single-bubble sonoluminescence from air...

of 15 /15
In the name of God Single-bubble sonoluminescence from air bubbles 1/ A. Moshaii , R. Rezaii, R. Sadighi-bonabi K. Imani, M. Silatani 13th Spring Theoretical Physics Conference Institute for Studies in Theoretical Physics and Mathematics May 3-5, 2006

Author: others

Post on 15-Aug-2020

4 views

Category:

Documents


1 download

Embed Size (px)

TRANSCRIPT

  • In the name of God

    Single-bubble sonoluminescence from air bubbles

    1/

    A. Moshaii, R. Rezaii, R. Sadighi-bonabiK. Imani, M. Silatani

    13th Spring Theoretical Physics ConferenceInstitute for Studies in Theoretical Physics and Mathematics

    May 3-5, 2006

  • Contents

    1- A review of sonoluminescence phenomenon1- A review of sonoluminescence phenomenon

    3- Simulation of sonoluminescence from air bubbles

    2/

    2- Bubble dynamics equations and modeling of a gas bubble evolution

    2- Bubble dynamics equations and modeling of a gas bubble evolution

  • Barber et al., Phys. Rep., 1997SL resonator

    Resonance condition3/

    Sonoluminescence PhenomenonSonoluminescence Phenomenon

  • Measuring the bubble radius

    Light (laser) scattering from the bubble surface

    )()()( tVtVtR −∝

    Photodetector (PMT) Voltage:

    Noise level:

    4/

    Barber et al., Phys. Rev. Lett., 1992

  • a:PMT response (Bubble radius) b :Microphone response (sound radiation)c:Sonoluminescence radiation

    5/

    Spectrum of radiation of a typical SL bubble

    Barber et al., Phys. Rep., 1997 Hiller et al., Phys. Rev. Lett. , 1992

    Special characteristics of SL radiation

  • )()()( tVtVtR −∝

    6/

    PMT voltage of light scattering from bubble surface

    Barber et al., Phys. Rev. Lett., 1992

    Special characteristics of SL radiation

    PMT Voltage:

    Noise level:

    Four important time scales in the dynamics of a SL bubble:tA ≈ 15 μstB ≈ 5 μstC ≈ 0.5 μstD ≈1 μs

  • Bubble dynamics description

    ).PP(dtd

    CR

    R2

    RR4)tsin(PP

    )aR()aR(P1R

    23RR agao33

    33oo2 −

    ρ+

    ρσ

    −ρ

    μ−⎥⎦

    ⎤⎢⎣

    ⎡ω−−

    −−

    ρ=+ γ

    γ &&&&

    Rayleigh Plesset Equation: (RP)

    Phase parameters: Pa=1.45 atm, Ro=4.3 μm

    Po=1.0 atm ρ=998.0 Kg/m3C=1483.0 m/s σ=0.0728 Kgs2μ=1.0×10-3m/s2 a=Ro/8.745γ=5/3

    7/

    Barber et al., Phys. Rep., 1997

  • Bubble dynamics equations and modeling of a gas bubble evolution

    (A. M. and R. Sadighi, PRE, 2004) A hydrochemical ODE model:

    1- Bubble radius equations:Gas

    LiquidR(t)

    ( ) ( ) ( ) .PPdtd

    C2)tsin(PPP

    CR1PP

    dtd

    CRR

    23

    C3R1RR

    CR1 l22

    a0ll

    2∞∞ −ρ

    μ+λ+

    ρ

    ω−−⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛++−

    ρ=⎟⎟

    ⎞⎜⎜⎝

    ⎛−+⎟⎟

    ⎞⎜⎜⎝

    ⎛−

    &&&&&&

    .244RR

    RPRRP ggl

    σμμ −+=+&&

    8/

  • Modeling of the gas bubble evolution

    ,4 2th

    gl

    lTT

    RQ−

    = κπ& ⎟⎟

    ⎜⎜

    ⎛=

    πχ R

    RRlth ,min &

    .),(BNV

    TKNtRP

    tot

    gBtotg −

    =

    3- Heat transfer at the bubble wall:

    2- Equation of state of the gas bubble:

    pCκχ =

    Gas

    LiquidR(t)

    K: Heat Conductivity CoefficientCp: Heat Capacity

    9/

  • Modeling of gas bubble evolution

    10/

    HNOONNONOHNNHNHNHN

    NOHHOOOOHHHOHArtot

    NNNNNNNNN

    NNNNNNNNNNN

    22232

    2222222

    +++++++++

    +++++++++=

    .RR

    RDminl,l

    nnDR4N d

    d

    ii,o2di ⎟

    ⎜⎜

    π=

    −π=

    &&

    4- Mass transfer at the bubble wall:

    The bubble content at the initial condition is assumed to be (4 particles):(H2O :1.55%), (O2 :20.67), (N27 : 76.78%), (Ar: 1%)

    Reaction products produced at the end of collapse (15 particles);H, OH, H2, O, HO2, H2O2,

    N, NH, NH2, NH3, N2H, NO, NO2, N2O,HNO

    0,NNN

    particles other all for0 nTk

    Pn

    dN

    dO

    dAr

    0,i

    lB

    vOH0,

    22

    2

    ===

    =

    =

    &&&

  • Modeling of gas bubble evolution

    11/

    ( )[ ] ,TK

    EexpTnnnk

    Bn1Bn1/Bnexpr

    gB

    j,fcgBAtotj,f

    t

    tot

    tottotj,f

    j,f

    j

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−⎥

    ⎤⎢⎣

    ⎡−

    −=

    ,exp ,,, , ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    gB

    jbcgCCtotjbjb TK

    ETnnnkr jf

    jbjfj rrr ,, −=

    ., jjij

    ci rVN α∑=&

    5- Chemical Reactions: Arrhenius Law

  • Modeling of gas bubble evolution

    12/

    6- Energy equation for the bubble evolution:

    ( )

    ,NhErV

    NNeVPQNTe

    T

    dii,w

    ijj

    i

    di

    cii,th

    igi

    g

    i,th

    ig

    &

    &&&&&

    ∑+Δ∑+

    +∑−−=∂∂

    ( ) dii,formi,wi

    g NehVPQE &&&& +∑+−= ( ) dii,formi,wi

    Neh &+∑

    ( ) ,NeeE iformi,thi

    +∑=

    Energy loss due to mass diffusion)1Texp(

    kTk

    2fe

    g

    l,i

    l,iB

    lgB

    ii,th

    −θθ

    ∑+=

    ( ) ( )dicii,formi

    di

    cii,th

    ii

    g

    i,th

    ig NNeNNeNT

    eTE &&&&&& +∑++∑+

    ∂∂

    ∑=

    ( ) 0ii,w kT2/f1h +=

  • Pa=1.15 atm, Ro=4.5 μm, ν=26.5 kHz

    Numerical simulation results:

    13/

  • Pa=1.15 atm, Ro=4.5 μm, ν=26.5 kHz

    Numerical simulation results:

    14/

  • Pa=1.15 atm, Ro=4.5 μm, ν=26.5 kHz

    Numerical simulation results:

    15/

    Contents