successful application of innovative reaming-while-drilling technology in williston basin wells

37
Successful Application of Innovative Reaming- While-Drilling Technology in Williston Basin Wells Presenters Lee M. Smith - Greg Scott Western Energy Products and Services

Upload: carolyn-foster

Post on 02-Jan-2016

29 views

Category:

Documents


0 download

DESCRIPTION

Successful Application of Innovative Reaming-While-Drilling Technology in Williston Basin Wells. Presenters Lee M. Smith - Greg Scott Western Energy Products and Services. The Challenge. Challenge – eliminate dedicated reamer run in Bakken wells; ream-while-drilling (RWD) application - PowerPoint PPT Presentation

TRANSCRIPT

Successful Application of Innovative Reaming-While-Drilling Technology

in Williston Basin Wells

PresentersLee M. Smith - Greg Scott

Western Energy Products and Services

The Challenge

– Challenge – eliminate dedicated reamer run in Bakken wells; ream-while-drilling (RWD) application

– Introduction of 5 7/8” OD PDC reamer for use in 6” lateral section: non-mag and steel body tools

– Successful installation of multiple swellable packers – up to 40 per well

– Significant savings per well (up to 3 days rig time)

Geology

Williston Basin Bakken• Oil reservoir, dolomite

layered between two shales

• Produces oil, gas and natural gas liquids

• Depths from 8,000 to 10,000 ft

• Lower shale, middle sandstone and upper shale

• Middle sandstone varies in thickness, lithology

Hazards of Bakken

• 30+ formations from surface to target

• Potential aquifers• Sticking salt,

bentonite beds• Sloughing shales • Known H2S

Williston Basin Well Design• 8 ¾-inch vertical hole

section to KOP in target formation at 9,000’ to 10,000’ TVD

• 8 ¾” inch hole builds angle to horizontal in Bakken at around 11,000’ TVD

• Lateral up to 10000’• 20,000’ MD @TD • Multiple swell

packers to TD

An Innovative Solution

Incorporate PDC Reamer to drill/ream in 6” hole– Eliminates need for

dedicated reamer run– Delivers high quality

wellbore for multiple packer completion

PDC Reamer Tool Delivery to Isolated Rig Location

Introduction to PDC Reamer

Customer

Not using PDC Reamer

Using PDC Reamer

No

Yes -Review PDC Reamer reliability features-Run Histories and complete re-design

-Explain durability features of PDC Reamer-Discuss PDC Reamer application features

-Stress Run Histories and Customer Testimonials

Un-aware of PDC Reamer Advantages

Concerned about PDC Reamer Reliability

Thinks PDC Reamer is good but costs more than conventional stabs

Why

Experienced Lost Cutters ?

-Reamer functionality compared to stabilization alone-Reamer reliability proven in multiple applications-Reamer advantages over use of stabilizers alone-Reamer design advantages for added durability- Design features for greater reliability, durability

- Review PDC Reamer reliability features-Review Run Histories and Customer Testimonials

- Discuss PDC Reamer advantages compared to stabs-Explain durability features of PDC Reamer

-Show Savings Case Histories

Introduction to Drilling Tools

• A PDC Reamer is fit for any application that is expected to face stuck pipe problems

• Key words that trigger a need for a PDC Reamer are: Heavy back reaming Mobile or transient formation Moderate fractured and faulted formation Swelling shales Salt layers and salt domes Unconsolidated formations Tight spots Key seats Poor hole cleaning Inter-bedded formations or hard stringers NPT during POOH

PDC Reaming Tool– Customer Approach

PDC Reamer Tool

Reamer with drilling functionality• Reduce back reaming time• Removal of Irregularities for

smoother POOH• Better hole quality

Removes hole irregularities by:• Scraping• Cutting (Shearing)

Dual cutting mode ideal for transition drilling

PDC Reamer FeaturesPDC cutters on leading edges of

blades :• Allow re-opening holes to avoid

having stuck pipe during POOH• Reduce torque and drag in highly

irregular holes• Improve hole gauge and shape by

removing ledges and irregularities• Allow opening key-seats & ledges• Acts as backup hole opener when

bit gets under-gauge• Cutter design and distribution to

match application severity

Design Advantages

• Use of stud cutters to introduce in-string drilling

• Blade design provides proper cutter support to eliminate cutter shear

• Blade design ensures 360 degree coverage

• Hydraulic profile optimizes mud flow and resists balling

Impact on Performance• Balanced cutting structure

with cutter redundancies ensures optimized cutting and long life

• Reaming inserts arranged to provide continuous reaming and outstanding hole quality

• Reamed volume matched to tool life for uniform tool wear

Cutting Elements

Scraping Elements

Drill / Ream Parameters– Multiple RWD BHA designs incorporating both non-mag

steel body PDC Reamer tools– Test steerability, torque and successful installation swell

packers– Compare RWD BHA to previous lateral BHA – slick and

stabilized– Results / findings – torque increase from 7 to 13 with 20%

increase in rotary ROP– Optimal RWD BHA – 30ft spacing between PDC reamers

positioned on top of lower BHA using steel body tools; 30ft spacing between PDC reamers in lower BHA using non-mag tools

– Able to drill out 7” casing shoe

Introduction to Drilling ToolsPDC Reaming Tool – Introduction and Background

• Well profiles are becoming more complex and access to reservoir intervals is becoming more challenging

• New drilling technology and methodology:

Multi-lateral wells

Deep horizontal wells

Extended reach drilling

High Pressure High temperature wells

High Angled J-Profile ; S-Shaped wells

• It is critical to optimize drilling efficiency and reduce Non-Productive Time (NPT)

• A PDC Drilling Tool is a tool that reduces the hazards of having stuck pipe; a feature that significantly reduces NPT

Introduction to Drilling ToolsPDC Reaming Tool – Operations Concept

• A PDC Reaming Tool is a reamer with drilling functionality• The design intent is to:

Reduce back reaming time Removal of Irregularities for smoother POOH Better hole quality

• Traditional Reamer removes hole irregularities by: Scraping

• Tool removes hole irregularities by: Scraping Cutting (Shearing)

• Cutting mode renders this tool unique when dealing with holes with excessive irregularities (transient formations)

Cutting Elements

Scraping Elements

Introduction to Drilling ToolsPDC Reaming Tool – Main Functions

Blades leading edges doped with PDC cutters to:

• Allow re-opening holes to avoid having stuck pipe during POOH

• Reduces torque and drag whilst in reaming in highly irregular holes

• Improve hole gauge and shape by removing ledges and irregularities

• Allows opening key-seats & ledges

• Acts as backup hole opener when bit gets under-gauge (Dual action tool)

• Cutter matrix design and reaming insert distribution can be varied to match application severity

Introduction to Drilling ToolsPDC Reaming Tool – Main Functions

Mobile Formations Moderate Fractured & Faulted Formations

Reactive Formations Over-Pressured Formations

Hole CleaningUnconsolidated

Formations Key SeatingLedges and Doglegs

Introduction to Drilling ToolsPDC Reaming Tool - Construction

Tool design addresses several design intents and utilizes several features•For drilling:

Tool utilizes the use of stud cutters to introduce in-string drilling

Tool blade design solves the problem of stud cutters shear through proper cutter support

Introduction to Drilling ToolsPDC Reaming Tool - Construction

• For stability: Spiral Blade design ensures 360 degree coverage

• For hydraulics: Mud way profile optimizes mud flow and resists balling

Blade 360 Coverage

Introduction to Drilling ToolsPDC Reaming Tools - Construction

For performance:• Balanced cutting structure with cutter redundancies ensures optimized cutting

and long life• Reaming inserts arranged to provide continuous reaming and outstanding hole

quality• Reamed volume matched to tool life for uniform tool wear

Cutter Pairs

Backup Gage Cutters

Introduction to Drilling ToolsPDC Reaming Tool - Construction

• For productivity: Design process is automated,

this allows for fast customization

• For manufacturing: Stud cutters allow the use of

traditional 4 axis milling Tool configurations of same

size use same turning profile (for inventory)

Introduction to Drilling ToolsPDC Reaming Tool - Models

Single Action Tool Dual Action Tool

Fishing side doped with PDC cutters

Fishing side doped with PDC cutters

Down-hole side doped with PDC cutters

Optimized TCI distribution on gauge part

Optimized TCI distribution on gauge part

Down-hole side covered with reaming TCI inserts

Full coverage spiral

Introduction to Drilling ToolsPDC Reaming Tool - Models

6 Blade ToolLarger Mud Way Cross section and more TFA than a 6 Blade

Same reaming capacity as a 6 Blade Tool

Same number of cutters as a 6 Blade Tool

Longer tool and longer crown length

Introduction to Drilling ToolsPDC Reaming Tool - Features

Lower cutter set opens from bit under gauge to hole gauge

Omni Axi-symmetric cutter distribution for balanced drilling & reduced vibrations cutter design

Chamfered blade for proper PDC cooling and cleaning

Cutters deeply inserted in blade for elimination of shear plane

OMNI TCI distribution, optimized for uniformity of reamed surface and balanced insert wear

OMNI mud-ways, optimized to minimize balling potential

360 Blade coverage

Oriented stud cutters for optimum cutting

Upper cutter set opens from neck to hole gauge

Subject Well #1

• BHA : PDC reamer above 5 ¼” 6/7 motor with 1.5 bend; UBHO; 2 x NMDC; PDC reamer

• Begin reaming lateral 10,500’

• Flow rate =205 GPM• 65 RPM surface rotary +165

RPM at motor for 230 RPM

Well #1 Re-Cap• 32 hours reaming, 9000’ feet open hole, on

bottom drilling at 19,495’ depth• Average 25 ft/hr in rotary mode and 12 ft/hr

sliding mode• Rig limited to 4250 psi differential; difficulty with

second slide in getting required high side tool face

• Planned, 10-20 stand short trip• Reamed the last 800’ to TD at 20,232’• BHA POOH and 21 swell packers successfully run

Subject Well #2• BHA : 6-inch PDC bit; 4-3/4” 7/8 fixed

housing motor with 1.5 bend; 5 7/8-inch NM PDC reamer; UBHO; NMDC; NM PDC reamer

• Ream lateral hole from 10,500’ to 15,552’• Ream-while-drilling from 15,552’ to TD at

19,576’

Well #2 Re-Cap• Run in to ream at 5000’ to bottom,

holding angle over 4024 feet• RWD from 15,552’to TD at 19,576’• 5.14% sliding in 24.5 hrs• 94.86% rotating with 49.58 rotary

hrs• Rotating ROP of 77 ft/hr over 3817

feet• Sliding ROP of 9 ft/hr over 207’• Eliminated dedicated reamer run• 21 swell packers successfully

installed

Subject Well #3• BHA : 6-inch PDC bit; 5” 4/5 fixed housing

motor with 1.5 bend; UBHO; NMDC - 2; XO; steel PDC reamer; HWDP – 1; steel PDC reamer

• Drill out 7” shoe with RWD BHA• Ream-while-drilling from 10,320’ to TD at

19,820’

Well #3 Re-Cap• P/U RWD BHA and drill out 7” casing

shoe• RWD from 10,320’ to TD at 19,820’• 9.2% sliding in 10 hrs• 90.8% rotating with 98 rotary hrs• Rotating ROP of 88 ft/hr over 9000

feet• Sliding ROP of 35 ft/hr over 350’• Eliminated dedicated reamer run• 30 swell packers successfully

installed

Ream-While-Drilling BHA Design• Optimal RWD BHA

– 30-foot spacing between PDC reamers positioned on top of the lower BHA using steel body tools

– 30-foot spacing between PDC reamers in the lower BHA using non-mag tools

RWD BHA concerns:– 60-foot spacing between PDC reamers had a dropping

tendency in rotary– PDC reamers run without any spacing created to stiff

an assembly and was difficult to steer/orient while sliding.

‘Best Practice’ RWD– Surface handling PDC reamers: Care should be taken

in picking up and laying down of reamer tools to insure no surface breaking / chipping of the PDC cutters and TCI

– When reaming back to bottom with PDC reamers in the lateral drilling BHA, it is recommended to ream at 250-300ft/hr due to the 1.5 degree bend in the motor

– PDC reamers are only effective while in the rotary mode so it is necessary to ream or back ream each slide interval to insure a smooth well bore.

Conclusions: Use of PDC Reamer– 100% successful swellable packer installations– No issues with steerability– Increase in rotary ROP – smooth well bore, greater

on bottom WOB– Low / manageable torque– Versatile RWD BHA using both non-mag and steel

body PDC reamer tools– Eliminated dedicated reamer run– 3 days rig time savings per well

Rockin’ (reaming) in the Bakken

• Innovative solution using PDC Reamer proven in multiple wells– Reamed in excess 750,000’ of

hole / over 50 wells in ND/MT– Eliminates need for dedicated

reamer run– Saves average of 3 days/well– $225K savings per well– Established ‘best practice’ for

Williston Basin wells

Acknowledgments• This new technology, through the combined efforts of proven North

Dakota operations groups, rig and service companies, has eliminated the dedicated reamer run at TD while delivering good wellbore condition that enables multiple swellable packers to be run in a single, fast trip. We have worked with a number of operators , drilling contractors and service contractors – we appreciate their support in moving this project forward.

• Additionally we would like to thank our TERCEL manufacturing plant for their support on this project Omar Ahmed, Duane Shotwell and Michael Byerley . We as also would like to thank our WEPS / AER field service personnel William Collins , Mitchell Fenske and Alicia Kerr.