spectroscopy of the heaviest elements

29
Spectroscopy of the Heaviest Elements Partha Chowdhury University of Massachusetts Lowell

Upload: others

Post on 21-Feb-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spectroscopy of the Heaviest Elements

Spectroscopy of the Heaviest Elements

Partha ChowdhuryUniversity of

Massachusetts Lowell

Page 2: Spectroscopy of the Heaviest Elements

outline

Shells and their magicgaps, spherical and

deformedstability, synthesis, spin,

spectroscopyExperimental techniques

reaction mechanismsdetectors (arrays and

auxiliary)Prompt and delayed spectroscopy Looking ahead

Chowdhury VECC­NNCAFE Dec 17, 2010

Page 3: Spectroscopy of the Heaviest Elements

let's begin at the (heaviest) end

Chowdhury VECC­NNCAFE Dec 17, 2010

Page 4: Spectroscopy of the Heaviest Elements

the superheavy island of stability293117

Chowdhury VECC­NNCAFE Dec 17, 2010

Page 5: Spectroscopy of the Heaviest Elements

frontiers in superheavy synthesis

249Bk + 48CaDubna gas filled separator70 days of Ibeam~450 pnA5 eventsσ~1 picobarnChowdhury VECC­NNCAFE Dec 17, 2010

Page 6: Spectroscopy of the Heaviest Elements

which theory has the right magic?

Chowdhury VECC­NNCAFE Dec 17, 2010

Page 7: Spectroscopy of the Heaviest Elements

spherical magic gaps from a deformed perspectiveProtons Neutrons

Chowdhury VECC­NNCAFE Dec 17, 2010

R. Chasman et al., Rev. Mod. Phys. 49, 833 (1977) Woods-Saxon

Page 8: Spectroscopy of the Heaviest Elements

spherical magic gaps from a deformed perspectiveProtons Neutrons

Chowdhury VECC­NNCAFE Dec 17, 2010

R. Chasman et al., Rev. Mod. Phys. 49, 833 (1977) Woods-Saxon

Cables

Page 9: Spectroscopy of the Heaviest Elements

A~250

map of the neighborhood

Chowdhury VECC­NNCAFE Dec 17, 2010

Page 10: Spectroscopy of the Heaviest Elements

spectroscopy frontier : the heaviest elements

Herzberg and Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008) Chowdhury VECC­NNCAFE Dec 17, 2010

known levels

≤5

≤10

≤20

≤50

>50

=0

Page 11: Spectroscopy of the Heaviest Elements

complementary reaction mechanisms

Chowdhury VECC­NNCAFE Dec 17, 2010

N

Z fusion­evaporationdeep­inelastic

Page 12: Spectroscopy of the Heaviest Elements

in-beam spectroscopy of (super) heavies

208Pb (48Ca,2n) 254No σ ~3 µb, ~9 pnA

Chowdhury VECC­NNCAFE Dec 17, 2010

P. Reiter, T.L. Khoo et al., PRL 82, 509 (1999)

Gammasphere + FMA

Recoil Decay Tagging

14+

Page 13: Spectroscopy of the Heaviest Elements

254No (contd.) at Argonne and Jyvaskyla

S. Eeckhaudt et al., EPJA 26,

227 (2005)JUROGAM/RITU/

GREAT

recoil gated

singles

recoil gated γ

−γ

Chowdhury VECC­NNCAFE Dec 17, 2010

GS + FMA219 MeV

48Ca

P. Reiter, T.L. Khoo et al., PRL 84, 3542 (2000)

JUROGAM/RITU/GREAT

20+

Page 14: Spectroscopy of the Heaviest Elements

246Fm : in-beam spectroscopy at the limits

J. Piot et al., FINUSTAR3, Rhodos, Greece, Aug 2010

JUROGAMII/RITU/GREAT ~10 nb, ~70

pnA

Chowdhury VECC­NNCAFE Dec 17, 2010

Page 15: Spectroscopy of the Heaviest Elements

K-isomers and (super) heavies

Single particle energies and shell gaps beyond Z=82 and N=126

Chowdhury VECC­NNCAFE Dec 17, 2010

Testing symmetries at the highest oscillator shells

Role of K-isomers in stability of superheavies ?

Page 16: Spectroscopy of the Heaviest Elements

K-isomers

Chowdhury VECC­NNCAFE Dec 17, 2010

8−

9−

10−

11−

12−

K=0

K=8

Symmetry axis

Rcollective

Ω1 Ω2

Κ= ΣΩi

J total

j2

j1

intrinsicj

j2

axially symmetric deformation

high-Ω orbitals near Fermi surface

collective rotation and intrinsic modes compete for yrast status

test symmetry to find limits or use symmetry to probe structure

Page 17: Spectroscopy of the Heaviest Elements

208Pb ( 48Ca,2n) 254No with GS+FMA

Chowdhury VECC­NNCAFE Dec 17, 2010

S.K. Tandel et al., Phys. Rev. Lett. 97, 082502 (2006)

Page 18: Spectroscopy of the Heaviest Elements

constraining models for superheavies

­8.10­7.97­7.59

­6.44­6.32­6.24­6.19

­4.50­4.08

­3.29

­2.60­3.03

­2.06

­1.13

7/2[514]1/2[521]

7/2[633]3/2[521]

9/2[624]

5/2[512]

9/2[505]

11/2[725]

5/2[622]7/2[624]9/2[734]

1/2[620]3/2[622]7/2[613]

protons

neutrons

E (MeV)

Fermi level

i13/2

h9/2f5/2

­4.86 1/2[400]­4.93 5/2[642]

N=152 Z=102

low Kπ=3+ energy possible if calculated proton energies very close to Fermi level and pair gap correctly determined

Chowdhury VECC­NNCAFE Dec 17, 2010

1/2[521] level is the one from the f5/2 orbital above the Z=114 shell gap !

Page 19: Spectroscopy of the Heaviest Elements

206Pb( 48Ca,2n)

Chowdhury VECC­NNCAFE Dec 17, 2010

204HgS( 48Ca,2n)

continuing with fusion-evaporation Jyvasky

la

Argonne

208Pb( 50Ti,2n)

Berkeley

Page 20: Spectroscopy of the Heaviest Elements

complementary reaction mechanisms

209Bi (1450 MeV) on 248Cm207Pb (1430 MeV) on 249Cf208Pb (1430 MeV) on 244Pu

~15% above Coulomb barrierATLAS at ANL + Gammaspherebacked targets, beam sweeping

Inelastic and transfer reactions with radioactive targets

Complement low-statistics fusion-evaporation Z>100 studies

Follow same neutron orbitals into lower-Z neutron-rich isotones

Earlier successful prompt spectroscopy in Cm and Pu using these techniques

Chowdhury VECC­NNCAFE Dec 17, 2010

N

Z fusion­evaporationdeep­inelastic

Page 21: Spectroscopy of the Heaviest Elements

S.K. Tandel et al., Phys. Rev. C 82, 041301 (R ) (2010)

1450 MeV 209Bi + 248Cm, 1430 MeV 207Pb+ 249Cf X-gamma and cross-coincidences with binary

reaction partnerHigh-spin studies at the highest oscillator shellsHighest-Z nuclei studied via inelastic excitation

Chowdhury VECC­NNCAFE Dec 17, 2010

in-beam spectroscopy via inelastic/transfer

Odd-A Cm(Z=96) and Cf(Z=98)

Page 22: Spectroscopy of the Heaviest Elements

209Bi +

248Cm1450

MeVInelasticU.Shirwadkar,

Ph.D. thesisUMass Lowell

(2009)Chowdhury VECC­NNCAFE Dec 17, 2010

248Cm(Z=96) prompt and delayed

Total projection hypercube

+ prompt time gate

+ gate on GSB

Au coulex

Σ GSB double gates

In-beam Out-of-beam

Page 23: Spectroscopy of the Heaviest Elements

Kπ = 8 isomer decays in N=150 isotones

Unusual constancy in excitation energy of isomer as well as reduced hindrance factor fν

Robust conservation of K and axial symmetry

ν = ∆K – λ F = t γ

1/2 / t W

1/2 fν = F (1/ν)

Chowdhury VECC­NNCAFE Dec 17, 2010

P. Chowdhury, Proc. FINUSTAR3, Rhodes (2010)

Page 24: Spectroscopy of the Heaviest Elements

GS + CHICO in A~250 region ?

Gammasphere

CHICO HfTh

Scattering angle

Mass

CHICO: M.W. Simon et al, NIM A452, 205(2000)

Unsafe Coulex / Deep-inelasticGS-CHICO @ANL: 1300 MeV 180Hf on 232Th

Chowdhury VECC­NNCAFE Dec 17, 2010

Page 25: Spectroscopy of the Heaviest Elements

CHICO overview: Rochester group

CHICO : Simon et al., NIM A452 (2000) 205

Two hemispherical assemblies10 PPACs each in a truncated cone coaxial with beam direction.12°< θ < 85°, 95°< θ < 168° φ coverage for both assemblies 280° PPAC time resolution 300 ps

Chowdhury VECC­NNCAFE Dec 17, 2010

Page 26: Spectroscopy of the Heaviest Elements

Doppler correction: CHICO + Gammasphere

Doppler correction for Th-like

No Doppler correction

Doppler correction for Hf-like

Chowdhury VECC­NNCAFE Dec 17, 2010

U.S. Tandel et al., Phys. Rev. Lett. 101, 182503 (2000)

Page 27: Spectroscopy of the Heaviest Elements

From Gammasphere to GRETINA

GRETINA+BGS

GS+FMAP.Reiter et al., PRL 84 (2000) 3542

Chowdhury VECC­NNCAFE Dec 17, 2010

Segmented crystal36-fold 2 crystal types4 crystals/moduleGRETINA: 7 modules (1π)http://grfs1.lbl.gov

208Pb(48Ca,2n) 254No

Page 28: Spectroscopy of the Heaviest Elements

From GRETINA (1π) to GRETA(4π)

Chowdhury VECC­NNCAFE Dec 17, 2010

GRETINA comes online April 20116 months engineering/comissioning runs at LBNL6 months each subsequently at MSU, ORNL, ANL

GRETA: Gamma Ray Energy Tracking ArrayM.A. Deleplanque et al., NIM A430, 292 (1999)

In the 2007 NSAC Long Range Plan:“…The construction of GRETA should begin upon successful completion of GRETINA. This gamma-ray energy tracking array will enable full exploitation of compelling science opportunities in nuclear structure, nuclear astrophysics, and weak interactions.”

From INGA to -

Page 29: Spectroscopy of the Heaviest Elements

SummarySuperheavy nuclei : nuclear structure frontier

complementary experimental approachesSynthesis (Dubna, GSI, LBNL, RIKEN,…) Spectroscopy (JYFL, ANL, LBNL,…)

surprising stability against fission at high angular momentaIn-beam spectroscopy

single-particle energies, fission barriersK-isomers (tags, s.p. config./energies, spin-spin residual interactions )

constrain superheavy modelsmeta-stability related to stability ?

Techniques: production and detection fusion-evaporation vs. inelastic/transfer

reactionsseparators and auxiliary detectors (charged

particles, electrons)Detector arrays: the next generation

Chowdhury VECC­NNCAFE Dec 17, 2010