stgb30v60df, stgp30v60df, stgw30v60df, stgwt30v60df · output characteristics (tj=175°c) figure 6....

22
This is information on a product in full production. October 2013 DocID024361 Rev 4 1/22 22 STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Trench gate field-stop IGBT, V series 600 V, 30 A very high speed Datasheet - production data Figure 1. Internal schematic diagram Features Maximum junction temperature: T J = 175 °C Tail-less switching off V CE(sat) = 1.85 V (typ.) @ I C = 30 A Tight parameters distribution Safe paralleling Low thermal resistance Very fast soft recovery antiparallel diode Applications Photovoltaic inverters Uninterruptible power supply Welding Power factor correction Very high frequency converters Description This device is an IGBT developed using an advanced proprietary trench gate field stop structure. The device is part of the V series of IGBTs, which represent an optimum compromise between conduction and switching losses to maximize the efficiency of very high frequency converters. Furthermore, a positive V CE(sat) temperature coefficient and very tight parameter distribution result in safer paralleling operation. C (2, TAB) G (1) E (3) TO-247 TO-3P 1 2 3 1 2 3 1 3 TAB D²PAK 1 2 3 TAB TO-220 TAB Table 1. Device summary Order codes Marking Package Packaging STGB30V60DF GB30V60DF D²PAK Tape and reel STGP30V60DF GP30V60DF TO-220 Tube STGW30V60DF GW30V60DF TO-247 Tube STGWT30V60DF GWT30V60DF TO-3P Tube www.st.com

Upload: others

Post on 25-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

This is information on a product in full production.

October 2013 DocID024361 Rev 4 1/22

22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

Trench gate field-stop IGBT, V series

600 V, 30 A very high speed

Datasheet - production data

Figure 1. Internal schematic diagram

Features• Maximum junction temperature: T

J = 175 °C

• Tail-less switching off

• VCE(sat)

= 1.85 V (typ.) @ IC

= 30 A

• Tight parameters distribution

• Safe paralleling

• Low thermal resistance

• Very fast soft recovery antiparallel diode

Applications• Photovoltaic inverters

• Uninterruptible power supply

• Welding

• Power factor correction

• Very high frequency converters

DescriptionThis device is an IGBT developed using an

advanced proprietary trench gate field stop

structure. The device is part of the V series of

IGBTs, which represent an optimum compromise

between conduction and switching losses to

maximize the efficiency of very high frequency

converters. Furthermore, a positive VCE(sat)

temperature coefficient and very tight parameter

distribution result in safer paralleling operation.

C (2, TAB)

G (1)

E (3)

TO-247 TO-3P1

2

3

12

3

13

TAB

D²PAK1

23

TAB

TO-220TAB

Table 1. Device summary

Order codes Marking Package Packaging

STGB30V60DF GB30V60DF D²PAK Tape and reel

STGP30V60DF GP30V60DF TO-220 Tube

STGW30V60DF GW30V60DF TO-247 Tube

STGWT30V60DF GWT30V60DF TO-3P Tube

www.st.com

Page 2: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Electrical ratings STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

2/22 DocID024361 Rev 4

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit

VCES

Collector-emitter voltage (VGE

= 0) 600 V

IC

Continuous collector current at TC

= 25 °C 60 A

IC

Continuous collector current at TC

= 100 °C 30 A

ICP

(1)

1. Pulse width limited by maximum junction temperature.

Pulsed collector current 120 A

VGE

Gate-emitter voltage ±20 V

IF

Continuous forward current at TC

= 25 °C 60 A

IF

Continuous forward current at TC

= 100 °C 30 A

IFP

(1)Pulsed forward current 120 A

PTOT

Total dissipation at TC

= 25 °C 258 W

TSTG

Storage temperature range - 55 to 150 °C

TJ

Operating junction temperature - 55 to 175 °C

Table 3. Thermal data

Symbol Parameter Value Unit

RthJC

Thermal resistance junction-case IGBT 0.58 °C/W

RthJC

Thermal resistance junction-case diode 2.08 °C/W

RthJA

Thermal resistance junction-ambient 50 °C/W

Page 3: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 3/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Electrical characteristics

2 Electrical characteristics

TJ

= 25 °C unless otherwise specified.

Table 4. Static characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit

V(BR)CES

Collector-emitter

breakdown voltage

(VGE

= 0)

IC

= 2 mA 600 V

VCE(sat)

Collector-emitter saturation

voltage

VGE

= 15 V, IC

= 30 A 1.85 2.3

V

VGE

= 15 V, IC

= 30 A

TJ = 125 °C

2.15

VGE

= 15 V, IC

= 30 A

TJ = 175 °C

2.35

VF

Forward on-voltage

IF = 30 A 2 2.6 V

IF = 30 A, T

J = 125 °C 1.7 V

IF = 30 A, T

J = 175 °C 1.6 V

VGE(th)

Gate threshold voltage VCE

= VGE

, IC

= 1 mA 5 6 7 V

ICES

Collector cut-off current

(VGE

= 0)

VCE

= 600 V 25 μA

IGES

Gate-emitter leakage

current (VCE

= 0)

VGE

= ± 20 V 250 nA

Table 5. Dynamic characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit

Cies

Input capacitance

VCE

= 25 V, f = 1 MHz,

VGE

= 0

- 3750 - pF

Coes

Output capacitance - 120 - pF

Cres

Reverse transfer

capacitance

- 77 - pF

Qg

Total gate charge

VCC

= 480 V, IC

= 30 A,

VGE

= 15 V, see Figure 29

- 163 - nC

Qge

Gate-emitter charge - 28 - nC

Qgc

Gate-collector charge - 72 - nC

Page 4: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Electrical characteristics STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

4/22 DocID024361 Rev 4

Table 6. IGBT switching characteristics (inductive load)

Symbol Parameter Test conditions Min. Typ. Max. Unit

td(on)

Turn-on delay time

VCE

= 400 V, IC

= 30 A,

RG

= 10 Ω, VGE

= 15 V,

see Figure 28

- 45 - ns

tr

Current rise time - 16 - ns

(di/dt)on

Turn-on current slope - 1500 - A/μs

td(off

) Turn-off delay time - 189 - ns

tf

Current fall time - 19 - ns

Eon

(1)

1. Energy losses include reverse recovery of the diode.

Turn-on switching losses - 383 - μJ

Eoff

(2)

2. Turn-off losses include also the tail of the collector current.

Turn-off switching losses - 233 - μJ

Ets

Total switching losses - 616 - μJ

td(on)

Turn-on delay time

VCE

= 400 V, IC

= 30 A,

RG

= 10 Ω, VGE

= 15 V,

TJ

= 175 °C, see Figure 28

- 42 - ns

tr

Current rise time - 17 - ns

(di/dt)on

Turn-on current slope - 1337 - A/μs

td(off

) Turn-off delay time - 193 - ns

tf

Current fall time - 32 - ns

Eon

(1)Turn-on switching losses - 794 - μJ

Eoff

(2)Turn-off switching losses - 378 - μJ

Ets

Total switching losses - 1172 - μJ

Table 7. Diode switching characteristics (inductive load)

Symbol Parameter Test conditions Min. Typ. Max. Unit

trr

Reverse recovery time

IF = 30 A, V

R = 400 V,

di/dt=1000 A/μs, V

GE = 15 V,

(see Figure 28)

- 53 - ns

Qrr

Reverse recovery charge - 384 - nC

Irrm

Reverse recovery current - 14.5 - A

dIrr/

/dt

Peak rate of fall of reverse

recovery current during tb

- 788 - A/μs

Err

Reverse recovery energy - 104 - μJ

trr

Reverse recovery time

IF = 30 A, V

R = 400 V,

di/dt=1000 A/μs, V

GE = 15 V,

TJ = 175 °C, (see Figure 28)

- 104 - ns

Qrr

Reverse recovery charge - 1352 - nC

Irrm

Reverse recovery current - 26 - A

dIrr/

/dt

Peak rate of fall of reverse

recovery current during tb

- 310 - A/μs

Err

Reverse recovery energy - 407 - μJ

Page 5: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 5/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Electrical characteristics

2.1 Electrical characteristics (curves) Figure 2. Power dissipation vs. case

temperatureFigure 3. Collector current vs. case temperature

Figure 4. Output characteristics (TJ=25°C) Figure 5. Output characteristics (TJ=175°C)

Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current

Ptot

150

100

50

00 50 100

(W)

25 75 125

200

150 175 TC(°C)

250

AM17409v1IC

30

20

10

00 50 TC(°C)100

(A)

25 75 125

40

50

150 175

60

AM17410v1

IC

80

60

20

00 1 3

(A)

2 4

100

VCE(V)

409V

11V

13VVGE=15V120

AM17411v1

IC

80

60

20

00 1 3

(A)

2 4

100

120

VCE(V)

40

9V

11V

13V

7V

VGE=15V

AM17412v1

VCE(sat)

2.0

1.8

1.4

1.2-50 0 100

(V)

50 150

2.2

2.4

TC(°C)

1.6

2.6

2.8

VGE=15VIC=60A

IC=30A

IC=15A

3.0

3.2

AM17413v1

1.6

1.4

1.0

0.80 10 3020 40

1.8

2.0

IC(A)

1.2

2.2

2.4

VGE=15V Tj=175°C

Tj=25°C

Tj=-40°C

6050

VCE(sat) (V)

2.6

2.8

3.0

3.2

AM17414v1

Page 6: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Electrical characteristics STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

6/22 DocID024361 Rev 4

Figure 8. Collector current vs. switching frequency

Figure 9. Forward bias safe operating area

Figure 10. Transfer characteristics Figure 11. Diode VF vs. forward current

Figure 12. Normalized VGE(th) vs junction temperature

Figure 13. Normalized V(BR)CES vs. junction temperature

IC

40

30

10

01

(A)

10

50

60

f(kHz)

20

70

80TC=80°C

TC=100°C

rectangular current shape,(duty cycle=0.5, Vcc= 400V Rg=10Ω,

Vge=0/15V, Tj=175 °C)

AM17415v1

IC

100

10

0.1

0.011

(A)

10 VCE(V)

1

10μs

100μs

1ms

100

Single pulse, Tc=25°C

Tj<175°C, VGE=15V

AM17416v1

IC

80

60

20

07

(A)

8 VGE(V)

40

Tj=175°C

Tj=25°C

Tj=-40°C

9

100

10 11

AM17417v1VF

1.9

1.110

(A)

20 IF(A)

1.5

Tj=175°C

Tj=25°C

Tj=-40°C

30

2.3

40 50 60

AM17418v1

VGE(th)

0.8

0.6-50

(norm)

TC(°C)

0.7

0

0.9

1.0

50 100 150

VCE=VGE

IC=1mA

AM17419v1V(BR)CES

1.1

0.9-50

(norm)

TC(°C)

1.0

0 50 100 150

IC=2mA

AM17420v1

Page 7: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 7/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Electrical characteristics

Figure 14. Capacitance variations Figure 15. Gate charge vs. gate-emitter voltage

Figure 16. Switching losses vs. collector current

Figure 17. Switching losses vs. gate resistance

Figure 18. Switching losses vs. junction temperature

Figure 19. Switching losses vs. collector emitter voltage

C(pF)

100.1 VCE(V)

1000

1 10

100

10000

Cies

CoesCres

AM17421v1VGE(V)

00 Qg(nC)50 100

2

150 175

4

6

8

10

12

14

16

25 12575

AM17422v1

E(μJ)

00 IC(A)

400

10 20

200

600

30 40

VCC=400V, VGE=15VRg=10Ω, Tj=175°C

800

1000

1200

1400

Eon

Eoff

50 60

1600

1800

2000

AM17423v1E(μJ)

0 Rg(Ω)

400

10 20200

600

30 40

VCC=400V, VGE=15VIC=30A, Tj=175°C

800

1000

1200Eon

Eoff

AM17424v1

E(μJ)

25 TJ(°C)

200

50 75100

300

100 125

VCC=400V, VGE=15VIC=30A, Rg=10Ω

400

500

600

Eon

Eoff

1500

700

800

AM17425v1E(μJ)

150 VCE(V)

500

200 250100

900

300 350

VGE=15V, Tj=175°C

IC=30A, Rg=10Ω

Eon

Eoff

300

700

1100

400 450

AM17426v1

Page 8: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Electrical characteristics STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

8/22 DocID024361 Rev 4

Figure 20. Switching times vs. collector current Figure 21. Switching times vs. gate resistance

Figure 22. Reverse recovery current vs. diode current slope

Figure 23. Reverse recovery time vs. diode current slope

Figure 24. Reverse recovery charge vs. diode current slope

Figure 25. Reverse recovery energy vs. diode current slope

t(ns)

0 IC(A)10 2010

30 40

VCC=400V,

Tj=175°C,

VGE=15V

Rg=10Ω

tdoff

tdon

100

tr

tf

50 60

AM17427v1t(ns)

0 Rg(Ω)10 2010

30 40

VCC=400V,

Tj=175°C,

VGE=15V

IC=30A

tdoff

tdon100

tr

tf

1000

AM17428v1

Irm(A)

0 di/dt (A/μs)500

10

1000

Vr=400V

IF=30A

Tj=175°C

20

30

40

01500

Tj=25°C

AM17429v1trr(μs)

0 di/dt (A/μs)500 1000 1500 2000

Vr=400V

IF=30A

Tj=175°C

50

100

150

200

02500

Tj=25°C

AM17430v1

Qrr(nC)

0 di/dt (A/μs)500 1000 1500 2000

Vr=400V

IF=30ATj=175°C

500

1000

1500

2000

02500

Tj=25°C

AM17431v1Err(μJ)

0 di/dt (A/μs)500 1000 1500 2000

Vr=400V

IF=30A

Tj=175°C

200

400

600

800

1000

02500

Tj=25°C

AM17432v1

Page 9: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 9/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Electrical characteristics

Figure 26. Thermal data for IGBT

Figure 27. Thermal data for diode

10-5

10-4

10-3

10-2

10-1

tp(s)10

-2

10-1

K

0.2

0.05

0.02

0.01

0.1

Zth=k Rthj-c

δ=tp/t

tp

t

Single pulse

δ=0.5

ZthTO2T_B

Page 10: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Test circuits STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

10/22 DocID024361 Rev 4

3 Test circuits

Figure 28. Test circuit for inductive load switching

Figure 29. Gate charge test circuit

Figure 30. Switching waveform Figure 31. Diode recovery time waveform

AM01504v1 AM01505v1

AM01506v1

90%

10%

90%

10%

VG

VCE

ICTd(on)

TonTr(Ion)

Td(off)

Toff

Tf

Tr(Voff)

Tcross

90%

10%

AM01507v1

IRRM

IF

di/dt

trr

ta tb

Qrr

IRRM

t

VF

dv/dt

Page 11: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 11/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Package mechanical data

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of

ECOPACK®

packages, depending on their level of environmental compliance. ECOPACK®

specifications, grade definitions and product status are available at: www.st.com.

ECOPACK is an ST trademark.

Table 8. D²PAK (TO-263) mechanical data

Dim.mm

Min. Typ. Max.

A 4.40 4.60

A1 0.03 0.23

b 0.70 0.93

b2 1.14 1.70

c 0.45 0.60

c2 1.23 1.36

D 8.95 9.35

D1 7.50

E 10 10.40

E1 8.50

e 2.54

e1 4.88 5.28

H 15 15.85

J1 2.49 2.69

L 2.29 2.79

L1 1.27 1.40

L2 1.30 1.75

R 0.4

V2 0° 8°

Page 12: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Package mechanical data STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

12/22 DocID024361 Rev 4

Figure 32. D²PAK (TO-263) drawing

Figure 33. D²PAK footprint(a)

a. All dimensions are in millimeters

0079457_T

16.90

12.20

9.75

3.50

5.08

1.60

Footprint

Page 13: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 13/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Package mechanical data

Table 9. TO-220 type A mechanical data

Dim.mm

Min. Typ. Max.

A 4.40 4.60

b 0.61 0.88

b1 1.14 1.70

c 0.48 0.70

D 15.25 15.75

D1 1.27

E 10 10.40

e 2.40 2.70

e1 4.95 5.15

F 1.23 1.32

H1 6.20 6.60

J1 2.40 2.72

L 13 14

L1 3.50 3.93

L20 16.40

L30 28.90

∅P 3.75 3.85

Q 2.65 2.95

Page 14: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Package mechanical data STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

14/22 DocID024361 Rev 4

Figure 34. TO-220 type A drawing

0015988_typeA_Rev_S

Page 15: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 15/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Package mechanical data

Table 10. TO-247 mechanical data

Dim.mm.

Min. Typ. Max.

A 4.85 5.15

A1 2.20 2.60

b 1.0 1.40

b1 2.0 2.40

b2 3.0 3.40

c 0.40 0.80

D 19.85 20.15

E 15.45 15.75

e 5.30 5.45 5.60

L 14.20 14.80

L1 3.70 4.30

L2 18.50

∅P 3.55 3.65

∅R 4.50 5.50

S 5.30 5.50 5.70

Page 16: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Package mechanical data STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

16/22 DocID024361 Rev 4

Figure 35. TO-247 drawing

0075325_G

Page 17: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 17/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Package mechanical data

Table 11. TO-3P mechanical data

Dim.mm

Min. Typ. Max.

A 4.60 5

A1 1.45 1.50 1.65

A2 1.20 1.40 1.60

b 0.80 1 1.20

b1 1.80 2.20

b2 2.80 3.20

c 0.55 0.60 0.75

D 19.70 19.90 20.10

D1 13.90

E 15.40 15.80

E1 13.60

E2 9.60

e 5.15 5.45 5.75

L 19.50 20 20.50

L1 3.50

L2 18.20 18.40 18.60

øP 3.10 3.30

Q 5

Q1 3.80

Page 18: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Package mechanical data STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

18/22 DocID024361 Rev 4

Figure 36. TO-3P drawing

8045950_A

Page 19: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 19/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Packaging mechanical data

5 Packaging mechanical data

Table 12. D²PAK (TO-263) tape and reel mechanical data

Tape Reel

Dim.mm

Dim.mm

Min. Max. Min. Max.

A0 10.5 10.7 A 330

B0 15.7 15.9 B 1.5

D 1.5 1.6 C 12.8 13.2

D1 1.59 1.61 D 20.2

E 1.65 1.85 G 24.4 26.4

F 11.4 11.6 N 100

K0 4.8 5.0 T 30.4

P0 3.9 4.1

P1 11.9 12.1 Base qty 1000

P2 1.9 2.1 Bulk qty 1000

R 50

T 0.25 0.35

W 23.7 24.3

Page 20: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

Packaging mechanical data STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

20/22 DocID024361 Rev 4

Figure 37. Tape

Figure 38. Reel

P1A0 D1

P0

F

W

E

D

B0K0

T

User direction of feed

P2

10 pitches cumulativetolerance on tape +/- 0.2 mm

User direction of feed

R

Bending radius

B1

For machine ref. onlyincluding draft andradii concentric around B0

AM08852v1

Top covertape

A

D

B

Full radius G measured at hub

C

N

REEL DIMENSIONS

40mm min.

Access hole

At slot location

T

Tape slot in core fortape start 25 mm min.width

AM08851v2

Page 21: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

DocID024361 Rev 4 21/22

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF Revision history

6 Revision history

Table 13. Document revision history

Date Revision Changes

14-Mar-2013 1 Initial release.

03-May-2013 2 Added: Section 2.1: Electrical characteristics (curves)

04-Jun-2013 3

Added minimum and maximum values for VGE(th)

in Table 4: Static

characteristics.

08-Oct-2013 4 Updated title, features and description in cover page.

Page 22: STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF · Output characteristics (TJ=175°C) Figure 6. VCE(sat) vs. junction temperature Figure 7. VCE(sat) vs. collector current Ptot

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

22/22 DocID024361 Rev 4

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the

right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any

time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no

liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this

document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products

or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such

third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFESUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONSOR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS ATPURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT ISEXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRYDOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED AREDEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void

any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any

liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -

Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com