spaal&analysis&and&modeling& (gist&4302/5302)&

50
Spa$al Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Upload: others

Post on 30-Jun-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Spa$al  Analysis  and  Modeling  (GIST  4302/5302)  

Guofeng  Cao  Department  of  Geosciences  

Texas  Tech  University  

Page 2: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Representa$on  of  Spa$al  Data  

Page 3: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Representa$on  of  Spa$al  Data  Models  

•  Object-­‐based  model:  treats  the  space  as  populated  by  discrete,  iden$fiable  en$$es  each  with  a  geospa$al  reference  –  Buildings  or  roads  fit  into  this  view  –  GIS  SoNwares:  ArcGIS  

•  Field-­‐based  model:  treats  geographic  informa$on  as  collec$ons  of  spa$al  distribu$ons  –  Distribu$on  may  be  formalized  as  a  mathema$cal  func$on  from  a  spa$al  

framework  to  an  aRribute  domain  –  PaRerns  of  topographic  al$tudes,  rainfall,  and  temperature  fit  neatly  into  

this  view.  –  GIS  SoNware:  Grass    

Page 4: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&
Page 5: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Field-­‐based  Approach  

Page 6: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Spa$al  fields  •  If  the  spa$al  framework  is  a  Euclidean  plane  and  the  aRribute  domain  is  a  subset  of  the  set  of  real  numbers;  –  The  Euclidean  plane  plays  the  role  of  the  horizontal  xy-­‐plane  –  The  spa3al  field  values  give  the  z-­‐coordinates,  or  “heights”  above  

the  plane  

   

Imagine placing a square grid over a region and measuring aspects of the climate at each node of the grid. Different fields would then associate locations with values from each of the measured attribute domains.

Regional  Climate  Varia/ons    

Page 7: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Proper$es  of  the  aRribute  domain  •  The  aRribute  domain  may  contain  values  which  are  

commonly  classified  into  four  levels  of  measurement  –  Nominal  a7ribute:  simple  labels;  qualita$ve;  cannot  be  ordered;  and  arithme$c  operators  are  not  permissible    

–  Ordinal  a7ribute:  ordered  labels;  qualita$ve;  and  cannot  be  subjected  to  arithme$c  operators,  apart  from  ordering  

–  Interval  a7ributes:  quan$$es  on  a  scale  without  any  fixed  point;  can  be  compared  for  size,  with  the  magnitude  of  the  difference  being  meaningful;  the  ra$o  of  two  interval  aRributes  values  is  not  meaningful    

–  Ra3o  a7ributes:  quan$$es  on  a  scale  with  respect  to  a  fixed  point;  can  support  a  wide  range  of  arithme$cal  opera$ons,  including  addi$on,  subtrac$on,  mul$plica$on,  and  division  

Page 8: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Con$nuous  and  differen$able  fields  

•  Con3nuous  field:  small  changes  in  loca$on  leads  to  small  changes  in  the  corresponding  aRribute  value  

•  Differen3able  field:  rate  of  change  (slope)  is  defined  everywhere  

•  Spa$al  framework  and  aRribute  domain  must  be  con$nuous  for  both  these  types  of  fields  

•  Every  differen$able  field  must  also  be  con$nuous,  but  not  every  con$nuous  field  is  differen$able  

Page 9: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

One  dimensional  examples  •  Fields  may  be  ploRed  as  a  graph  of  aRribute  value  against  spa$al  framework  

Continuous and differentiable; the slope of the curve can be defined at every point

Page 10: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

One  dimensional  examples  The field is continuous (the graph is connected) but not

everywhere differentiable. There is an ambiguity in the slope, with two choices at the articulation point between the two

straight line segments.

Continuous and not differentiable; the slope of the curve cannot be defined at one or more points

Page 11: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

One  dimensional  examples  The graph is not connected and so the field in not continuous

and not differentiable.

Not continuous and not differentiable

Page 12: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Two  dimensional  examples  

•  The  slope  is  dependent  on  the  par$cular  loca$on  and  on  the  bearing  at  that  loca$on  

Page 13: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Representa$ons  of  Spa$al  Fields  

•  Points  •  Contours  •  Raster/La`ce  •  Triangula$on  (Delaunay  Trangula$on)  

Page 14: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Example  

•  Contour  lines  and  raster  

Page 15: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Example  

•  Trangula$ons  

Page 16: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Side  Note:  Delaunay  Triangula$on  and  Voronoi  Diagram  

•  Dual  Graph  

Page 17: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Opera$ons  on  fields  

•  A  field  opera$on  takes  as  input  one  or  more  fields  and  returns  a  resultant  field  

•  The  system  of  possible  opera$ons  on  fields  in  a  field-­‐based  model  is  referred  to  as  map  algebra  

•  Three  main  classes  of  opera$ons  –  Local  –  Focal  –  Zonal  

Page 18: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Neighborhood  func$on  •  Given  a  spa$al  framework  F,  a  neighborhood  func3on    

n  is  a  func$on  that  associates  with  each  loca$on  x  a  set  of  loca$ons  that  are  “near”  to  x  

Page 19: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Local  opera$ons  •  Local  opera3on:  acts  upon  one  or  more  spa$al  fields  to  produce  a  new  field    

•  The  value  of  the  new  field  at  any  loca$on  is  dependent  on  the  values  of  the  input  field  func$on  at  that  loca$on  ●  is  any  binary  opera$on  

 

Page 20: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Local  opera$ons  •  Typical  opera$ons:  

– Raster  calculator    

Page 21: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Focal  opera$ons  •  Focal  opera3on:  the  

aRribute  value  derived  at  a  loca$on  x  may  depend  on  the  aRributes  of  the  input  spa$al  field  func$ons  at  x  and  the  aRributes  of  these  func$ons  in  the  neighborhood  n(x)  of  x  

Page 22: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Focal  opera$ons  •  Typical  opera$ons:  

– Slope  – Aspect  – Hill  shade  

•  Focal  sta$s$cs  

Page 23: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Zonal  opera$ons  •  Zonal  opera3on:  aggregates  values  of  a  field  over  a  set  of  zones  (arising  in  general  from  another  field  func$on)  in  the  spa$al  framework  

•  For  each  loca$on  x:  11 Find  the  Zone  Zi  in  which  x    is  contained  

22 Compute  the  values  of  the    field  func$on  f  applied  to  each  point  in  Zi  

3 Derive  a  single  value  ζ(x)    of  the  new  field  from  the    values  computed  in  step  2  

Page 24: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Zonal  opera$ons  •  Typical  opera$ons:  

– Zonal    – Viewshed  – Watershed  

Page 25: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

More  on  Watershed  Analysis  

Page 26: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

The  terrain  flow  informa$on  model  for  deriving  channels,  watersheds,  and  flow  related  terrain  

informa$on.      Raw DEM Pit Removal (Filling)

Flow Field Channels, Watersheds, Flow Related Terrain Information

Watersheds are the most basic hydrologic landscape elements

Courtesy  of  Dr.  David  G.  Tarboton  

Page 27: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

The  Pit  Removal  Problem  

•  DEM  crea$on  results  in  ar$ficial  pits  in  the  landscape  

•  A  pit  is  a  set  of  one  or  more  cells  which  has  no  downstream  cells  around  it  

•  Unless  these  pits  are  removed  they  become  sinks  and  isolate  por$ons  of  the  watershed  

•  Pit  removal  is  first  thing  done  with  a  DEM  

Page 28: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

 Increase  eleva$on  to  the  pour  point  eleva$on  un$l  the  pit  drains  to  a  neighbor  

Pit  Filling  

Page 29: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

7 7 6 7 7 7 7 5 7 79 9 8 9 9 9 9 7 9 911 11 10 11 11 11 11 9 11 1112 12 10 12 12 12 12 10 12 1213 12 10 12 13 13 13 11 13 1314 10 10 11 14 14 14 12 14 1415 10 10 10 10 15 15 13 15 1515 10 10 10 10 16 16 14 16 1615 11 11 11 11 17 17 14 17 1715 15 15 15 15 18 18 15 18 18

Pit  Filling    

7 7 6 7 7 7 7 5 7 79 9 8 9 9 9 9 7 9 911 11 10 11 11 11 11 9 11 1112 12 8 12 12 12 12 10 12 1213 12 7 12 13 13 13 11 13 1314 7 6 11 14 14 14 12 14 1415 7 7 8 9 15 15 13 15 1515 8 8 8 7 16 16 14 16 1615 11 11 11 11 17 17 6 17 1715 15 15 15 15 18 18 15 18 18

Pits   Pour  Points  

Original  DEM   Pits  Filled  

Grid cells or zones completely surrounded by higher terrain

The lowest grid cell adjacent to a pit

Page 30: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&
Page 31: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

80   74   63  

69   67   56  

60   52   48  

80   74   63  

69   67   56  

60   52   48  

30

45.02304867

=−

50.0305267

=−Slope:

Hydrologic Slope - Direction of Steepest Descent

30

Page 32: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

2   2   4   4   8  

1   4   16  

1   2   4   8   4  

4   1   2   4   8  

2   4   4   4   4  

2  1  

Eight Direction (D8) Flow Model

32  

16  

8  

64  

4  

128  

1  

2  

Page 33: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Grid Network

Page 34: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

0 0 0 0 0

0

0

1

0

0

0

0

0

0 2 2 2

10 1

0 14 4 1

19 1

0 0 0 0 0

0

0

1

0

0

0

0

0

0

2 2 2

10 1

0

1 4

14

19 1

Flow Accumulation Grid. Area draining in to a grid cell

Page 35: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

0 0 0 0 0

0

0

1

0

0

0

0

0

0

2 2 2

10 1

0

1 4

14

19 1

Flow Accumulation > 10 Cell Threshold

0 0 0 0 0

0

0

1

0

0

0

0

0

0 2 2 2

1

0

4 1 1

10

14

19

Stream  Network  for  10  cell  Threshold  Drainage  Area  

Page 36: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

1 1 1 1 1

1

1

2

1

1

1

1

1

1

3 3 3

11 2

1

2 5

15

20 2

The  area  draining  each  grid  cell  includes  the  grid  cell  itself.  

1 1 1 1 1

1

1

2

1

1

1

1

1

1 3 3 3

11 2

1

5 2 2 25

15

Contribu$ng  area  conven$on    

Page 37: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Watershed Draining to Outlet

Page 38: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Summary  of  Key  Processing  Steps  

•  [DEM  Recondi$oning]  •  Pit  Removal  (Fill  Sinks)  •  Flow  Direc$on  •  Flow  Accumula$on  •  Stream  Defini$on  •  Stream  Segmenta$on  •  Catchment  Grid  Delinea$on  •  Raster  to  Vector  Conversion  (Catchment  Polygon,  Drainage  Line,  Catchment  Outlet  Points)    

Page 39: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Summary  Concepts  •  The  eight  direc$on  pour  point  model  approximates  the  surface  flow  using  eight  discrete  grid  direc$ons    

•  The  eleva$on  surface  represented  by  a  grid  digital  eleva$on  model  is  used  to  derive  surfaces  represen$ng  other  hydrologic  variables  of  interest  such  as  –  Slope  –  Flow  direc$on  –  Drainage  area  –  Catchments,  watersheds  and  channel  networks  

Page 40: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Summary:  Object-­‐based  vs  Field-­‐based  models  

From:  hRp://resources.arcgis.com/en/help/main/10.2/index.html#/How_features_are_represented_in_a_raster/009t00000006000000/    

Page 41: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Summary:  Object-­‐based  vs  Field-­‐based  models  

•  Object-­‐based  models:  – Greater  precision  –  Less  redundant  informa$on  (smaller  storage  footprints)  

–  Complex  data  structures  •  Field-­‐based  models:  

–  Simpler  data  structures  – More  redundant  informa$on  (larger  storage  footprints)  

–  Less  precision  •  Raster  is  faster,  but  vector  is  corrector  

Page 42: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Raster  <-­‐>  Vector  

• Vector-­‐>  Raster  – Interpola$on  

• Inverse  distance  weighted,  Kriging,  Spline  – Density  surface  

• Kernel  density  – Rasteriza$on  

• Raster-­‐>Vector  – Watershed    – Vectoriza$on  (raster  to  polygon)  – …  

   

Page 43: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Model  Builder  

Page 44: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Model  Builder  •  Model  Builder  is  a  drag-­‐and-­‐drop  interface  to  ArcToolbox  called  ModelBuilder  allowing  you  to  develop  a  flow  chart  of  your  GIS  workflow  

 •  This  flowchart  is  then  run  step  by  step  to  perform  your  analysis  

•  ArcGIS  allows  for  custom  scrip$ng  that  can  be  added  to  ArcToolbox,  introducing  greater  func$onality  

•  Custom  export  scripts,  specialized  versions  of  exis$ng  tools,  develop  tools  not  available  in  ArcToolbox  

 

Page 45: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Why  Model  Builder?  •  Developing  a  model  for  a  GIS  analysis  allows  for  repeat  tes$ng  of  a  hypothesis  using  different  data.  

•  The  model  can  be  coded  into  a  GIS  applica$on,  so  that  the  steps  are  performed  automa$cally.  

•  Easier  reproduc$on  of  results.  •  Simplifica$on  of  workflow.  •  Informs  the  computer  how  to  conduct  a  series  of  steps  that  would  be  imprac$cal  for  you  to  do  manually.  

Page 46: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Reproducibility  

•  In  performing  an  analysis,  you  must  have  your  workflow  clearly  defined.  

•  This  ensures  that  you  are  performing  the  steps  in  the  correct  order  using  the  appropriate  tools.  

•  Missteps  are  easy,  especially  when  there  can  be  hours  of  computer  processing  between  steps.  

•  The  GIS  model  can  be  exported  as  a  graphic  flowchart  or  a  modeling  data  structure.  

Page 47: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Workflow  Efficiency  

•  There  are  many  repe$$ve  steps  you  will  take  in  your  daily  workflow.  

•  Streamlining  the  process  saves  you  $me.  •  If  you  always  start  working  in  a  File  Geodatabase  with  specific  resolu$on  and  projec$on  informa$on,  a  model  for  genera$ng  your  specialized  GDB  can  be  created.  

 

Page 48: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Human  Inefficiency  

•  You  physically  cannot  perform  the  steps  as  fast  as  GIS  can  produce  the  results.  

•  Certain  steps,  such  as  itera$on  through  a  feature  set  would  be  prohibi$vely  $me  consuming.  

•  Minimize  the  amount  of  $me  spent  “babysi`ng”  GIS  to  perform  complex  analyses.    

Page 49: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Inside  ArcToolbox  

Page 50: Spaal&Analysis&and&Modeling& (GIST&4302/5302)&

Demo  •  Demo  •  Lab:  Buffalo  commons  using  Model  Builder: