status & challenges of theoretical & experimental

39
April 26, 2021 Status & challenges of theoretical & experimental gravitational-wave physics Alessandra Buonanno Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Department of Physics, University of Maryland GW190521 GW190814 “Gravitational Scattering, Inspiral and Radiation”, (virtual) Conference, GGI, Florence

Upload: others

Post on 10-Apr-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Status & challenges of theoretical & experimental

April 26, 2021

Status & challenges of theoretical & experimental gravitational-wave physics

Alessandra Buonanno Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Department of Physics, University of Maryland

GW190521 GW190814

“Gravitational Scattering, Inspiral and Radiation”, (virtual) Conference, GGI, Florence

Page 2: Status & challenges of theoretical & experimental

•Discovery of GW from a binary black-hole merger by LIGO

Hanford Livingston

(Abbott et al. PRL 116 (2016) 061102)

Gravitational Waves Ushered in New Era of Astrophysics

•Since GW150914 was observed, 47 more binary black holes (BBH) and two binary neutron stars (BNS) discovered by LIGO/Virgo.

GW150914

Page 3: Status & challenges of theoretical & experimental

•With respect to O2, median BNS range increased by a factor 1.64 and 1.53 for LIGOs, and 1.73 for Virgo.

On the Third-Observing (O3) run of LIGOs and Virgo

LIGO Hanford

LIGO Livingston

Virgo

(Abbott et al. arXiv:2010.14527)

Page 4: Status & challenges of theoretical & experimental

Gravitational-Wave Landscape until ~2030

(Aasi et al. Living Rev. Rel. 21, 2020)

•Inference of astrophysical properties of BHBs, NSBHs and BNSs in local Universe.

•From several tens to hundreds of binary detections per year.

(Aasi et al. Living Rev. Rel. 21, 2020)

Page 5: Status & challenges of theoretical & experimental

Gravitational-Wave Landscape after 2030 on the Ground and in Space

1 10 100 1000 10 000Total source-frame mass [M]

0.1

1

10

100

Red

shift

Horizon10% detected50% detected

2019–02–05

aLIGOETCE

10 100 1000Frequency [Hz]

1025

1024

1023

1022

Stra

inno

ise

[1/H

z1/2 ]

Optimal sourceBest 10% of sourcesMedian source

2019–02–05aLIGOETCE

Einstein Telescope

Cosmic Explorer

(3G Science-Case Report 21)

Cre

dit:

AEI

/Mild

e M

arke

ting

Laser Interferometer Space Antenna (LISA)

(Audley et al. 17)

Page 6: Status & challenges of theoretical & experimental

Outline

•Highlights on science (astrophysical-source properties, tests of General Relativity) from the latest observing run of LIGO and Virgo.

•What have we learned from the “exceptional” GW events of the latest observing run?

•Is a clear picture of the population properties (masses and spins) of compact-object binaries emerging?

• What has been the role of theoretical predictions for the two-body dynamics and gravitational radiation in interpreting signals and unveiling their properties?

•What to do (theoretically) to keep up with the pace at which GW detectors will be improving their sensitivity in the next years and decades?

Page 7: Status & challenges of theoretical & experimental

Gravitational Waves are Fingerprints of Sources and Gravity Theory

from frequency evolution we infer masses

from amplitude and masses we infer distance

from modulations of amplitude and phase we infer spins and eccentricity

from time of arrival, amplitude and phase atdetectors we infer sky location

LIGO-Virgo GW signals

•Binary black holes merge at fGW ∼4400 HzM/MSun

•At fixed binary’s mass, the lower the GW frequency, the larger the binary’s separation, and the earlier the inspiral stage

ω =GMr3

fGW =ωπ

orbital frequency

orbital separationBy comparing to waveforms with deviations

from GR, we can probe gravity

Page 8: Status & challenges of theoretical & experimental

Solving Two-Body Problem in General Relativity

100 101 102 103 104 105

m1/m2

100

101

102

103

104

r c2 /G

M

Effective one-body theory

Numerical Relativity

Post-Newtonian theory

Perturbation theory

gravitational self-force

bound orbits: v2/c2 ~ GM/rc2

•GR is non-linear theory.

•Einstein’s field equations can be solved:

•Synergy between analytical and numerical relativity is crucial to provide GW detectors with templates to use for searches and inference analyses.

-approximately, but analytically (fast way)

-“exactly”, but numerically on supercomputers (slow way)

•Post-Newtonian (PN) (large separation, and slow motion, bound motion, i.e., early inspiral)

v2/c2 ∼ GM/rc2expansion in

•Post-Minkowskian (PM) (large separation, unbound motion, i.e., scattering)

Gexpansion in

•Small mass-ratio (gravitational self-force, GSF, i.e., early to late inspiral)

m2/m1expansion in

Page 9: Status & challenges of theoretical & experimental

100 101 102 103 104 105

m1/m2

100

101

102

103

104

r c2 /G

M

Effective one-body theory

Numerical Relativity

Post-Newtonian theory

Perturbation theory

gravitational self-force

bound orbits: v2/c2 ~ GM/rc2

•GR is non-linear theory.

•Einstein’s field equations can be solved:

•Synergy between analytical and numerical relativity is crucial to provide GW detectors with templates to use for searches and inference analyses.

-approximately, but analytically (fast way)

-“exactly”, but numerically on supercomputers (slow way)

•Effective-one-body (EOB) (combines results from all methods, i.e., entire coalescence)

•Key ideas of EOB theory inspired by quantum field theory.

Highly Accurate Waveform Models for GW Observations

Page 10: Status & challenges of theoretical & experimental

Numerical Relativity

2 4 6 8 10

q

0.0

0.2

0.4

0.6

0.8

1.0

|1|

precessing runs

non-precessing runs

new precessing runs

•Public Simulating eXtreme Spacetimes (SXS) NR catalog.

•Other public NR catalogs.

0 20000 40000 60000 80000 100000

-0.10.00.1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-0.10.00.1

100000 101000 102000 103000 104000 105000(t − r*) / M

-0.10.00.1

DL/

M R

e(h 2

2)

•376 GW cycles, zero spins & mass-ratio 7 (8 months, few millions CPU-h)

(Szilagyi, Blackman, AB, Taracchini et al. 15)

•Einstein’s equations solved numerically

prim

ary

spin

mass ratio

(Boyle et al. 19, Ossokine et al. 20)

(Husa et al. 15, Jani et al. 17, Healy et al. 17, 19, 20)

Page 11: Status & challenges of theoretical & experimental

EOB Hamiltonian: Resummed Conservative Dynamics

•Real Hamiltonian •Effective Hamiltonian

•EOB Hamiltonian

•Dynamics condensed Aν(r) and Bν(r)

•Aν(r), which encodes the energetics of circular orbits, is quite simple:

A(r) = 1 2M

r+2M3

r3+

94

3 41

322

M4

r4+

a5() + alog5 () log(r)

r5+

a6()

r6+ · · ·

<latexit sha1_base64="3/03vJuQNQnP7Rq5/0mHLKHiFAA=">AAADXnicjVJdaxNBFJ1stNbU2lRfBF8uBiGhGnY3HyYPQtUXXwIVTFvIJGF2MpsMnf1gZlYIy/xJ38QXf4qzmwRt4oMXFs6ee8+5H0yQCq606/6oONUHD48eHT+unTw5fXpWP392rZJMUjamiUjkbUAUEzxmY821YLepZCQKBLsJ7j4V+ZtvTCqexF/1OmXTiCxjHnJKtKXm5xWd49JlIpfBNPfabhlv3H1gPsxxnDVly8B7uKc5KP2j8eAt4FASmvsjk0sDFwb+t99WB6NZB2xnK591rAHUsGChhuYmP+ya3NK7Nl3P/voGp3zmA5Z8udLQ2uZGs+7OqFsYbVgy7zUt27oAi2Y5lhFgkSxNSZaw2NlqeqYQ7W3uu27PHdqhB16nPyzAcDgY+J7ZmfdLn0LfL/WYLhKt5vXGbk84BLujNNA2rub173iR0CxisaaCKDXx3FRPcyI1p4KZGs4USwm9I0s2sTAmEVPTvBzVwGvLLCBMpP1iDSX7tyInkVLrKLCVEdErtZ8ryH/lJpkOB9Ocx2mmWUw3jcJMgE6geGuw4JJRLdYWECq5nRXoitjDaPsia/YI3v7Kh+Dab3tu2/vSbVx+3J7jGL1Er1ATeegdukSf0RUaI1r56VScmnPi/KoeVU+rZ5tSp7LVPEf3ovriN7JH/IE=</latexit><latexit sha1_base64="3/03vJuQNQnP7Rq5/0mHLKHiFAA=">AAADXnicjVJdaxNBFJ1stNbU2lRfBF8uBiGhGnY3HyYPQtUXXwIVTFvIJGF2MpsMnf1gZlYIy/xJ38QXf4qzmwRt4oMXFs6ee8+5H0yQCq606/6oONUHD48eHT+unTw5fXpWP392rZJMUjamiUjkbUAUEzxmY821YLepZCQKBLsJ7j4V+ZtvTCqexF/1OmXTiCxjHnJKtKXm5xWd49JlIpfBNPfabhlv3H1gPsxxnDVly8B7uKc5KP2j8eAt4FASmvsjk0sDFwb+t99WB6NZB2xnK591rAHUsGChhuYmP+ya3NK7Nl3P/voGp3zmA5Z8udLQ2uZGs+7OqFsYbVgy7zUt27oAi2Y5lhFgkSxNSZaw2NlqeqYQ7W3uu27PHdqhB16nPyzAcDgY+J7ZmfdLn0LfL/WYLhKt5vXGbk84BLujNNA2rub173iR0CxisaaCKDXx3FRPcyI1p4KZGs4USwm9I0s2sTAmEVPTvBzVwGvLLCBMpP1iDSX7tyInkVLrKLCVEdErtZ8ryH/lJpkOB9Ocx2mmWUw3jcJMgE6geGuw4JJRLdYWECq5nRXoitjDaPsia/YI3v7Kh+Dab3tu2/vSbVx+3J7jGL1Er1ATeegdukSf0RUaI1r56VScmnPi/KoeVU+rZ5tSp7LVPEf3ovriN7JH/IE=</latexit><latexit sha1_base64="3/03vJuQNQnP7Rq5/0mHLKHiFAA=">AAADXnicjVJdaxNBFJ1stNbU2lRfBF8uBiGhGnY3HyYPQtUXXwIVTFvIJGF2MpsMnf1gZlYIy/xJ38QXf4qzmwRt4oMXFs6ee8+5H0yQCq606/6oONUHD48eHT+unTw5fXpWP392rZJMUjamiUjkbUAUEzxmY821YLepZCQKBLsJ7j4V+ZtvTCqexF/1OmXTiCxjHnJKtKXm5xWd49JlIpfBNPfabhlv3H1gPsxxnDVly8B7uKc5KP2j8eAt4FASmvsjk0sDFwb+t99WB6NZB2xnK591rAHUsGChhuYmP+ya3NK7Nl3P/voGp3zmA5Z8udLQ2uZGs+7OqFsYbVgy7zUt27oAi2Y5lhFgkSxNSZaw2NlqeqYQ7W3uu27PHdqhB16nPyzAcDgY+J7ZmfdLn0LfL/WYLhKt5vXGbk84BLujNNA2rub173iR0CxisaaCKDXx3FRPcyI1p4KZGs4USwm9I0s2sTAmEVPTvBzVwGvLLCBMpP1iDSX7tyInkVLrKLCVEdErtZ8ryH/lJpkOB9Ocx2mmWUw3jcJMgE6geGuw4JJRLdYWECq5nRXoitjDaPsia/YI3v7Kh+Dab3tu2/vSbVx+3J7jGL1Er1ATeegdukSf0RUaI1r56VScmnPi/KoeVU+rZ5tSp7LVPEf3ovriN7JH/IE=</latexit>

5PN unknown as today

(credit: Hinderer)

Page 12: Status & challenges of theoretical & experimental

EOB Conservative Spin Dynamics & Waveforms

(credit: Hinderer)

•EOB equations of motion (AB et al. 00, 05; Damour et al. 09):

•EOB inspiral waveforms (AB et al. 00; Damour et al. 09, 11; Pan, AB et al. 11):

-0.2-0.1

00.10.20.3

grav

itatio

nal w

avef

orm inspiral-plunge

merger-ringdown

-250 -200 -150 -100 -50 0 50c3t/GM

0.10.20.30.40.5

freq

uenc

y: G

Mω/c

3 2 x orbital freq inspiral-plunge GW freqmerger-ringdown GW freq

(AB & Damour 00)

•EOB merger-ringdown waveform is a superposition of quasi-normal modes.(AB & Damour 00, AB et al. 07, Damour & Nagar 07, Del Pozzo & Nagar 17, Bohé et al. 17)

Page 13: Status & challenges of theoretical & experimental

Completing EOB Waveforms with NR & Perturbation Theory Information

(credit: Taracchini)

-2

-1

0

1

2

R/µ

Re(

h22

Teu

k)

20600 20800 21000 21200 21400 21600 21800 22000(t − r*) / M

0.4

0.6

0.8 Mω22Teuk

2MΩ

a / M = 0.99, (2,2) mode

ISCO LR

tmatch22

• We calibrate EOB to merger-ringdown waveforms in test-body limit.

(credit: Taracchini)

5856 57 59 60 61 62 6364gravitational-wave cycles

-0.30

0.3

DL/

M R

eh22

-0.30

0.3

DL/

M R

eh22

11500 11550 11600 11650 11700 11750 11800 11850(t − R*) / M

-0.30

0.3

DL/

M R

eh22

NREOB

Calibration, no NQC corrections

No calibration, no NQC corrections

Calibration + NQC corrections

• We calibrate EOB to inspiral-merger-ringdown NR waveforms.

141 SXS simulations

0.00 0.05 0.10 0.15 0.20 0.25-1.0

-0.5

0.0

0.5

1.0

ν

χ eff

SEOBNRv4

SEOBNRv2

Teukolsky

validation

(Bohé et al. 17)

(Pan, AB et al. 13, Taracchini, AB, Pan, Hinderer & SXS 14, Pürrer 15)

(Bohé, Shao, Taracchini, AB & SXS 17, Babak et al. 16; Cotesta et al. 18, 20, Ossokine et al. 20)

(see also Damour & Nagar 14, Nagar et al. 18, Nagar, Messina et al. 19, Nagar, Pratten et al. 20, Nagar, Riemenschneider et al. 20, Riemenschneider et al. 21)

Calibration of SEOBNR for O2-O3 searches and inference studies

χ1 = S1/m21

χ2 = S2/m22

χeff =m1

Mχ1 +

m2

Mχ2

Page 14: Status & challenges of theoretical & experimental

•Fast, frequency-domain waveform model hybridizing EOB & NR waveforms, and then fitting.

IMRPhenom

Phenomenological & NR-Surrogate Waveforms

(Schmidt et al.12; Hannam et al. 13; Khan et al. 15; Husa et al. 15; Khan et al. 18-19; García-Quíros et al. 20, Pratten et al. 20)

| h|

−(d

ϕ/d

f)

M f M f

•NR surrogate models are built directly by interpolating NR simulations, which are selected in parameter space using analytical waveform models.

•Highly accurate, but limited in binary’s parameter space and length (~20 orbits), unless hybridized with EOBNR waveforms.

(Varma et al. 19)

NRSur

(Khan et al. 16)

Page 15: Status & challenges of theoretical & experimental

Waveform Models with Spin Precession & High Harmonics

•GWTC-2 used for the first time multipolar, spin precessing waveform models.

h+(t;,') i h(t;,') =1X

`=2

X

m=`

2Y`m(,')h`m(t)

(credit: Cotesta)

Θ

•Waveforms from BBHs (BNSs & NSBHs) are described by 15 (17 & 16) parameters.

(Khan et al.19, Varma et al. 19, Ossokine et al. 20)

(Cotesta, AB et al. 18) (Ossokine, AB, Cotesta, Marsat et al. 20)

q = m1/m2

χ1 = S1/m21

χ2 = S2/m22

Page 16: Status & challenges of theoretical & experimental

Highlights from O3a Run as we Explore the Universe

(credit: Fischer, Pfeiffer, Ossokine & AB; SXS Collaboration)

GW190814: a binary with a puzzling companion

•The more substructure and complexity the binary has (e.g., masses or spins of BHs are different) the richer is the spectrum of radiation emitted.

h+(t;,') i h(t;,') =1X

`=2

X

m=`

2Y`m(,')h`m(t)

(credit: Cotesta)

Θ

m1 = 23.2+1.1−1.0 M⊙ m2 = 2.59+0.08

−0.09 M⊙

Page 17: Status & challenges of theoretical & experimental

GW190814: a Binary with a Puzzling Companion

(Abbott et al. ApJ Lett 896 (2020) 2, L44)

•Systematics due to waveform modeling smaller than statistical errors.

•Using waveform models with higher-modes and spin-precession constrains more tightly the secondary mass.

•Either the largest neutron star or the smallest black hole.

•More massive BH rotated with .χ1 < 0.07

Page 18: Status & challenges of theoretical & experimental

GW190412: a signal like none before

(credit: Fischer, Pfeiffer & AB; SXS Collaboration) •More massive BH rotated with spin at CI0.17 − 0.59 90 %

(Abbott et al. PRD 102 (2020) 4) χ1 = S1/m2

1

q = m1/m2

χ2 = S2/m22

χeff = ( m1

Mχ1 +

m2

Mχ2) ⋅ L

GW190412: a Signal Like None Before

q = 0.28+0.12−0.06 M⊙

•Binary black hole with mass asymmetry, and more massive BH spinning at about with tilt angle .χ1 ∼ 0.4 θ1 ∼ 45o

Page 19: Status & challenges of theoretical & experimental

(credit: Fischer, Pfeiffer & AB; SXS Collaboration) •Systematics due to waveform modeling are not negligible when spins and higher modes are relevant.

(Abbott et al. PRD 102 (2020) 4)

q = m1/m2

GW190412: a Signal Like None Before

GW190412: a signal like none before

q = 0.28+0.12−0.06 M⊙

•Binary black hole with mass asymmetry, and more massive BH spinning at about with tilt angle .χ1 ∼ 0.4 θ1 ∼ 45o

•Spin-precession and non-quadrupole modes enable tighter inferences

Page 20: Status & challenges of theoretical & experimental

GW190521: a signal produced by the largest BHs so far

(credit: Fischer, Pfeiffer & AB; SXS Collaboration)

•Likely, BHs too massive to have been formed from a collapsed star, because of Pair-Instability SN.

GW190521: a Signal Produced by the Largest BHs so far

•Systematics due to waveform modeling are not negligible when spin precession and higher modes are relevant, but they are still subdominant with respect to statistical uncertainty.

(Abbott et al. PRL 125 (2020) 10, ApJ Lett 900 (2020) L13)

χ1 = S1/m21

q = m1/m2

χ2 = S2/m22

χeff = ( m1

Mχ1 +

m2

Mχ2) ⋅ L

m1 = 91.4+29.3−17.5 M⊙ m2 = 66.8+20.7

−20.7 M⊙

Page 21: Status & challenges of theoretical & experimental

It could be a merger of a BH of about with a NS.6M⊙

Least massive system composed of two BHs

credible regions90 %q = m1/m2

χ1 = S1/m21

Highest probability of having the largest χeff Highest probability of

having the smallest χeff

χ2 = S2/m22

χeff = ( m1

Mχ1 +

m2

Mχ2) ⋅ L

credible regions90 %

ℳ = M ν3/5 ν =q

(1 + q)2

Gravitational-Wave Transient Catalog 2: Source Properties

(Abbott et al. arXiv:2010.14527)

M = m1 + m2

Page 22: Status & challenges of theoretical & experimental

Gravitational-Wave Transient Catalog 2: Source Properties

•Higher total masses than GWTC-1

•Three binaries with component mass in the lower mass gap ∼ 2.5 − 5M⊙

χ1 = S1/m21

q = m1/m2

χ2 = S2/m22

χeff = ( m1

Mχ1 +

m2

Mχ2) ⋅ L

•Three binaries with component mass larger than , i.e. in pair-instability SN mass gap

∼ 45M⊙

•At credibility, ten sources have

95 %χeff > 0

measures the spin components on the orbital plane

χp

•Posterior distributions constrained away from zero: mild sign of precession.

(Abbott et al. arXiv:2010.14527)

Page 23: Status & challenges of theoretical & experimental

(Ossokine, AB, Marsat, Cotesta et al. 20)

Assessing accuracy of BBH waveform models against NR

25 50 75 100 125 150 175 200Total mass [M]

104

103

102

101

100

MSNR

IMRPhenomPv3HM

q = 4.0,1 = (0.00, 0.01,0.80),2 = (0.37,0.42,0.57)

q = 4.0,1 = (0.00, 0.01,0.80),2 = (0.56,0.57, 0.00)

25 50 75 100 125 150 175 200Total mass [M]

104

103

102

101

100

MSNR

SEOBNRv4PHM

q = 6.0,1 = (0.06, 0.78,0.47),2 = (0.08,0.17,0.23)

q = 4.0,1 = (0.38, 0.39, 0.58),2 = (0.33,0.73,0.01)

IMRPhenomPv3HM (Khan et al. 19)

•Mismatch against SXS NR public catalog (1344) of multipolar spin-precessing waveforms.

•Waveform models are calibrated in the non-precessing sector.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0q

0.5

0.0

0.5

e↵

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0q

0.00

0.25

0.50

0.75

1.00

p

103 102 101

MSNR

•Waveform models differ the most for large mass ratios (> 10) and large spins (> 0.6) and stronger precession.

•Mismatch between two multipolar spin-precessing waveforms.

unfaithfulness between SEOBNRv4PHM & IMRPhenomPv3HM unfaithfulness of SEOBNRv4PHM & IMRPhenomPv3HM against NR

Page 24: Status & challenges of theoretical & experimental

Assessing accuracy of waveform models with Bayesian analysis

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.5

2.0

2.5

3.0

0.4 0.6 0.8a1

1.5

2.0

2.5

3.0

1[rad]

(Ossokine, AB, Marsat, Cotesta et al. 20)

50 60 70 80 90 100 110

7.5

10.0

12.5

15.0

17.5

60 80 100m1[M]

10

15

m2[M

]

SNR = 21

SEOBNRv4PHM unfaithfulness = 4.4 % IMRPhenomPv3HM unfaithfulness = 8.8 %

NR signal is injected in O4 run:

= /2<latexit sha1_base64="QMVQNRCrZf7QdKeOlZS0fr6HOSs=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8xd0g6EUIevEYIS/IrmF20psMmX0w06uEJf/hxYMiXv0Xb/6Nk2QPmljQUFR1093lJ1JotO1va2V1bX1js7BV3N7Z3dsvHRy2dJwqDk0ey1h1fKZBigiaKFBCJ1HAQl9C2x/dTv32Iygt4qiB4wS8kA0iEQjO0EgPbmMIyOg1dRNxXu2VynbFnoEuEycnZZKj3it9uf2YpyFEyCXTuuvYCXoZUyi4hEnRTTUkjI/YALqGRiwE7WWzqyf01Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dNMbjyMhElKULE54uCVFKM6TQC2hcKOMqxIYwrYW6lfMgU42iCKpoQnMWXl0mrWnHsinN/Ua7d5HEUyDE5IWfEIZekRu5InTQJJ4o8k1fyZj1ZL9a79TFvXbHymSPyB9bnD9jmkWs=</latexit><latexit sha1_base64="QMVQNRCrZf7QdKeOlZS0fr6HOSs=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8xd0g6EUIevEYIS/IrmF20psMmX0w06uEJf/hxYMiXv0Xb/6Nk2QPmljQUFR1093lJ1JotO1va2V1bX1js7BV3N7Z3dsvHRy2dJwqDk0ey1h1fKZBigiaKFBCJ1HAQl9C2x/dTv32Iygt4qiB4wS8kA0iEQjO0EgPbmMIyOg1dRNxXu2VynbFnoEuEycnZZKj3it9uf2YpyFEyCXTuuvYCXoZUyi4hEnRTTUkjI/YALqGRiwE7WWzqyf01Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dNMbjyMhElKULE54uCVFKM6TQC2hcKOMqxIYwrYW6lfMgU42iCKpoQnMWXl0mrWnHsinN/Ua7d5HEUyDE5IWfEIZekRu5InTQJJ4o8k1fyZj1ZL9a79TFvXbHymSPyB9bnD9jmkWs=</latexit><latexit sha1_base64="QMVQNRCrZf7QdKeOlZS0fr6HOSs=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8xd0g6EUIevEYIS/IrmF20psMmX0w06uEJf/hxYMiXv0Xb/6Nk2QPmljQUFR1093lJ1JotO1va2V1bX1js7BV3N7Z3dsvHRy2dJwqDk0ey1h1fKZBigiaKFBCJ1HAQl9C2x/dTv32Iygt4qiB4wS8kA0iEQjO0EgPbmMIyOg1dRNxXu2VynbFnoEuEycnZZKj3it9uf2YpyFEyCXTuuvYCXoZUyi4hEnRTTUkjI/YALqGRiwE7WWzqyf01Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dNMbjyMhElKULE54uCVFKM6TQC2hcKOMqxIYwrYW6lfMgU42iCKpoQnMWXl0mrWnHsinN/Ua7d5HEUyDE5IWfEIZekRu5InTQJJ4o8k1fyZj1ZL9a79TFvXbHymSPyB9bnD9jmkWs=</latexit>

M = 76M, q = 6,1 = (0.06, 0.78,0.47),2 = (0.08,0.17,0.23)<latexit sha1_base64="/DnvbDfyOCXdPbcmHBWm0j0l1To=">AAACOHicbZDLTgIxFIY7XhFvqEs3jcQEEiQzSBg2JkQ3boiYyCUBMumUAg2d6dh2TAjhsdz4GO6MGxca49YnsAOzUPAkbb7+/zlp+7sBo1KZ5ouxsrq2vrGZ2Epu7+zu7acODhuShwKTOuaMi5aLJGHUJ3VFFSOtQBDkuYw03dFV5DcfiJCU+3dqHJCuhwY+7VOMlJac1E0VXkC7BKtOh/e4ysF7fS7lYAcPqWNpzpyZebOUM/N2OaexaGdjsxCZ2pvJlh3thfOsk0prbVZwGawY0iCumpN67vQ4Dj3iK8yQlG3LDFR3goSimJFpshNKEiA8QgPS1ugjj8juZPbxKTzVSg/2udDLV3Cm/p6YIE/KsefqTg+poVz0IvE/rx2qfrk7oX4QKuLj+UX9kEHFYZQi7FFBsGJjDQgLqt8K8RAJhJXOOqlDsBa/vAyNQt7Syd0W05XLOI4EOAYnIAMsYIMKuAY1UAcYPIJX8A4+jCfjzfg0vuatK0Y8cwT+lPH9A0Zaocg=</latexit><latexit sha1_base64="/DnvbDfyOCXdPbcmHBWm0j0l1To=">AAACOHicbZDLTgIxFIY7XhFvqEs3jcQEEiQzSBg2JkQ3boiYyCUBMumUAg2d6dh2TAjhsdz4GO6MGxca49YnsAOzUPAkbb7+/zlp+7sBo1KZ5ouxsrq2vrGZ2Epu7+zu7acODhuShwKTOuaMi5aLJGHUJ3VFFSOtQBDkuYw03dFV5DcfiJCU+3dqHJCuhwY+7VOMlJac1E0VXkC7BKtOh/e4ysF7fS7lYAcPqWNpzpyZebOUM/N2OaexaGdjsxCZ2pvJlh3thfOsk0prbVZwGawY0iCumpN67vQ4Dj3iK8yQlG3LDFR3goSimJFpshNKEiA8QgPS1ugjj8juZPbxKTzVSg/2udDLV3Cm/p6YIE/KsefqTg+poVz0IvE/rx2qfrk7oX4QKuLj+UX9kEHFYZQi7FFBsGJjDQgLqt8K8RAJhJXOOqlDsBa/vAyNQt7Syd0W05XLOI4EOAYnIAMsYIMKuAY1UAcYPIJX8A4+jCfjzfg0vuatK0Y8cwT+lPH9A0Zaocg=</latexit><latexit sha1_base64="/DnvbDfyOCXdPbcmHBWm0j0l1To=">AAACOHicbZDLTgIxFIY7XhFvqEs3jcQEEiQzSBg2JkQ3boiYyCUBMumUAg2d6dh2TAjhsdz4GO6MGxca49YnsAOzUPAkbb7+/zlp+7sBo1KZ5ouxsrq2vrGZ2Epu7+zu7acODhuShwKTOuaMi5aLJGHUJ3VFFSOtQBDkuYw03dFV5DcfiJCU+3dqHJCuhwY+7VOMlJac1E0VXkC7BKtOh/e4ysF7fS7lYAcPqWNpzpyZebOUM/N2OaexaGdjsxCZ2pvJlh3thfOsk0prbVZwGawY0iCumpN67vQ4Dj3iK8yQlG3LDFR3goSimJFpshNKEiA8QgPS1ugjj8juZPbxKTzVSg/2udDLV3Cm/p6YIE/KsefqTg+poVz0IvE/rx2qfrk7oX4QKuLj+UX9kEHFYZQi7FFBsGJjDQgLqt8K8RAJhJXOOqlDsBa/vAyNQt7Syd0W05XLOI4EOAYnIAMsYIMKuAY1UAcYPIJX8A4+jCfjzfg0vuatK0Y8cwT+lPH9A0Zaocg=</latexit>

h+(t;,') i h(t;,') =1X

`=2

X

m=`

2Y`m(,')h`m(t)

(credit: Cotesta)

Θ

edge on:

(see also Pürrer and Haster 20)

Page 25: Status & challenges of theoretical & experimental

Probing Extreme-Matter with Gravitational Waves

•Neutron-star (NS) properties:

- mass:

- radius:

- inner core density >

- magnetic field: ~ @Earth

- surface temperature: ~ @Earth

- pressure: ~ @Earth

1 − 3 MSun

9 − 15 km2 × (2.8 × 1014) g/cm3

1015 ×103 ×

1027 ×

nuclear density

(credit: Hinderer)

signature of tidal deformations in NS

binary neutron star black-hole binary

•What is the internal structure and composition of neutron stars?

(Haensel et al. 07)

• Conjectured states of matter.A Large Ion Collider Experiment

(ALICE) @ CERN

(Watts et al. 16)

~2-6 x nuclear density

•NS equation of state (EOS) affects gravitational waveform during late inspiral, merger and post-merger.

Page 26: Status & challenges of theoretical & experimental

Probing Extreme-Matter with Gravitational Waves (contd.)

•Neutron-star (NS) properties:

- mass:

- radius:

- inner core density >

- magnetic field: ~ @Earth

- surface temperature: ~ @Earth

- pressure: ~ @Earth

1 − 3 MSun

9 − 15 km2 × (2.8 × 1014) g/cm3

1015 ×103 ×

1027 ×

nuclear density

(credit: Hinderer)

signature of tidal deformations in NS

binary neutron star black-hole binary

•What is the internal structure and composition of neutron stars?

(Özel &

Freire 2016)

•NS equation of state (EOS) affects gravitational waveform during late inspiral, merger and post-merger.

(Haensel et al. 07)

Page 27: Status & challenges of theoretical & experimental

Waveforms for BNS combining Analytical & Numerical Relativity

•Synergy between analytical and numerical work is crucial.

NRSEOBNRT

(Damour 1983, Flanagan & Hinderer 08, Binnington & Poisson 09, Vines et al. 11, Damour & Nagar 09, 12, Bernuzzi et al. 15, Hinderer, …AB … et al. 16, Steinhoff, … AB … et al. 16, Dietrich et al. 17-19, Nagar et al. 18)

Page 28: Status & challenges of theoretical & experimental

GW190425: a Binary Neutron Star with Surprisingly High Mass

χ1 = S1/m21

q = m1/m2

χ2 = S2/m22

•GW190425’s total mass is larger than BNSs in our galaxy: new population of BNS?

3.4+0.3−0.1M⊙

0.41ms

T<latexit sha1_base64="SFA5w4AIW/BneIL0My2kaCdYPs0=">AAACDHicbVDLSsNAFL2pr1pfVZduBovgQkIiBV0W3bis0Bc0oUymk3boTBJmJkIJ+QA3/oobF4q49QPc+TdO2yy09cDA4ZxzuXNPkHCmtON8W6W19Y3NrfJ2ZWd3b/+genjUUXEqCW2TmMeyF2BFOYtoWzPNaS+RFIuA024wuZ353QcqFYujlp4m1Bd4FLGQEayNNKjWPDJmyFNMIMeuexdeKDHJXJR5UiCh8jxr5Sbl2M4caJW4BalBgeag+uUNY5IKGmnCsVJ910m0n2GpGeE0r3ipogkmEzyifUMjLKjys/kxOTozyhCFsTQv0miu/p7IsFBqKgKTFFiP1bI3E//z+qkOr/2MRUmqaUQWi8KUIx2jWTNoyCQlmk8NwUQy81dExtjUoU1/FVOCu3zyKulc2q5ju/f1WuOmqKMMJ3AK5+DCFTTgDprQBgKP8Ayv8GY9WS/Wu/WxiJasYuYY/sD6/AED95pY</latexit><latexit sha1_base64="SFA5w4AIW/BneIL0My2kaCdYPs0=">AAACDHicbVDLSsNAFL2pr1pfVZduBovgQkIiBV0W3bis0Bc0oUymk3boTBJmJkIJ+QA3/oobF4q49QPc+TdO2yy09cDA4ZxzuXNPkHCmtON8W6W19Y3NrfJ2ZWd3b/+genjUUXEqCW2TmMeyF2BFOYtoWzPNaS+RFIuA024wuZ353QcqFYujlp4m1Bd4FLGQEayNNKjWPDJmyFNMIMeuexdeKDHJXJR5UiCh8jxr5Sbl2M4caJW4BalBgeag+uUNY5IKGmnCsVJ910m0n2GpGeE0r3ipogkmEzyifUMjLKjys/kxOTozyhCFsTQv0miu/p7IsFBqKgKTFFiP1bI3E//z+qkOr/2MRUmqaUQWi8KUIx2jWTNoyCQlmk8NwUQy81dExtjUoU1/FVOCu3zyKulc2q5ju/f1WuOmqKMMJ3AK5+DCFTTgDprQBgKP8Ayv8GY9WS/Wu/WxiJasYuYY/sD6/AED95pY</latexit><latexit sha1_base64="SFA5w4AIW/BneIL0My2kaCdYPs0=">AAACDHicbVDLSsNAFL2pr1pfVZduBovgQkIiBV0W3bis0Bc0oUymk3boTBJmJkIJ+QA3/oobF4q49QPc+TdO2yy09cDA4ZxzuXNPkHCmtON8W6W19Y3NrfJ2ZWd3b/+genjUUXEqCW2TmMeyF2BFOYtoWzPNaS+RFIuA024wuZ353QcqFYujlp4m1Bd4FLGQEayNNKjWPDJmyFNMIMeuexdeKDHJXJR5UiCh8jxr5Sbl2M4caJW4BalBgeag+uUNY5IKGmnCsVJ910m0n2GpGeE0r3ipogkmEzyifUMjLKjys/kxOTozyhCFsTQv0miu/p7IsFBqKgKTFFiP1bI3E//z+qkOr/2MRUmqaUQWi8KUIx2jWTNoyCQlmk8NwUQy81dExtjUoU1/FVOCu3zyKulc2q5ju/f1WuOmqKMMJ3AK5+DCFTTgDprQBgKP8Ayv8GY9WS/Wu/WxiJasYuYY/sD6/AED95pY</latexit>

•GW190425’s masses are consistent with mass measurements of NSs in binaries.

(Abbott et al. ApJ Lett 892 (2020))

χeff = ( m1

Mχ1 +

m2

Mχ2) ⋅ L

Page 29: Status & challenges of theoretical & experimental

GW190425: Inference on Tidal Deformability Parameter

•GW190425’s SNR is lower ( ) than GW170817’s SNR ( ): looser constraint on tidal deformability.∼ 13 ∼ 34

(Abbott et al. ApJ Lett 892 (2020))

Page 30: Status & challenges of theoretical & experimental

Assessing accuracy of BNS waveform models against NR

equal-mass unequal-mass

(Samajdar &

Dietrich 18)

•IMRDNRT is injected in O4 run

•Synthetic GW signal of a binary neutron star at 50 Mpc is injected in Gaussian noise with O4 noise-spectral density (SNR ~ 87).

•Inference with waveform models that have same matter effects, but baseline point-mass model is different.

(see also Dudi et al. 18, Samajdar & Dietrich 19, Gamba et al. 20) Systematics larger than statistical errors!

•To obtain NS’s radius with precision of 0.5-1 km, more accurate waveforms are needed.

Page 31: Status & challenges of theoretical & experimental

Waveforms for NSBH combining Analytical & Numerical Relativity

•Synergy between analytical and numerical work is crucial.

(see also Lackey et al. 14, Pannarale et al. 15, 16, Pürrer et al. 17, Chakravarti et al. 17)

(Matas, Dietrich, AB et al. 2020)

•So far, NSBH waveforms were used only for inference study of GW190814.

(see also Thompson et al. 2020)

•More accurate NSBH waveforms are needed for future runs (O4, O5, CE and ET).

Page 32: Status & challenges of theoretical & experimental

Waveforms for Eccentric Compact-Object Binaries

•How to discriminate among binary’s formation scenarios, and probe astrophysical environment? Eccentricity, spin-magnitude and spin-precession can disclose this information.

1800 2000 2200 2400 2600(tR)/M

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(DL/M

)<(h

22)

e0 = 0.4, p0 = 13M, q = 4

10800 11000 11200 11400 11600 11800(tR)/M

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

(DL/M

)<(h

22)

e0 = 0.3, p0 = 20M, q = 1

(Hinderer & Babak 17)•Eccentric compact-object binary:

mass ratio = 7

NR simulation

(Lewis et al. 16)

•Current eccentric models do not cover all physical effects (e.g., spin-precession and harmonics) or all stages of coalescence or entire range of eccentricity, accurately (but a lot of progress in last months!).

(many PN papers on eccentricity; Bini et al. 12; East et al. 13; Huerta et al. 14-19, Hinder et al. 17; Cao & Han 17; Loutrel & Yunes 16, 17; Ireland et al. 19, Moore & Yunes 19, Chiaramello & Nagar 20, Buades et al. 20, Liu et al. 21, Nagar et al. 20, 21, Islam et al. 21, Khalil et al. 21)

Page 33: Status & challenges of theoretical & experimental

Scattering Amplitude: A New Way to Study 2-body Problem

•Classical scattering: scattering angle χ •Quantum scattering amplitude

(cre

dit:

Carv

alho

)

(cre

dit:

Stei

nhof

f)

•Relativistic 2-body dynamics

e.g., in Born approximation: Fourier transform of potential is related to scattering amplitude

•(Local in-time) 2-body Hamiltonian at 4PM (3 loops) for nonspinning BHs. (Cheung et al. 19, 20, Bern et al. 19, Blümlein et al. 20, Kälin et al. 20, Bern et al 21)

Small parameter is GM/rc2 << 1, v2/c2 ~ 1, large separation, natural for unbound motion/scattering

V (1)(p,q) =

Zd3r

(2)3Mtree(p,q) eir·q

<latexit sha1_base64="JdCBB2X483l3moQks2TeBJSpLGU=">AAACiXicbVFda9swFJW9revSfWTb417EwiABL1hOlmSDQllf9jLoYEkLkR1kWU5F5Y9J8iAI/Zf9pr7131RO8rCluyB0OOdeHd1701pwpcPwzvMfPX5y9PT4Wefk+YuXr7qv3yxU1UjK5rQSlbxKiWKCl2yuuRbsqpaMFKlgl+nNeatf/mZS8ar8qTc1iwuyLnnOKdGOWnX/LBLTRwPbx2luahu01y87gKcQ81JDnEtCTZaMYCtIa00/wjUfJCOLA4O3/ku5TmMTDj/PJtF4EoTDMJyiCLUgmo5HY+vyiIDfbWKwLKCWjNlDPxywxHzkOxNMs0rDnWJX3V77YhvwIUB70AP7uFh1b3FW0aZgpaaCKLVEYa1jQ6TmVDDbwY1iNaE3ZM2WDpakYCo2204s/OCYDOaVdMe1v2X/rjCkUGpTpC6zIPpaHWot+T9t2eh8Fhte1o1mJd0Z5Y2AuoLtWmDGJaNabBwgVHL3V0iviRu+dsvruCGgw5YfgkU0ROEQ/Rj3zr7ux3EM3oH3oA8QmIIz8A1cgDmg3pEXeJ+8iX/iI3/mf9ml+t6+5i34J/zze48dwMw=</latexit><latexit sha1_base64="JdCBB2X483l3moQks2TeBJSpLGU=">AAACiXicbVFda9swFJW9revSfWTb417EwiABL1hOlmSDQllf9jLoYEkLkR1kWU5F5Y9J8iAI/Zf9pr7131RO8rCluyB0OOdeHd1701pwpcPwzvMfPX5y9PT4Wefk+YuXr7qv3yxU1UjK5rQSlbxKiWKCl2yuuRbsqpaMFKlgl+nNeatf/mZS8ar8qTc1iwuyLnnOKdGOWnX/LBLTRwPbx2luahu01y87gKcQ81JDnEtCTZaMYCtIa00/wjUfJCOLA4O3/ku5TmMTDj/PJtF4EoTDMJyiCLUgmo5HY+vyiIDfbWKwLKCWjNlDPxywxHzkOxNMs0rDnWJX3V77YhvwIUB70AP7uFh1b3FW0aZgpaaCKLVEYa1jQ6TmVDDbwY1iNaE3ZM2WDpakYCo2204s/OCYDOaVdMe1v2X/rjCkUGpTpC6zIPpaHWot+T9t2eh8Fhte1o1mJd0Z5Y2AuoLtWmDGJaNabBwgVHL3V0iviRu+dsvruCGgw5YfgkU0ROEQ/Rj3zr7ux3EM3oH3oA8QmIIz8A1cgDmg3pEXeJ+8iX/iI3/mf9ml+t6+5i34J/zze48dwMw=</latexit><latexit sha1_base64="JdCBB2X483l3moQks2TeBJSpLGU=">AAACiXicbVFda9swFJW9revSfWTb417EwiABL1hOlmSDQllf9jLoYEkLkR1kWU5F5Y9J8iAI/Zf9pr7131RO8rCluyB0OOdeHd1701pwpcPwzvMfPX5y9PT4Wefk+YuXr7qv3yxU1UjK5rQSlbxKiWKCl2yuuRbsqpaMFKlgl+nNeatf/mZS8ar8qTc1iwuyLnnOKdGOWnX/LBLTRwPbx2luahu01y87gKcQ81JDnEtCTZaMYCtIa00/wjUfJCOLA4O3/ku5TmMTDj/PJtF4EoTDMJyiCLUgmo5HY+vyiIDfbWKwLKCWjNlDPxywxHzkOxNMs0rDnWJX3V77YhvwIUB70AP7uFh1b3FW0aZgpaaCKLVEYa1jQ6TmVDDbwY1iNaE3ZM2WDpakYCo2204s/OCYDOaVdMe1v2X/rjCkUGpTpC6zIPpaHWot+T9t2eh8Fhte1o1mJd0Z5Y2AuoLtWmDGJaNabBwgVHL3V0iviRu+dsvruCGgw5YfgkU0ROEQ/Rj3zr7ux3EM3oH3oA8QmIIz8A1cgDmg3pEXeJ+8iX/iI3/mf9ml+t6+5i34J/zze48dwMw=</latexit>

amplitude

Page 34: Status & challenges of theoretical & experimental

Results from Interplay with Scattering Amplitude Methods & EFT

(Bern et al. 19, 20)

Small parameter is GM/rc2 << 1, v2/c2 ~ 1, large separation, natural for unbound motion/scattering

V (1)(p,q) =

Zd3r

(2)3Mtree(p,q) eir·q

<latexit sha1_base64="JdCBB2X483l3moQks2TeBJSpLGU=">AAACiXicbVFda9swFJW9revSfWTb417EwiABL1hOlmSDQllf9jLoYEkLkR1kWU5F5Y9J8iAI/Zf9pr7131RO8rCluyB0OOdeHd1701pwpcPwzvMfPX5y9PT4Wefk+YuXr7qv3yxU1UjK5rQSlbxKiWKCl2yuuRbsqpaMFKlgl+nNeatf/mZS8ar8qTc1iwuyLnnOKdGOWnX/LBLTRwPbx2luahu01y87gKcQ81JDnEtCTZaMYCtIa00/wjUfJCOLA4O3/ku5TmMTDj/PJtF4EoTDMJyiCLUgmo5HY+vyiIDfbWKwLKCWjNlDPxywxHzkOxNMs0rDnWJX3V77YhvwIUB70AP7uFh1b3FW0aZgpaaCKLVEYa1jQ6TmVDDbwY1iNaE3ZM2WDpakYCo2204s/OCYDOaVdMe1v2X/rjCkUGpTpC6zIPpaHWot+T9t2eh8Fhte1o1mJd0Z5Y2AuoLtWmDGJaNabBwgVHL3V0iviRu+dsvruCGgw5YfgkU0ROEQ/Rj3zr7ux3EM3oH3oA8QmIIz8A1cgDmg3pEXeJ+8iX/iI3/mf9ml+t6+5i34J/zze48dwMw=</latexit><latexit sha1_base64="JdCBB2X483l3moQks2TeBJSpLGU=">AAACiXicbVFda9swFJW9revSfWTb417EwiABL1hOlmSDQllf9jLoYEkLkR1kWU5F5Y9J8iAI/Zf9pr7131RO8rCluyB0OOdeHd1701pwpcPwzvMfPX5y9PT4Wefk+YuXr7qv3yxU1UjK5rQSlbxKiWKCl2yuuRbsqpaMFKlgl+nNeatf/mZS8ar8qTc1iwuyLnnOKdGOWnX/LBLTRwPbx2luahu01y87gKcQ81JDnEtCTZaMYCtIa00/wjUfJCOLA4O3/ku5TmMTDj/PJtF4EoTDMJyiCLUgmo5HY+vyiIDfbWKwLKCWjNlDPxywxHzkOxNMs0rDnWJX3V77YhvwIUB70AP7uFh1b3FW0aZgpaaCKLVEYa1jQ6TmVDDbwY1iNaE3ZM2WDpakYCo2204s/OCYDOaVdMe1v2X/rjCkUGpTpC6zIPpaHWot+T9t2eh8Fhte1o1mJd0Z5Y2AuoLtWmDGJaNabBwgVHL3V0iviRu+dsvruCGgw5YfgkU0ROEQ/Rj3zr7ux3EM3oH3oA8QmIIz8A1cgDmg3pEXeJ+8iX/iI3/mf9ml+t6+5i34J/zze48dwMw=</latexit><latexit sha1_base64="JdCBB2X483l3moQks2TeBJSpLGU=">AAACiXicbVFda9swFJW9revSfWTb417EwiABL1hOlmSDQllf9jLoYEkLkR1kWU5F5Y9J8iAI/Zf9pr7131RO8rCluyB0OOdeHd1701pwpcPwzvMfPX5y9PT4Wefk+YuXr7qv3yxU1UjK5rQSlbxKiWKCl2yuuRbsqpaMFKlgl+nNeatf/mZS8ar8qTc1iwuyLnnOKdGOWnX/LBLTRwPbx2luahu01y87gKcQ81JDnEtCTZaMYCtIa00/wjUfJCOLA4O3/ku5TmMTDj/PJtF4EoTDMJyiCLUgmo5HY+vyiIDfbWKwLKCWjNlDPxywxHzkOxNMs0rDnWJX3V77YhvwIUB70AP7uFh1b3FW0aZgpaaCKLVEYa1jQ6TmVDDbwY1iNaE3ZM2WDpakYCo2204s/OCYDOaVdMe1v2X/rjCkUGpTpC6zIPpaHWot+T9t2eh8Fhte1o1mJd0Z5Y2AuoLtWmDGJaNabBwgVHL3V0iviRu+dsvruCGgw5YfgkU0ROEQ/Rj3zr7ux3EM3oH3oA8QmIIz8A1cgDmg3pEXeJ+8iX/iI3/mf9ml+t6+5i34J/zze48dwMw=</latexit>

amplitude

•(Local in-time) 2-body Hamiltonian at 4PM (3 loops) for nonspinning BHs. (Cheung et al. 19, 20, Bern et al. 19, Blümlein et al. 20, Kälin et al. 20, Bern et al 21)

Page 35: Status & challenges of theoretical & experimental

Comparison between PMs and NR binding energies

•2-body non-spinning (local-in-time) Hamiltonian at 4PM order computed using scattering-amplitude methods.(Cheung et al. 18, Bern et al. 19, Bern et al. 21)

•Crucial to push PM calculations at higher order, and resum them in EOB formalism.(Damour 19, Antonelli, AB, Steinhoff, van de Meent & Vines 19, Khalil, AB, Steinhoff & Vines in prep 21)

current (uncalibrated) Hamiltonianused to build EOBNR waveform models for LIGO/Virgo

binding energy

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

2345102040

0.02 0.04 0.06 0.08

-0.2

-0.1

0.0

0.1

0.2

binding energy

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

2345102040

0.02 0.04 0.06 0.08

-0.2

-0.1

0.0

0.1

0.2

(Kh

alil,

AB,

Ste

inho

ff &

Vin

es in

pre

p 21

)

Encouraging (local-in-time) 4PM results!

Page 36: Status & challenges of theoretical & experimental

•2-body spin-orbit (SO) Hamiltonian at 4.5PN computed using EFT or interplay between bound and unbound orbits, and gravitational self-force results. (Levi et al. 20, Antonelli et al. 20)

•2-body non-spinning Hamiltonian at 5PN & 6PN partially computed using EFT or interplay between bound and unbound orbits, and gravitational self-force results.(Foffa et al. 19, Blümlein et al. 20, Damour 20, Bini, Damour & Geralico 20)

Results from Interplay with Scattering Amplitude Methods & EFT/QFT

(Bini et al. 17, 18, Vines 18, Bern et al. 20, Kosmopoulos & Luna 21, Liu et al. 21)

•2-body Hamiltonian at 2PM (1 loop) for spinning, precessing BHs.

-0.03

-0.02

-0.01

0.00

0.30 0.35 0.40 0.45

-0.03

-0.02

-0.01

0.00

mass ratio = 1

mass ratio = 3

2-bo

dy b

indi

ng e

nerg

y2-

body

bin

ding

ene

rgy

v/c

(Antonelli et al. 20)

toward merger

•Tidal effects in 2-body dynamics in PM expansion(Cheng & Solon 20, Kälin et al. 20)

•Leading-order radiation in PM expansion(Damour 20, Di Vecchia et al. 20, 21, Jakobsen et al. 21, Herrmann et al. 21)

Page 37: Status & challenges of theoretical & experimental

•Observing gravitational waves and inferring astrophysical/physical information hinges on our ability to make highly precise predictions of two-body dynamics and gravitational radiation.

•Unique opportunity for theoretical particle physicists to contribute!

•Crucial to improve waveform models for BBHs and binaries with matter for LIGO and Virgo upcoming runs and for future detectors (Cosmic Explorer, Einstein Telescope & LISA). Waveform accuracy would need to be improved by one or two orders of magnitude depending on the parameter space.

•With O1 & O2 we observed the "tip of the iceberg" of the binary population, with the improved detectors’ sensitivity, O3a has unveiled a richer picture and several “exceptional" sources.

•EFT and scattering-amplitudes methods have brought new and fresh perspectives (and tools) to solve the relativistic two-body problem, unveiling new paths to intertwine the different perturbative approaches (PN, PM and GSF).

•The impact of recent PN-PM results for GW observations have not yet been fully assessed, but they will as we develop new waveform models for the upcoming O4 run.

Summary & Outlook

Page 38: Status & challenges of theoretical & experimental

Toward High-Precision Gravitational-Wave Astrophysics

•Plus radiation!

PN order 1.5 2.5 3.5 4.5 5.5 6.5

0 1 2 3 4 5 6 need up to

no spin N 1PN 2PN 3PN 4PN 5PN 6PN 1PM / tree

spin-orbit LO SO NLO SO N2LO SO N3LO SO 2PM / 1-loop

spin^2 LO S2 NLO S2 N2LO S2 N3LO S2 3PM / 2-loop

spin^3 LO S3 NLO S3 4PM / 3-loop

spin^4 LO S4 NLO S4 5PM / 4-loop

spin^5 LO S5 NLO S5 6PM / 5-loop

spin^6 LO S6 7PM / 6-loop

LO tidal NLO tidal N2LO tidal

spin-tidal

N.B. Resummation methods (e.g., EOB) can accelerate accuracy.

(cre

dit:V

ines

)

•Conservative dynamics

(High precision is needed but it is not necessary that results are provided in analytical form.)

•Goal: 2-body dynamics and radiation (including waveforms) for spinning objects through 6PN order.

Page 39: Status & challenges of theoretical & experimental

Thank You!

(cre

dit:

Carv

alho

)

The material presented is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation.