTT
RQ−
= κπ& ⎟⎟
⎠
⎞
⎜⎜
⎝
⎛=
πχ R
RRlth ,min &
.),(BNV
TKNtRP
tot
gBtotg −
=
3- Heat transfer at the bubble wall:
2- Equation of state of the gas bubble:
pCκχ =
Gas
LiquidR(t)
K: Heat Conductivity CoefficientCp: Heat Capacity
9/
-
Modeling of gas bubble evolution
10/
HNOONNONOHNNHNHNHN
NOHHOOOOHHHOHArtot
NNNNNNNNN
NNNNNNNNNNN
22232
2222222
+++++++++
+++++++++=
.RR
RDminl,l
nnDR4N d
d
ii,o2di ⎟
⎟
⎠
⎞
⎜⎜
⎝
⎛
π=
−π=
&&
4- Mass transfer at the bubble wall:
The bubble content at the initial condition is assumed to be (4 particles):(H2O :1.55%), (O2 :20.67), (N27 : 76.78%), (Ar: 1%)
Reaction products produced at the end of collapse (15 particles);H, OH, H2, O, HO2, H2O2,
N, NH, NH2, NH3, N2H, NO, NO2, N2O,HNO
0,NNN
particles other all for0 nTk
Pn
dN
dO
dAr
0,i
lB
vOH0,
22
2
===
=
=
&&&
-
Modeling of gas bubble evolution
11/
( )[ ] ,TK
EexpTnnnk
Bn1Bn1/Bnexpr
gB
j,fcgBAtotj,f
t
tot
tottotj,f
j,f
j
⎟⎟⎠
⎞⎜⎜⎝
⎛−⎥
⎦
⎤⎢⎣
⎡−
−=
,exp ,,, , ⎟⎟⎠
⎞⎜⎜⎝
⎛−=
gB
jbcgCCtotjbjb TK
ETnnnkr jf
jbjfj rrr ,, −=
., jjij
ci rVN α∑=&
5- Chemical Reactions: Arrhenius Law
-
Modeling of gas bubble evolution
12/
6- Energy equation for the bubble evolution:
( )
,NhErV
NNeVPQNTe
T
dii,w
ijj
i
di
cii,th
igi
g
i,th
ig
&
&&&&&
∑+Δ∑+
+∑−−=∂∂
∑
( ) dii,formi,wi
g NehVPQE &&&& +∑+−= ( ) dii,formi,wi
Neh &+∑
( ) ,NeeE iformi,thi
+∑=
Energy loss due to mass diffusion)1Texp(
kTk
2fe
g
l,i
l,iB
lgB
ii,th
−θθ
∑+=
( ) ( )dicii,formi
di
cii,th
ii
g
i,th
ig NNeNNeNT
eTE &&&&&& +∑++∑+
∂∂
∑=
( ) 0ii,w kT2/f1h +=
-
Pa=1.15 atm, Ro=4.5 μm, ν=26.5 kHz
Numerical simulation results:
13/
-
Pa=1.15 atm, Ro=4.5 μm, ν=26.5 kHz
Numerical simulation results:
14/
-
Pa=1.15 atm, Ro=4.5 μm, ν=26.5 kHz
Numerical simulation results:
15/
Contents